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Introduction

QCD describes the dynamics of quarks, and has a

non-perturbative scale ΛQCD ∼ 200 MeV.

Simplifications when mQ ≫ ΛQCD

A single heavy quark interacting with light particles

can be described by an effective field theory known

as HQET.

Applied to c and b quarks. The t-quark decays via

t→ bW before it forms hadrons. The width in the

standard model is Γt ≈ 1.5GeV
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NRQCD

Systems with two heavy quarks (such as J/ψ, Υ or t̄t

near threshold) are described by a completely

different effective theory, NRQCD [non-relativistic

QCD].
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Velocity Superselection Rule

Consider a heavy quark Q interacting with light

degrees of freedom, such as light quarks and gluons.

vµ =
pµ

mQ

, δvµ =
δpµ

mQ

∼ ΛQCD

mQ

→ 0

Quark has a constant velocity.

[x, v] =
1

mQ

[x, p] =
i~

mQ

→ 0.

Cannot simultaneously have a well-defined position

and momentum, but can have a well-defined position

and velocity.
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Spin-Flavor Symmetry

In the mQ → ∞ limit: static color 3 source in the rest

frame vµ = (1, 0, 0, 0).

Strong interactions flavor blind

⇒ HQ flavor symmetry

Symmetry breaking ∝ 1/mb − 1/mc

Color coupling is color electric charge. The magnetic

interaction is ∝ 1/mQ for a pointlike spin-1/2 fermion

(not true for the proton). ⇒ HQ spin symmetry

Symmetry breaking ∝ 1/mQ.

Combining gives HQ SU(4) spin-flavor symmetry :

b ↑, b ↓, c ↑ and c ↓ transform as a 4
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QCD Lagrangian

L =
∑

i=c,b,t

Q̄i

(

i/D −mQi

)

Qi + Llight

The Lagrangian has mQ term, and no well-defined

mQ → ∞ limit. It describes the interactions of Q at all

energies, including those greater than mQ.

Want to consider an effective theory valid for

momenta smaller than mQ, which makes the

simplications of low momentum manifest.

Should have an expansion in 1/mQ
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HQET Lagrangian

HQET Lagrangian:

LHQET = L0 +
1

mQ

L1 +
1

m2
Q

L2 + . . .

L0 has spin-flavor symmetry,

1/mQ terms are symmetry breaking corrections.
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Quark Propagator

Look at the quark propagator:

mQv mQv+k

k

i
p/+mQ

p2 −m2
Q + iǫ

p = mv + k, where k is called the residual momentum,

and is of order ΛQCD.
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HQET Propagator

i
mQv/+ k/+mQ

(mQv + k)2 −m2
Q + iǫ

Expanding this in the limit k ≪ mQ gives

i
1 + v/

2k · v + iǫ
+ O

(

k

mQ

)

= i
P+

k · v + iǫ
+ O

(

k

mQ

)

,

with a well defined limit.

P+ ≡ 1 + v/

2
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Projectors

P+ =
1 + v/

2
, P− =

1 − v/

2
,

In the rest frame,

P+ =













1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0













P 2
+ = P+, P

2
− = P−, P+ + P− = 1, P+P− = 0 P−P+ = 0.
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Gluon Vertex

The quark-gluon vertex

−igT aγµ → −igT aP+γ
µP+ = −igT avµ,

using the identity

P+γ
µ = vµ + γµP−

In the rest frame: the coupling is purely that of an

electric charge.
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HQET L0

HQET Lagrangian:

L = h̄v (x) (iD · v) hv (x) ,

hv(x) is the quark field in the effective theory and

satisfies

P+hv (x) = hv (x) .

hv annihilates quarks with velocity v, but does not

create antiquarks
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Dividing up momentum space

v appears explictly in the HQET Lagrangian.

hv describes quarks with velocity v, and momenta

within ΛQCD of mQv.
mQ

ΛQCD

mQv

k

quarks with velocity v′ 6= v are far away in the EFT
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Feynman rules

L = h̄v (iD · v)hv

Dµ = ∂µ + igT aAa
µ

The ∂ · v term gives a propagator

iP+

k · v
The A · v term gives a vertex

−igT avµ
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Manifest Spin-Flavor Symmetry

L0 =
∑

f=c,b,t

h̄fv (iD · v)hfv,

has manifest spin-flavor symmetry, since D · v does not

depend on the spin or the flavor of the heavy quark.
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Light degrees of freedom

Hadrons containing a single heavy quark contain Q,

and light quarks and gluons [light degrees of freedom

ℓ].

