Heavy Quark Effective Theory

ANEESH MANOHAR

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Reference

- A.V. Manohar and M.B. Wise, Heavy Quark Physics, Cambridge University Press (2000)

Outline

■ Basic Ideas
■ Heavy quark spin-flavor symmetry

- HQET Lagrangian
- Hadron Multiplets
- Masses
- Hadron Fields
- States
- Decay Constants
- $B \rightarrow D$ form factors
\square Isgur-Wise function
- Radiative corrections
- RG evolution
- Matching
- Application
- 1/m corrections
- Lagrangian
- Reparameterization Invariance
- Luke's theorem
- Extracting $V_{c b}$

Outline

- Inclusive Decays (SKIP)
- Kinematics
- OPE
- Endpoint region

■ Extracting $V_{c b}$ and $V_{u b}$

Introduction

QCD describes the dynamics of quarks, and has a non-perturbative scale $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$.

Simplifications when $m_{Q} \gg \Lambda_{\mathrm{QCD}}$
A single heavy quark interacting with light particles can be described by an effective field theory known as HQET.

Applied to c and b quarks. The t-quark decays via $t \rightarrow b W$ before it forms hadrons. The width in the standard model is $\Gamma_{t} \approx 1.5 \mathrm{GeV}$

NRQCD

Systems with two heavy quarks (such as $J / \psi, \Upsilon$ or $\bar{t} t$ near threshold) are described by a effective theory, NRQCD [non-relativistic QCD].

Velocity Superselection Rule

Consider a heavy quark Q interacting with light degrees of freedom, such as light quarks and gluons.

$$
v^{\mu}=\frac{p^{\mu}}{m_{Q}}, \quad \delta v^{\mu}=\frac{\delta p^{\mu}}{m_{Q}} \sim \frac{\Lambda_{\mathrm{QCD}}}{m_{Q}} \rightarrow 0
$$

Quark has a constant velocity.

$$
[x, v]=\frac{1}{m_{Q}}[x, p]=\frac{i \hbar}{m_{Q}} \rightarrow 0 .
$$

Cannot simultaneously have a well-defined position and momentum, but can have a well-defined position and velocity.

Spin-Flavor Symmetry

In the $m_{Q} \rightarrow \infty$ limit: static color 3 source in the rest frame $v^{\mu}=(1,0,0,0)$.

Strong interactions flavor blind
\Rightarrow HQ flavor symmetry
Symmetry breaking $\propto 1 / m_{b}-1 / m_{c}$
Color coupling is color electric charge. The magnetic interaction is $\propto 1 / m_{Q}$ for a pointlike spin-1/2 fermion (not true for the proton). $\Rightarrow \mathrm{HQ}$ spin symmetry Symmetry breaking $\propto 1 / m_{Q}$.

Combining gives HQ $S U(4)$ spin-flavor symmetry: $b \uparrow, b \downarrow, c \uparrow$ and $c \downarrow$ transform as a 4

QCD Lagrangian

$$
\mathcal{L}=\sum_{i=c, b, t} \bar{Q}_{i}\left(i \not D-m_{Q_{i}}\right) Q_{i}+\mathcal{L}_{\text {light }}
$$

The Lagrangian has m_{Q} term, and no well-defined $m_{Q} \rightarrow \infty$ limit. It describes the interactions of Q at all energies, including those greater than m_{Q}.

Want to consider an effective theory valid for momenta smaller than m_{Q}, which makes the simplications of low momentum manifest.

Should have an expansion in $1 / m_{Q}$

HQET Lagrangian

HQET Lagrangian:

$$
\mathcal{L}_{\mathrm{HQET}}=\mathcal{L}_{0}+\frac{1}{m_{Q}} \mathcal{L}_{1}+\frac{1}{m_{Q}^{2}} \mathcal{L}_{2}+\ldots
$$

\mathcal{L}_{0} has spin-flavor symmetry,
$1 / m_{Q}$ terms are symmetry breaking corrections.

Quark Propagator

Look at the quark propagator:

$$
i \frac{p p+m_{Q}}{p^{2}-m_{Q}^{2}+i \epsilon}
$$

$p=m v+k$, where k is called the residual momentum, and is of order Λ_{QCD}.

HQET Propagator

$$
i \frac{m_{Q} \not \psi+\not \swarrow+m_{Q}}{\left(m_{Q} v+k\right)^{2}-m_{Q}^{2}+i \epsilon}
$$

Expanding this in the limit $k \ll m_{Q}$ gives

$$
i \frac{1+\not p}{2 k \cdot v+i \epsilon}+\mathcal{O}\left(\frac{k}{m_{Q}}\right)=i \frac{P_{+}}{k \cdot v+i \epsilon}+\mathcal{O}\left(\frac{k}{m_{Q}}\right),
$$

with a well defined limit.

$$
P_{+} \equiv \frac{1+\psi}{2}
$$

Projectors

$$
P_{+}=\frac{1+\nsim}{2}, \quad P_{-}=\frac{1-\nsim}{2},
$$

In the rest frame,

$$
\begin{gathered}
P_{+}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
P_{+}^{2}=P_{+}, P_{-}^{2}=P_{-}, P_{+}+P_{-}=1, P_{+} P_{-}=0 P_{-} P_{+}=0 .
\end{gathered}
$$

Gluon Vertex

The quark-gluon vertex

$$
-i g T^{a} \gamma^{\mu} \rightarrow-i g T^{a} P_{+} \gamma^{\mu} P_{+}=-i g T^{a} v^{\mu}
$$

using the identity

$$
P_{+} \gamma^{\mu}=v^{\mu}+\gamma^{\mu} P_{-}
$$

In the rest frame: the coupling is purely that of an electric charge.

HQET L_{0}

HQET Lagrangian:

$$
\mathcal{L}=\bar{h}_{v}(x)(i D \cdot v) h_{v}(x),
$$

$h_{v}(x)$ is the quark field in the effective theory and satisfies

$$
P_{+} h_{v}(x)=h_{v}(x) .
$$

h_{v} annihilates quarks with velocity v, but

Dividing up momentum space

v appears explictly in the HQET Lagrangian.
h_{v} describes quarks with velocity v, and momenta within Λ_{QCD} of $m_{Q} v$.

quarks with velocity $v^{\prime} \neq v$ are far away in the EFT

Feynman rules

$$
\begin{aligned}
\mathcal{L} & =\bar{h}_{v}(i D \cdot v) h_{v} \\
D_{\mu} & =\partial_{\mu}+i g T^{a} A_{\mu}^{a}
\end{aligned}
$$

The $\partial \cdot v$ term gives a propagator

$$
\frac{i P_{+}}{k \cdot v}
$$

The $A \cdot v$ term gives a vertex

$$
-i g T^{a} v^{\mu}
$$

Manifest Spin-Flavor Symmetry

$$
\mathcal{L}_{0}=\sum_{f=c, b, t} \bar{h}_{f v}(i D \cdot v) h_{f v},
$$

has manifest spin-flavor symmetry, since $D \cdot v$ does not depend on the spin or the flavor of the heavy quark.

Light degrees of freedom

Hadrons containing a single heavy quark contain Q, and light quarks and gluons [light degrees of freedom $\ell]$.
D^{+}meson has a c quark, \bar{d} quark, plus $\bar{q} q$ pairs and gluons. Quantum numbers of ℓ are the same as the \bar{d}.

Total angular momentum \mathbf{J} is conserved
S_{Q} is conserved as $m_{Q} \rightarrow \infty$

$$
\text { Define } \quad \mathrm{S}_{\ell} \equiv \mathrm{J}-\mathrm{S}_{Q}
$$

Spin of the light degrees of freedom

Multiplet Structure

$\mathbf{J}^{2}=j(j+1), \quad \mathbf{S}_{Q}^{2}=s_{Q}\left(s_{Q}+1\right), \quad \mathbf{S}_{\ell}^{2}=s_{\ell}\left(s_{\ell}+1\right)$
$s_{Q}=1 / 2$, so heavy hadrons are in degenerate multiplets with $j=s_{\ell} \pm 1 / 2$, unless $s_{\ell}=0$, in which case there is a single $j=1 / 2$ multiplet.