D+ meson has a c quark, d̄ quark, plus q̄q pairs and

gluons. Quantum numbers of ℓ are the same as the d̄.

Total angular momentum J is conserved

SQ is conserved as mQ → ∞

Define Sℓ ≡ J − SQ

Spin of the light degrees of freedom
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Multiplet Structure

J2 = j(j + 1), S2
Q = sQ(sQ + 1), S2

ℓ = sℓ(sℓ + 1)

sQ = 1/2, so heavy hadrons are in degenerate

multiplets with j = sℓ ± 1/2, unless sℓ = 0, in which case

there is a single j = 1/2 multiplet.

Ground state mesons: Q and a light antiquark q̄, so

sℓ = 1/2.

j = 0 ⊕ 1 and negative parity, since quarks and

antiquarks have opposite parity

Degenerate 0− and 1− mesons which form a flavor 3̄

Called H(Q)
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Ground State Mesons

Ds
+, Ds

*+

cs

D0, D*0

cu

D+, D*+

cd

B̄0
s , B̄

−, B̄0 (spin-0) B̄∗0
s , B̄∗−, B̄∗0 (spin-1)

NOTE: c ∈ D, b ∈ B̄
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Excited Mesons

In the quark model, the first excitation has L = 1,

with sℓ = 1/2 and sℓ = 3/2

sℓ = 1/2 ⇒ 0+ and 1+ states D∗
0 and D∗

1

sℓ = 3/2 ⇒ 1+ and 2+ states D1 and D∗
2

The sℓ = 1/2 and sℓ = 3/2 multiplets are not related by

HQ symmetry, though they are related in a NR quark

model
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Quark Field

Write the quark field as

Q (x) = e−imQv·x [hv (x) + Qv (x)]

= e−imQt

(

hv (x)

Qv (x)

)

p = mQv + k, so the x dependence of hv (x) is k.

v/hv (x) = hv (x) ,

v/Qv (x) = −Qv (x)
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Tree-level Lagrangian

At tree-level, one does not have to worry about

renormalization effects:

L = Q̄
(

i/D −mQ

)

Q

=
(

h̄v + Q̄v

)

eimQv·x
(

i/D −mQ

)

e−imQv·x (hv + Qv)

=
(

h̄v + Q̄v

) (

i/D −mQ +mQv/
)

(hv + Qv)

=
(

h̄v + Q̄v

) (

i/Dhv +
[

i/D − 2mQ

]

Qv

)

The result can be simplified using

P+γ
µP+ = vµ, P−γ

µP− = −vµ, P+γ
µP− = γµ

⊥, P−γ
µP+ = γµ

⊥,

where the ⊥ projector is defined for any vector A by

Aµ
⊥ ≡ Aµ − vµ v · A. LNF School, Frascati, May 17–18, 2004 – p.25



L = h̄v (iv ·D)hv −Qv (iv ·D + 2mQ)Qv + h̄vi/D⊥Qv + Q̄vi/D⊥hv

Quadratic in Qv:

L = h̄v (iv ·D)hv + h̄vi/D⊥

1

2mQ + iv ·Di
/D⊥hv.

The last term can be expanded in a power series in

1/mQ,

1

2mQ + iv ·D =
1

2mQ

− 1

4m2
Q

iv ·D + . . . .
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1/mQ Lagrangian

The effective Lagrangian to order 1/mQ is thus

L = h̄v (iv ·D)hv +
1

2mQ

h̄vi/D⊥ i/D⊥hv.