Ground state mesons: Q and a light antiquark \bar{q}, so $s_{\ell}=1 / 2$.
$j=0 \oplus 1$ and negative parity, since quarks and antiquarks have opposite parity

Degenerate 0^{-}and 1^{-}mesons which form a flavor $\overline{3}$
Called $H^{(Q)}$

Ground State Mesons

$$
\mathrm{D}_{\mathrm{s}}^{+}, \mathrm{D}_{\mathrm{s}}^{*+}
$$

$\bar{B}_{s}^{0}, \bar{B}^{-}, \bar{B}^{0}\left(\right.$ spin-0) $\quad \bar{B}_{s}^{* 0}, \bar{B}^{*-}, \bar{B}^{* 0}($ spin-1)

NOTE: $c \in D, b \in \bar{B}$

Excited Mesons

In the quark model, the first excitation has $L=1$, with $s_{\ell}=1 / 2$ and $s_{\ell}=3 / 2$
$s_{\ell}=1 / 2 \Rightarrow 0^{+}$and 1^{+}states D_{0}^{*} and D_{1}^{*}
$s_{\ell}=3 / 2 \Rightarrow 1^{+}$and 2^{+}states D_{1} and D_{2}^{*}
The $s_{\ell}=1 / 2$ and $s_{\ell}=3 / 2$ multiplets are not related by HQ symmetry, though they are related in a NR quark model

Quark Field

Write the quark field as

$$
\begin{aligned}
Q(x) & =e^{-i m_{Q} v \cdot x}\left[h_{v}(x)+\mathcal{Q}_{v}(x)\right] \\
& =e^{-i m_{Q} t}\binom{h_{v}(x)}{\mathcal{Q}_{v}(x)}
\end{aligned}
$$

$p=m_{Q} v+k$, so the x dependence of $h_{v}(x)$ is k.

$$
\begin{aligned}
& \not p h_{v}(x)=h_{v}(x) \\
& \phi Q_{v}(x)=-Q_{v}(x)
\end{aligned}
$$

Tree-level Lagrangian

At tree-level, one does not have to worry about renormalization effects:

$$
\begin{aligned}
\mathcal{L} & =\bar{Q}\left(i \not D-m_{Q}\right) Q \\
& =\left(\bar{h}_{v}+\overline{\mathcal{Q}}_{v}\right) e^{i m_{Q} v \cdot x}\left(i \not \square-m_{Q}\right) e^{-i m_{Q} v \cdot x}\left(h_{v}+\mathcal{Q}_{v}\right) \\
& =\left(\bar{h}_{v}+\overline{\mathcal{Q}}_{v}\right)\left(i \not D-m_{Q}+m_{Q} \nmid\right)\left(h_{v}+\mathcal{Q}_{v}\right) \\
& =\left(\bar{h}_{v}+\overline{\mathcal{Q}}_{v}\right)\left(i \not \equiv h_{v}+\left[i \not D-2 m_{Q}\right] \mathcal{Q}_{v}\right)
\end{aligned}
$$

The result can be simplified using
$P_{+} \gamma^{\mu} P_{+}=v^{\mu}, \quad P_{-} \gamma^{\mu} P_{-}=-v^{\mu}, P_{+} \gamma^{\mu} P_{-}=\gamma_{\perp}^{\mu}, P_{-} \gamma^{\mu} P_{+}=\gamma_{\perp}^{\mu}$,
where the \perp projector is defined for any vector A by

$$
A_{\perp}^{\mu} \equiv A^{\mu}-v^{\mu} v \cdot A .
$$

$$
\mathcal{L}=\bar{h}_{v}(i v \cdot D) h_{v}-\mathcal{Q}_{v}\left(i v \cdot D+2 m_{Q}\right) \mathcal{Q}_{v}+\bar{h}_{v} i \not D_{\perp} \mathcal{Q}_{v}+\overline{\mathcal{Q}}_{v} i \not D_{\perp} h_{v}
$$

Quadratic in \mathcal{Q}_{v} :

$$
\mathcal{L}=\bar{h}_{v}(i v \cdot D) h_{v}+\bar{h}_{v} i \not D_{\perp} \frac{1}{2 m_{Q}+i v \cdot D} i \not D_{\perp} h_{v} .
$$

The last term can be expanded in a power series in $1 / m_{Q}$,

$$
\frac{1}{2 m_{Q}+i v \cdot D}=\frac{1}{2 m_{Q}}-\frac{1}{4 m_{Q}^{2}} i v \cdot D+\ldots .
$$

$1 / m_{Q}$ Lagrangian

The effective Lagrangian to order $1 / m_{Q}$ is thus

$$
\mathcal{L}=\bar{h}_{v}(i v \cdot D) h_{v}+\frac{1}{2 m_{Q}} \bar{h}_{v} i \not D_{\perp} i \not D_{\perp} h_{v} .
$$

This can be rewritten using the identities

$$
\begin{aligned}
& \gamma^{\alpha} \gamma^{\beta}=g^{\alpha \beta}-i \sigma^{\alpha \beta},\left[D^{\alpha}, D^{\beta}\right]=i g G^{\alpha \beta} \\
& \mathcal{L}= \bar{h}_{v}(i v \cdot D) h_{v}+\frac{1}{2 m_{Q}} \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}-\frac{g}{4 m_{Q}} \bar{h}_{v} \sigma_{\alpha \beta} G^{\alpha \beta} h_{v} \\
&+\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
\end{aligned}
$$

$\mathcal{L}=\bar{h}_{v}(i v \cdot D) h_{v}+\frac{1}{2 m_{Q}} \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}-c_{F} \frac{g}{4 m_{Q}} \bar{h}_{v} \sigma_{\alpha \beta} G^{\alpha \beta} h_{v}$
The $\left(i D_{\perp}\right)^{2}$ term violates flavor symmetry at order $1 / m_{Q}$
$g \sigma_{\alpha \beta} G^{\alpha \beta}$ term violates spin and flavor symmetry at order $1 / m_{Q}$

One can carry out the expansion to higher order in $1 / m_{Q}$ to obtain the tree level HQET Lagrangian.

Field Redefinitions

Field redefinition

$$
h_{v} \rightarrow\left[1+\frac{a}{m_{Q}} i v \cdot D\right] h_{v}
$$

changes the effective Lagrangian to

$$
\begin{gathered}
\mathcal{L}=\bar{h}_{v}(i v \cdot D) h_{v}+\frac{1}{2 m_{Q}} \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}-\frac{g}{4 m_{Q}} \bar{h}_{v} \sigma_{\alpha \beta} G^{\alpha \beta} h_{v} \\
+\frac{2 a}{m_{Q}} h_{v}(i v \cdot D)^{2} h_{v}+\mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)
\end{gathered}
$$

For $a=1 / 2$, one can replace $D_{\perp}^{2} \rightarrow D_{\perp}^{2}+(v \cdot D)^{2}=D^{2}$

Field redefinition change off-shell amplitudes, but not S-matrix elements.

The only thing that the effective theory and full theory have to agree on are S-matrix elements.

Convenient to eliminate t derivatives, i.e. $v \cdot D$ terms in \mathcal{L}
[Use the lowest order equation of motion $(v \cdot D) h_{v}=0$ to remove time derivatives]

Masses

Hadron mass mass in effective theory is $M_{H}-m_{Q}$.

- Lowest order: all hadrons degenerate, mass m_{Q}
- Order one: Hadron mass

$$
\left\langle H_{Q}\right| \mathcal{H}_{0}\left|H_{Q}\right\rangle \equiv \bar{\Lambda}
$$

where $H_{0}=$ Hamiltonian from lowest order Lagrangian (including the light degrees of freedom).
$\bar{\Lambda}$ has different values for each multiplet:
$\bar{\Lambda}$ for mesons, $\bar{\Lambda}_{\Lambda}, \bar{\Lambda}_{\Sigma}$
\square Order $1 / m_{Q}$:
$\frac{\mathcal{H}_{1}}{m_{Q}}=-\frac{\mathcal{L}_{1}}{m_{Q}}=-\frac{1}{2 m_{Q}} \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}+c_{F} \frac{g}{4 m_{Q}} \bar{h}_{v} \sigma_{\alpha \beta} G^{\alpha \beta} h_{v}$.
Define two non-perturbative parameters

$$
\begin{aligned}
\lambda_{1} & =\left\langle H_{Q}\right| \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}\left|H_{Q}\right\rangle \\
8\left(\mathrm{~S}_{Q} \cdot \mathrm{~S}_{\ell}\right) \lambda_{2} & =\left\langle H_{Q}\right| \bar{h}_{v} g \sigma_{\alpha \beta} G^{\alpha \beta} h_{v}\left|H_{Q}\right\rangle,
\end{aligned}
$$