This can be rewritten using the identities

γαγβ = gαβ − iσαβ ,
[

Dα, Dβ
]

= igGαβ

L = h̄v (iv ·D)hv +
1

2mQ

h̄v (iD⊥)2 hv −
g

4mQ

h̄vσαβG
αβhv

+O
(

1

m2
Q

)
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L = h̄v (iv ·D)hv +
1

2mQ

h̄v (iD⊥)2 hv − cF
g

4mQ

h̄vσαβG
αβhv

The (iD⊥)2 term violates flavor symmetry at order

1/mQ

gσαβG
αβ term violates spin and flavor symmetry at

order 1/mQ

One can carry out the expansion to higher order in

1/mQ to obtain the tree level HQET Lagrangian.
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Field Redefinitions

Field redefinition

hv →
[

1 +
a

mQ

iv ·D
]

hv

changes the effective Lagrangian to

L = h̄v (iv ·D)hv +
1

2mQ

h̄v (iD⊥)2 hv −
g

4mQ

h̄vσαβG
αβhv

+
2a

mQ

hv (iv ·D)2 hv + O
(

1

m2
Q

)

For a = 1/2, one can replace D2
⊥ → D2

⊥ + (v ·D)2 = D2
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Field redefinition change off-shell amplitudes, but not

S-matrix elements.

The only thing that the effective theory and full

theory have to agree on are S-matrix elements.

Convenient to eliminate t derivatives, i.e. v ·D terms

in L

[Use the lowest order equation of motion (v ·D)hv = 0

to remove time derivatives]
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Masses

Hadron mass mass in effective theory is MH −mQ.

Lowest order: all hadrons degenerate, mass mQ

Order one: Hadron mass

〈HQ|H0 |HQ〉 ≡ Λ̄

where H0 = Hamiltonian from lowest order

Lagrangian (including the light degrees of

freedom).

Λ̄ has different values for each multiplet:

Λ̄ for mesons, Λ̄Λ, Λ̄Σ
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λ1, λ2

Order 1/mQ:

H1

mQ

= − L1

mQ

= − 1

2mQ

h̄v (iD⊥)2 hv + cF
g

4mQ

h̄vσαβG
αβhv.

Define two non-perturbative parameters

λ1 =
〈

HQ

∣

∣ h̄v (iD⊥)2 hv

∣

∣HQ

〉

,

8 (SQ · Sℓ)λ2 =
〈

HQ

∣

∣ h̄vgσαβG
αβhv

∣

∣HQ

〉

,

In the rest frame:

(iD⊥)2 = −p2

σαβG
αβ = −2σ · B
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Meson Masses

mH = mQ + Λ̄ − λ1

2mQ
+ cF

2λ2SQ · Sℓ

mQ

SQ · Sℓ = (J2 − S2
Q − S2

ℓ )/2, so

mB = mb + Λ̄ − λ1

2mb

− 3λ2

2mb

mB∗ = mb + Λ̄ − λ1

2mb

+
λ2

2mb

mD = mc + Λ̄ − λ1

2mc

− 3λ2

2mc

mD∗ = mc + Λ̄ − λ1

2mc

+
λ2

2mc LNF School, Frascati, May 17–18, 2004 – p.33



Note that heavy quark symmetry implies that Λ̄, λ1

and λ2 have the same value in the b and c systems

(upto renormalization)

0.49 GeV2 = m2
B∗ −m2

B = 4λ2 = m2
D∗ −m2

D = 0.55 GeV2,

up to corrections of order 1/mb,c.

90 ± 3MeV = mBs
−mBd

= Λ̄s − Λ̄d = mDs
−mDd

= 99 ± 1MeV

345 ± 9MeV = mΛb
−mB = Λ̄Λ − Λ̄d = mΛc

−mD = 416 ± 1MeV

Λ̄, λ1 and λ2 will occur elsewhere
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Meson Field

Qq̄ mesons → field H
(Q)
v (4 × 4 matrix, bispinor)

H(Q)
v (x) → D (Λ)H

(Q)

Λ−1v

(

Λ−1x
)

D (Λ)−1

Pseudoscalar P
(Q)
v (x) and vector P

∗(Q)
vµ (x)

Vector particles have a polarization vector ǫµ, with

ǫ · ǫ = −1, and v · ǫ = 0.