In the rest frame:

$$
\begin{aligned}
\left(i D_{\perp}\right)^{2} & =-\mathbf{p}^{2} \\
\sigma_{\alpha \beta} G^{\alpha \beta} & =-2 \boldsymbol{\sigma} \cdot \mathbf{B}
\end{aligned}
$$

Meson Masses

$$
m_{H}=m_{Q}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{Q}}+c_{F} \frac{2 \lambda_{2} \mathbf{S}_{Q} \cdot \mathbf{S}_{\ell}}{m_{Q}}
$$

$$
\mathbf{S}_{Q} \cdot \mathbf{S}_{\ell}=\left(J^{2}-S_{Q}^{2}-S_{\ell}^{2}\right) / 2, \text { so }
$$

$$
\begin{aligned}
& m_{B}=m_{b}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{b}}-\frac{3 \lambda_{2}}{2 m_{b}} \\
& m_{B^{*}}=m_{b}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{b}}+\frac{\lambda_{2}}{2 m_{b}} \\
& m_{D}=m_{c}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{c}}-\frac{3 \lambda_{2}}{2 m_{c}} \\
& m_{D^{*}}=m_{c}+\bar{\Lambda}-\frac{\lambda_{1}}{2 m_{c}}+\frac{\lambda_{2}}{2 m_{c_{1}}}
\end{aligned}
$$

Note that heavy quark symmetry implies that $\bar{\Lambda}, \lambda_{1}$ and λ_{2} have the same value in the b and c systems (upto renormalization)

$$
0.49 \mathrm{GeV}^{2}=m_{B^{*}}^{2}-m_{B}^{2}=4 \lambda_{2}=m_{D^{*}}^{2}-m_{D}^{2}=0.55 \mathrm{GeV}^{2},
$$

up to corrections of order $1 / m_{b, c}$.

$$
\begin{array}{r}
90 \pm 3 \mathrm{MeV}=m_{B_{s}}-m_{B_{d}}=\bar{\Lambda}_{s}-\bar{\Lambda}_{d}=m_{D_{s}}-m_{D_{d}}=99 \pm 1 \mathrm{MeV} \\
345 \pm 9 \mathrm{MeV}=m_{\Lambda_{b}}-m_{B}=\bar{\Lambda}_{\Lambda}-\bar{\Lambda}_{d}=m_{\Lambda_{c}}-m_{D}=416 \pm 1 \mathrm{MeV}
\end{array}
$$

$\bar{\Lambda}, \lambda_{1}$ and λ_{2} will occur elsewhere

Meson Field

$Q \bar{q}$ mesons \rightarrow field $H_{v}^{(Q)}$ (4×4 matrix, bispinor $)$

$$
H_{v}^{(Q)}(x) \rightarrow D(\Lambda) H_{\Lambda^{-1} v}^{(Q)}\left(\Lambda^{-1} x\right) D(\Lambda)^{-1}
$$

Pseudoscalar $P_{v}^{(Q)}(x)$ and vector $P_{v \mu}^{*}(Q)(x)$
Vector particles have a polarization vector ϵ_{μ}, with $\epsilon \cdot \epsilon=-1$, and $v \cdot \epsilon=0$.

$$
H_{v}^{(Q)}=\frac{1+\not \psi^{\prime}}{2}\left[P_{v}^{*(Q)}+i P_{v}^{(Q)} \gamma_{5}\right] .
$$

$$
H_{v}^{(Q)}=\frac{1+\not \psi^{2}}{2}\left[\not P_{v}^{*(Q)}+i P_{v}^{(Q)} \gamma_{5}\right] .
$$

Parity:

$$
H_{v}^{(Q)}(x) \rightarrow \gamma^{0} H_{v_{P}}^{(Q)}\left(x_{P}\right) \gamma^{0},
$$

where

$$
x_{P}=\left(x^{0},-\mathbf{x}\right), v_{P}=\left(v^{0},-\mathbf{v}\right) .
$$

$$
\begin{gathered}
H_{v}^{(Q)}=\frac{1+\not \psi}{2}\left[\not P_{v}^{*(Q)}+i P_{v}^{(Q)} \gamma_{5}\right] . \\
\not \psi H_{v}^{(Q)}=H_{v}^{(Q)}, \quad H_{v}^{(Q)} \not p=-H_{v}^{(Q)} .
\end{gathered}
$$

using $v \cdot P_{v}^{*(Q)}=0$

Conjugate field:

$$
\bar{H}_{v}^{(Q)}=\gamma^{0} H_{v}^{(Q) \dagger} \gamma^{0}=\left[\not P_{v}^{*(Q)^{\dagger}}+i P_{v}^{(Q)^{\dagger}} \gamma_{5}\right] \frac{1+\ngtr}{2},
$$

which also transforms as a bispinor,

$$
\bar{H}_{v}^{(Q)} \rightarrow D(\Lambda) \bar{H}_{v^{\prime}}^{(Q)} D(\Lambda)^{-1} .
$$

since

$$
\gamma^{0} D(\Lambda)^{\dagger} \gamma^{0}=D(\Lambda)^{-1} .
$$

Normalization of States

$$
\left\langle H\left(p^{\prime}, \varepsilon^{\prime}\right) \mid H(p, \varepsilon)\right\rangle=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \delta_{\varepsilon \varepsilon^{\prime}}
$$

Mass dimension -1
HQET states eigenstates of the $m_{Q} \rightarrow \infty$ theory and labelled by v and k, with $v \cdot k=0$. They differ from full QCD states.

$$
\left\langle H\left(v^{\prime}, k^{\prime}, \varepsilon^{\prime}\right) \mid H(v, k, \varepsilon)\right\rangle=2 v^{0}(2 \pi)^{3} \delta_{v v^{\prime}} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta_{\varepsilon \varepsilon^{\prime}} .
$$

Usually take $k=0$. States have mass dimension $-3 / 2$

$$
|H(p)\rangle=\sqrt{m_{H}}\left[|H(v)\rangle+\mathcal{O}\left(\frac{1}{m_{Q}}\right)\right]
$$

Similarly

$$
\begin{aligned}
\bar{u}(p, s) \gamma^{\mu} u(p, s) & =2 p^{\mu} \\
\bar{u}(v, s) \gamma^{\mu} u(v, s) & =2 v^{\mu} \\
u(p, s) & =\sqrt{m_{H}} u(v, s)
\end{aligned}
$$

Meson Decay Constants

$$
\langle 0| \bar{q} \gamma^{\mu} \gamma_{5} Q|P(p)\rangle=-i f_{P} p^{\mu}
$$

where f_{P} has mass dimension one. $\left(f_{\pi}=131 \mathrm{MeV}\right)$

$$
\langle 0| \bar{q} \gamma^{\mu} Q\left|P^{*}(p, \epsilon)\right\rangle=f_{P^{*}} \epsilon^{\mu}
$$

$f_{P^{*}}$ has mass dimension two.

$$
\bar{q} \Gamma Q=\bar{q} \Gamma Q_{v}+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}\left(\frac{1}{m_{Q}}\right)
$$

so we need

$$
\langle 0| \bar{q} \Gamma Q_{v}|H(v)\rangle,
$$

Spurion Analysis

$$
\bar{q} \Gamma Q_{v} \rightarrow \bar{q} \Gamma D(R)_{Q} Q_{v}
$$

- Pretend that Γ transforms as $\Gamma \rightarrow \Gamma D(R)_{Q}^{-1}$
- Write down operators which are invariant when $Q_{v} \rightarrow D(R)_{Q} Q_{v}, \Gamma \rightarrow \Gamma D(R)_{Q}^{-1}, H_{v}^{(Q)} \rightarrow D(R)_{Q} H_{v}^{(Q)}$.
\square Set Γ to its fixed value γ^{μ} or $\gamma^{\mu} \gamma_{5}$ to obtain the operator with the correct transformation properties.

Decay Matrix Element

$$
\left.\begin{array}{rl}
\langle 0| \bar{q} \Gamma Q_{v}|H(v)\rangle & =\operatorname{Tr} \frac{a}{2} \Gamma H_{v}^{(Q)} \\
a=a_{0}\left(v^{2}\right)+a_{1}\left(v^{2}\right) \psi
\end{array}\right\} \begin{array}{ll}
-i v^{\mu} P_{v}^{(Q)} & \text { if } \Gamma=\gamma^{\mu} \gamma_{5}, \\
P_{v}^{*(Q)_{\mu}} \quad \text { if } \Gamma=\gamma^{\mu}, \\
a \times\left\{\begin{array}{l}
\text { (}
\end{array}\right. \\
\langle 0| \bar{q} \gamma^{\mu} \gamma_{5} Q_{v}|P(v)\rangle & =-i a v^{\mu}, \\
\langle 0| \bar{q} \gamma^{\mu} Q_{v}\left|P^{*}(v)\right\rangle & =a \epsilon^{\mu}
\end{array}
$$