H(Q)
v =

1 + v/

2

[

/P ∗(Q)
v + iP (Q)

v γ5

]

.
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H(Q)
v =

1 + v/

2

[

/P ∗(Q)
v + iP (Q)

v γ5

]

.

Parity:

H(Q)
v (x) → γ0H(Q)

vP
(xP ) γ0,

where

xP =
(

x0,−x
)

, vP =
(

v0,−v
)

.
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H(Q)
v =

1 + v/

2

[

/P ∗(Q)
v + iP (Q)

v γ5

]

.

v/H(Q)
v = H(Q)

v , H(Q)
v v/ = −H(Q)

v .

using v · P ∗(Q)
v = 0
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Conjugate field:

H̄(Q)
v = γ0H(Q)†

v γ0 =
[

/P ∗(Q)
v

†
+ iP (Q)

v

†
γ5

] 1 + v/

2
,

which also transforms as a bispinor,

H̄(Q)
v → D (Λ) H̄

(Q)
v′ D (Λ)−1 .

since

γ0D (Λ)† γ0 = D (Λ)−1 .
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Normalization of States

〈H (p′, ε′)| H (p, ε)〉 = 2Ep (2π)3 δ(3) (p − p′) δεε′,

Mass dimension −1

HQET states eigenstates of the mQ → ∞ theory and

labelled by v and k, with v · k = 0. They differ from

full QCD states.

〈H(v′, k′, ε′)|H(v, k, ε)〉 = 2v0 (2π)3 δvv′δ3(k − k′)δεε′.

Usually take k = 0. States have mass dimension −3/2
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|H(p)〉 =
√
mH

[

|H(v)〉 + O
(

1

mQ

)]

Similarly

u(p, s)γµu(p, s) = 2pµ

u(v, s)γµu(v, s) = 2vµ

u(p, s) =
√
mHu(v, s)

LNF School, Frascati, May 17–18, 2004 – p.40



Meson Decay Constants

〈0| q̄γµγ5Q |P (p)〉 = −ifP p
µ,

where fP has mass dimension one. (fπ = 131 MeV)

〈0| q̄ γµQ |P ∗ (p, ǫ)〉 = fP ∗ ǫµ,

fP ∗ has mass dimension two.

q̄ ΓQ = q̄ ΓQv + O (αs) + O
(

1

mQ

)

so we need

〈0| q̄ ΓQv |H(v)〉 ,
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Spurion Analysis

q̄ ΓQv → q̄ ΓD(R)QQv

Pretend that Γ transforms as Γ → ΓD(R)−1
Q

Write down operators which are invariant when

Qv → D(R)QQv, Γ → ΓD(R)−1
Q , H

(Q)
v → D(R)QH

(Q)
v .

Set Γ to its fixed value γµ or γµγ5 to obtain the

operator with the correct transformation

properties.
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Decay Matrix Element

〈0| q̄ ΓQv |H(v)〉 = Tr
a

2
ΓH(Q)

v

a = a0(v
2) + a1(v

2)v/

a×
{

−ivµP
(Q)
v if Γ = γµγ5,

P
∗(Q)
v

µ if Γ = γµ,

〈0| q̄ γµγ5Qv |P (v)〉 = −iavµ,

〈0| q̄ γµQv |P ∗(v)〉 = aǫµ.
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fP =
a√
mP

, fP ∗ = a
√
mP ∗ .

fP =
a√
mP

, fP ∗ = mPfP ,

so fP ∝ m
−1/2
P , fP ∗ ∝ m

1/2
P .

a has the same value for c and b:

fB

fD
=

√

mD

mB
, fD∗ = mDfD, fB∗ = mBfB.
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Measure from the decays D → ℓ̄νℓ and B̄ → ℓν̄ℓ

Γ =
G2

F |VQq|2
8π

f 2
Pm

2
ℓmP

(

1 − m2
ℓ

m2
P

)2

.