$$
\begin{aligned}
f_{P}=\frac{a}{\sqrt{m_{P}}}, & f_{P^{*}}=a \sqrt{m_{P^{*}}} . \\
f_{P}=\frac{a}{\sqrt{m_{P}}}, & f_{P^{*}}=m_{P} f_{P},
\end{aligned}
$$

so $f_{P} \propto m_{P}^{-1 / 2}, f_{P^{*}} \propto m_{P}^{1 / 2}$.
a has the same value for c and b :

$$
\frac{f_{B}}{f_{D}}=\sqrt{\frac{m_{D}}{m_{B}}}, \quad f_{D^{*}}=m_{D} f_{D}, \quad f_{B^{*}}=m_{B} f_{B}
$$

Measure from the decays $D \rightarrow \bar{\ell} \nu_{\ell}$ and $\bar{B} \rightarrow \ell \bar{\nu}_{\ell}$

$$
\Gamma=\frac{G_{F}^{2}\left|V_{Q q}\right|^{2}}{8 \pi} f_{P}^{2} m_{\ell}^{2} m_{P}\left(1-\frac{m_{\ell}^{2}}{m_{P}^{2}}\right)^{2} .
$$

JLQCD Collaboration [S. Aoki et al., Phys. Rev. Lett. 80 (1998) 5711]

Decay Constant	Value in MeV
f_{D}	197 ± 2
$f_{D_{s}}$	224 ± 2
f_{B}	173 ± 4
$f_{B_{s}}$	199 ± 3

Note that this simulation suggests that there is a substantial correction to the heavy quark symmetry prediction $f_{B} / f_{D}=\sqrt{m_{D} / m_{B}} \simeq 0.6$.

$\bar{B} \rightarrow D^{(*)}$ Form Factors

Semileptonic $b \rightarrow c$ decays via the weak current $\bar{c} \gamma_{\mu} P_{L} b$ Decay form-factors are defined by:

$$
\begin{aligned}
&\left\langle D\left(p^{\prime}\right)\right| V^{\mu}|\bar{B}(p)\rangle=f_{+}\left(q^{2}\right)\left(p+p^{\prime}\right)^{\mu}+f_{-}\left(q^{2}\right)\left(p-p^{\prime}\right)^{\mu}, \\
&\left\langle D^{*}\left(p^{\prime}, \epsilon\right)\right| V^{\mu}|\bar{B}(p)\rangle=g\left(q^{2}\right) \epsilon^{\mu \nu \alpha \tau} \epsilon_{\nu}^{*}\left(p+p^{\prime}\right)_{\alpha}\left(p-p^{\prime}\right)_{\tau}, \\
&\left\langle D^{*}\left(p^{\prime}, \epsilon\right)\right| A^{\mu}|\bar{B}(p)\rangle=-i f\left(q^{2}\right) \epsilon^{* \mu} \\
&-i \epsilon^{*} \cdot p\left[a_{+}\left(q^{2}\right)\left(p+p^{\prime}\right)^{\mu}+a_{-}\left(q^{2}\right)\left(p-p^{\prime}\right)^{\mu}\right],
\end{aligned}
$$

where $q=p-p^{\prime}$
Six form-factors

Label states by v and v^{\prime}, and use

$$
w=v \cdot v^{\prime}=\frac{m_{B}^{2}+m_{D^{(*)}}^{2}-q^{2}}{2 m_{B} m_{D^{(*)}}}
$$

The allowed kinematic range for w is

$$
0 \leq w-1 \leq \frac{\left(m_{B}-m_{D^{(*)}}\right)^{2}}{2 m_{B} m_{D^{(*)}}}
$$

The zero-recoil point, at which $D^{(*)}$ is at rest in the \bar{B} rest frame, is $w=1$ (maximum q^{2})