JLQCD Collaboration [S. Aoki et al., Phys. Rev. Lett. 80 (1998) 5711]

Decay Constant Value in MeV

fD 197 ± 2

fDs
224 ± 2

fB 173 ± 4

fBs
199 ± 3

Note that this simulation suggests that there is a substantial correction to the

heavy quark symmetry prediction fB/fD =
p

mD/mB ≃ 0.6.
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B̄ → D(∗) Form Factors

Semileptonic b→ c decays via the weak current c̄ γµPL b

Decay form-factors are defined by:

〈

D(p′)
∣

∣V µ
∣

∣B̄(p)
〉

= f+(q2) (p+ p′)
µ

+ f−(q2) (p− p′)
µ
,

〈

D∗(p′, ǫ)
∣

∣V µ
∣

∣B̄(p)
〉

= g(q2)ǫµνατǫ∗ν (p+ p′)α (p− p′)τ ,
〈

D∗(p′, ǫ)
∣

∣Aµ
∣

∣B̄(p)
〉

= −if(q2)ǫ∗µ

−iǫ∗ · p
[

a+(q2) (p+ p′)
µ

+ a−(q2) (p− p′)
µ
]

,

where q = p− p′

Six form-factors
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w

Label states by v and v′, and use

w = v · v′ =
m2

B +m2
D(∗) − q2

2mBmD(∗)

The allowed kinematic range for w is

0 ≤ w − 1 ≤ (mB −mD(∗))
2

2mBmD(∗)

The zero-recoil point, at which D(∗) is at rest in the B̄

rest frame, is w = 1 (maximum q2)
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Better to use:

〈D(p′)|V µ|B̄(p)〉√
mBmD

= h+(w) (v + v′)µ + h−(w) (v − v′)µ,

〈D∗(p′, ǫ)|V µ|B̄(p)〉√
mBmD∗

= hV (w)ǫµναβǫ∗νv
′
αvβ,

〈D∗(p′, ǫ)|Aµ|B̄(p)〉√
mBmD∗

= −ihA1(w)(w + 1)ǫ∗µ + ihA2(w)(ǫ∗ · v)vµ

+ihA3(w)(ǫ∗ · v)v′µ.
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q2
light ∼ (ΛQCDv − ΛQCDv

′)2 = 2Λ2
QCD(1 − w)

HQ symmetry should hold if:

2Λ2
QCD (w − 1) ≪ m2

b,c.

The heavy meson form factors are expected to vary

on the scale q2
light ∼ Λ2

QCD, i.e. on the scale w ∼ 1.
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QCD matrix elements are of the form:

〈

H(c)(p′)
∣

∣ c̄Γ b
∣

∣H(b)(p)
〉

At leading order in 1/mc,b and αs(mc,b):

〈

H(c)(v′)
∣

∣ c̄v′ Γ bv
∣

∣H(b)(v)
〉

use trick as before Γ → D(R)cΓD(R)−1
b

c̄v′ Γ bv = Tr XH̄
(c)
v′ ΓH(b)

v ,

X = X0 +X1v/+X2v/
′ +X3v/v/

′,

where the coefficients are functions of w = v · v′.
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Isgur-Wise Function

Use X = −ξ(w):

〈

D(v′)
∣

∣ c̄v′ γµ bv
∣

∣B̄(v)
〉

= ξ(w) [vµ + v′µ],
〈

D∗(v′, ǫ)
∣

∣ c̄v′ γµγ5 bv
∣

∣B̄(v)
〉

= −iξ(w) [(1 + w)ǫ∗µ − (ǫ∗ · v)v′µ],
〈

D∗(v′, ǫ)
∣

∣ c̄v′ γµ bv
∣

∣B̄(v)
〉

= ξ(w) ǫµναβǫ
∗νv′αvβ.

Six form-factors in terms of one Isgur-Wise function

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w),

h−(w) = hA2(w) = 0
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Normalization of ξ(1)

Consider the forward matrix element of the vector

current b̄γµb between B̄ meson states. Setting v′ = v,

and letting c→ b, D → B̄,

〈B̄(p)|b̄γµb|B̄(p)〉
mB

= 〈B̄(v)|b̄vγµbv|B̄(v)〉 = 2 ξ(w = 1) vµ.

where ξ for b→ b is the same as for b→ c.

So ξ(1) = 1.

This fixes the absolute normalization and allows one

to determine Vcb.

LNF School, Frascati, May 17–18, 2004 – p.52



Radiative Corrections

Consider heavy quark wavefunction renormalization:

In Feynman gauge (n = 4 − ǫ)

∫

dnq

(2π)n (−igTAµǫ/2)vλ
i

(q + p) · v (−igTAµǫ/2)vλ (−i)
q2

= −
(

4

3

)

g2µǫ

∫

dnq

(2π)n

1

q2 v · (q + p)

Add a gluon mass to regulate the IR divergence, so

that one can isolate the UV divergence from the 1/ǫ

pole
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−
(

4

3

)

g2µǫ

∫

dnq

(2π)n

1

(q2 −m2) v · (q + p)

Use the identity

1

arbs
= 2s Γ(r + s)

Γ(r)Γ(s)

∫ ∞

0

dλ
λs−1

[a+ 2bλ]r+s
,

to get

−
(

8

3

)

g2µǫ

∫ ∞

0

dλ

∫

dnq

(2π)n

1

[q2 −m2 + 2λv · (q + p)]2
.

Let q → q − λv
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−
(

8

3

)

g2µǫ

∫ ∞

0

dλ

∫

dnq

(2π)n

1

[q2 −m2 − λ2 + 2λv · p]2
.

Use the standard dim reg formula:

∫

dnq

(2π)n

(q2)α

(q2 −M 2)β
=

i

2nπn/2
(−1)α+β(M 2)α−β+n/2Γ(α + n/2)Γ(β − α− n/2)

Γ(n/2)Γ(β)
,

− i

(4π)2−ǫ/2

(

8

3

)

g2µǫΓ (ǫ/2)

∫ ∞

0

dλ
[

λ2 − 2λv · p+m2
]−ǫ/2

.
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Recursion Relation

Evaluate λ integral using the recursion relation

I (a, b, c) ≡
∫ ∞

0

dλ
[

λ2 + 2bλ+ c
]a

=
1

1 + 2a

[

(

λ2 + 2bλ+ c
)a

(λ+ b)
∣

∣

∞

0
+ 2a

(

c− b2
)

I (a− 1, b, c)
]

,

to convert it to one that is convergent when ǫ = 0,

∫ ∞

0

dλ
[

λ2 − 2λv · p+m2
]−ǫ/2

=
1

1 − ǫ

[

(

λ2 − 2λv · p+m2
)−ǫ/2

(λ− v · p)
∣

∣

∣

∞

0

−ǫ
(

m2 − (v · p)2)
∫ ∞

0

dλ
[

λ2 − 2λv · p+m2
]−1−ǫ/2

]

.
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Zh

Can set ǫ = 0 in the last term. Also use

lim
λ→∞

λz = 0,

to get

−i g
2

3π2ǫ
v · p+ finite

This gives

Zh = 1 +
g2

3π2ǫ
, γh =

1

2

µ

Zh

dZh

dµ
= − g2

6π2
.

Note that Zq = 1 − g2

6π2ǫ
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Heavy-Light Current

Compute the anomalous dimension for

OΓ = q̄ΓQv

The light quark vertex is γµ and the heavy quark

vertex is vµ. Find that

γO = − g2

4π2
.

independent of Γ.
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Operator Mixing

Use the convention that

µ
d

dµ
Oj = −γjiOi

µ
d

dµ
Ci = γjiCj

with

L = CiOi
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Heavy-Heavy Current

Q̄v′ΓQv

γ =
g2

3π2
[w r(w) − 1]

r(w) =
1√

w2 − 1
ln
(

w +
√
w2 − 1

)

γ =
g2

π2

[

2

9
(w − 1) − 1

15
(w − 1)2 + . . .

]

,

that vanishes at w = 1.
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Matching heavy-light currents

q̄γλQ = C
(V )
1 q̄γλQv + C

(V )
2 q̄vλQv

where to lowest order C1 = 1, C2 = 0.

To compute the αs corrections, compute on-shell

matrix elements of both sides at one loop.

Computation of a matching coefficient. Need the

difference between the full and effective theory

results.

Full and EFT results can have IR divergences, but

the difference is IR finite. [UV divergences taken care

of by renormalization]
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Full Theory

Full theory: evaluate on-shell with p = mQv

C1 = −2αs

3π

[

1

ǫIR
+ 1

]

, C2 =
2αs

3π
.

Wavefunction renormalization:
q

p + qp p

Σ(p) = A(p2)m+B(p2)p/
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δZ ≡ B + 2m2 d(A+B)

dp2

∣

∣

∣

∣

p2=m2

Gives C1 = δZQ/2,

C1 = −αs

3π

[

2

ǫIR

+ 2 + 3 ln
µ

mQ

]

, C2 = 0

(including UV counterterm)

Neglect Zq as it will cancel out.
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Effective Theory

Effective theory:

C1 = − 2αs

3πǫIR

C2 = 0.

C1 = − 2αs

3πǫIR

C2 = 0

Light quark wavefunction cancels between full and

EFT LNF School, Frascati, May 17–18, 2004 – p.64



Scaleless Integrals

EFT integrals: have no scale in them when evaluated

on-shell. e.g. wavefunction graph

∫

dnq

(2π)n

1

q2 v · (q + p)
→
∫

dnq

(2π)n

1

q2 (v · q)2

and is zero in dim-reg. Adding the UV counterterm

gives the 1/ǫ terms.

∫

dnq

(2π)n

1

q4
=

i

8π2ǫUV

− i

8π2ǫIR

,

∫

dnq

(2π)n

1

q4
+ counterterm = − i

8π2ǫIR

,
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Matching UV and IR

Full theory integrals can have finite parts, since they

depend on mQ.

IR divergence match between full and effective

theory. Since the EFT integrals are scaleless, UV=IR

in the EFT. Thus one finds

1

ǫIR

∣

∣

∣

∣

FULL

= − 1

ǫUV

∣

∣

∣

∣

EFT

The anomalous dimensions in the EFT are related to

the IR behavior in the full theory.
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Matching Correction

Full theory:

C1 = −αs

3π

[

4

ǫ
+ 4 + 3 ln

µ

mQ

]

, C2 =
2αs

3π
.

EFT:

C1 = −αs

3π

[

4

ǫ

]

C2 = 0

Difference

C1 = −αs

3π

[

4 + 3 ln
µ

mQ

]

, C2 =
2αs

3π
.

Or compute in full theory and drop 1/ǫ terms.
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Log in matching related to difference in anomalous

dimensions in Full and EFT.

Usually choose matching scale µ = mQ, so one finds:

C
(V )
1 (m) = 1 − 4αs

3π
C

(V )
2 (m) =

2αs

3π
.

One can show that the matching for the axial current

is C1 → C1, C2 → −C2

C
(A)
1 (m) = 1 − 4αs

3π
C

(A)
2 (m) = −2αs

3π
.
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Meson Decay Constants

Compute the radiative corrections to the meson

decay constants:

Match at the scale m to the EFT:

q̄γµγ5Q→ C
(A)
1 (m) q̄γµγ5Qv + C

(A)
2 (m) q̄vµγ5Qv

Run in the EFT to µ:

q̄γµγ5Q→ C
(A)
1 (µ) q̄γµγ5Qv + C

(A)
2 (µ) q̄vµγ5Qv

µ dependence given by the anomalous dimension in

the EFT
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RGE

µ
dC

dµ
= γOC =

αs

π
C

Can integrate a one-loop anomalous dimension:

µ
dC

dµ
= γC, γ = γ0

g2

16π2

µ
dg

dµ
= − g3

16π2
b0

Then

dC

dg
= −γ0C

b0g
,
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Solution to one-loop RGE

C(µ1)

C(µ2)
=

[

αs(µ1)

αs(µ2)

]−γ0/(2b0)

b0 = 11 − 2

3
nf

γO = − g2

4π2

so γ0 = −4, b0 = 25/3 below mb, and

C(µ)

C(mb)
=

[

αs(µ)

αs(mb)

]6/25
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Compute matrix elements at µ:

a (µ) ×



























−ivµP
(Q)
v if Γµ = γµγ5,

ivµP
(Q)
v if Γµ = vµγ5,

P
∗(Q)
v

µ if Γµ = γµ,

0 if Γµ = vµ.

so that

fP ∗ =
√
mP∗ a (µ)C

(V )
1 (µ),

fP =
1√
mP

a (µ)
(

C
(A)
1 (µ) − C

(A)
2 (µ)

)

.
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a(µ)C(µ) is µ independent.

fP ∗

fP

=
√
mP ∗mP

{

C
(V )
1

C
(A)
1 − C

(A)
2

}

=
√
mP ∗mP

{

1 − 2

3

αs(mQ)

π

}

.

fB

√
mB = a(µ)

[

αs(µ)

αs(mb)

]6/25{

1 − 2

3

αs(mb)

π

}

fD

√
mD = a(mc)

{

1 − 2

3

αs(mc)

π

}

fB
√
mB

fD
√
mD

=

[

αs(mc)

αs(mb)

]6/25
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One-loop running and tree-level matching

two-loop running and one-loop matching

Matching and running must be computed in the same

scheme.
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1/m Corrections

L = h̄v (iv ·D)hv +
1

2mQ

h̄v (iD⊥)2 hv − cF
g

4mQ

h̄vσαβG
αβhv

cF (µ) =

[

αs(mQ)

αs(µ)

]9/(33−2nf )
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Reparameterization Invariance

pQ = mQv + k,

v → v + ε/mQ,

k → k − ε.

Since v2 = 1, v · ε = 0.

Also v/Qv = Qv so the change in the field:

Qv → Qv + δQv,

δQv satisfies

(

v/+
ε/

mQ

)

(Qv + δQv) = Qv + δQv.
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so that

(1 − v/)δQv =
ε/

mQ
Qv.

One can choose:

δQv =
ε/

2mQ

Qv.

[Not unique, one can always make field redefinitions]

L invariant under

v → v + ε/mQ,

Qv → eiε·x

(

1 +
ε/

2mQ

)

Qv,
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L0 → L0 +
1

mQ

Q̄v (iε ·D)Qv,

L1 → L1 −
1

mQ

Q̄v (iε ·D)Qv.

so that the kinetic energy is not renormalized.

Other connections that follow form

reparameterization invariance:

cS = 2cF − 1, σ · ∇ × E

E.g. relates matching coefficients of leading order

and 1/m operators, and their anomalous dimensions.
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Luke’s Theorem

Can compute 1/m corrections to meson form-factors.

Two sources of 1/m corrections, those from the

Lagrangian, and from the current. So one has

T (L1, J0) , J1

where

L = L0 +
1

m
L1 + . . . , J = J0 +

1

m
J1 + . . .

Can apply the same spurion analysis as before, and

work out the form-factors. Complicated expressions

involving more Isgur-Wise functions for the matrix

elements that enter.
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Luke’s theorem: no 1/m corrections to the

form-factor at zero recoil.
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Vcb

Experimentally, measure B̄ → D∗ which determines

|VcbF(1)|.

F(1) = ηA + 0 + O
(

1

m2

)

ηA = 0.96, and 1/m2 ≈ −0.05, so

F(1) = 0.91 ± 0.05

and from this one finds

|Vcb| = [ 38.6 ± 1.5(exp) ± 2.0(th) ] × 10−3,
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