Better to use:

$$
\begin{aligned}
\frac{\left\langle D\left(p^{\prime}\right)\right| V^{\mu}|\bar{B}(p)\rangle}{\sqrt{m_{B} m_{D}}} & =h_{+}(w)\left(v+v^{\prime}\right)^{\mu}+h_{-}(w)\left(v-v^{\prime}\right)^{\mu}, \\
\frac{\left\langle D^{*}\left(p^{\prime}, \epsilon\right)\right| V^{\mu}|\bar{B}(p)\rangle}{\sqrt{m_{B} m_{D^{*}}}}= & h_{V}(w) \epsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta}, \\
\frac{\left\langle D^{*}\left(p^{\prime}, \epsilon\right)\right| A^{\mu}|\bar{B}(p)\rangle}{\sqrt{m_{B} m_{D^{*}}}}= & -i h_{A_{1}}(w)(w+1) \epsilon^{* \mu}+i h_{A_{2}}(w)\left(\epsilon^{*} \cdot v\right) v^{\mu} \\
& +i h_{A_{3}}(w)\left(\epsilon^{*} \cdot v\right) v^{\prime \mu} .
\end{aligned}
$$

$$
q_{\text {light }}^{2} \sim\left(\Lambda_{\mathrm{QCD}} v-\Lambda_{\mathrm{QCD}} v^{\prime}\right)^{2}=2 \Lambda_{\mathrm{QCD}}^{2}(1-w)
$$

HQ symmetry should hold if:

$$
2 \Lambda_{\mathrm{QCD}}^{2}(w-1) \ll m_{b, c}^{2} .
$$

The heavy meson form factors are expected to vary on the scale $q_{\text {light }}^{2} \sim \Lambda_{Q C D}^{2}$, i.e. on the scale $w \sim 1$.

QCD matrix elements are of the form:

$$
\left\langle H^{(c)}\left(p^{\prime}\right)\right| \bar{c} \Gamma b\left|H^{(b)}(p)\right\rangle
$$

At leading order in $1 / m_{c, b}$ and $\alpha_{s}\left(m_{c, b}\right)$:

$$
\left\langle H^{(c)}\left(v^{\prime}\right)\right| \bar{c}_{v^{\prime}} \Gamma b_{v}\left|H^{(b)}(v)\right\rangle
$$

use trick as before $\Gamma \rightarrow D(R)_{c} \Gamma D(R)_{b}^{-1}$

$$
\begin{gathered}
\bar{c}_{v^{\prime}} \Gamma b_{v}=\operatorname{Tr} X \bar{H}_{v^{\prime}}^{(c)} \Gamma H_{v}^{(b)}, \\
X=X_{0}+X_{1} \not \psi+X_{2} \not \psi^{\prime}+X_{3} \not \psi \not \psi^{\prime},
\end{gathered}
$$

where the coefficients are functions of $w=v \cdot v^{\prime}$.

Isgur-Wise Function

Use $X=-\xi(w)$:

$$
\begin{aligned}
&\left\langle D\left(v^{\prime}\right)\right| \bar{c}_{v^{\prime}} \gamma_{\mu} b_{v}|\bar{B}(v)\rangle=\xi(w)\left[v_{\mu}+v_{\mu}^{\prime}\right], \\
&\left\langle D^{*}\left(v^{\prime}, \epsilon\right)\right| \bar{c}_{v^{\prime}} \gamma_{\mu} \gamma_{5} b_{v}|\bar{B}(v)\rangle=-i \xi(w)\left[(1+w) \epsilon_{\mu}^{*}-\left(\epsilon^{*} \cdot v\right) v_{\mu}^{\prime}\right], \\
&\left\langle D^{*}\left(v^{\prime}, \epsilon\right)\right| \bar{c}_{v^{\prime}} \gamma_{\mu} b_{v}|\bar{B}(v)\rangle=\xi(w) \epsilon_{\mu \nu \alpha \beta} \epsilon^{* \nu} v^{\prime \alpha} v^{\beta} . \\
& h_{+}(w)=h_{V}(w)=h_{A_{1}}(w)=h_{A_{3}}(w)=\xi(w), \\
& h_{-}(w)=h_{A_{2}}(w)=0
\end{aligned}
$$

Normalization of $\xi(1)$

Consider the forward matrix element of the vector current $\bar{b} \gamma^{\mu} b$ between \bar{B} meson states. Setting $v^{\prime}=v$, and letting $c \rightarrow b, D \rightarrow \bar{B}$,

$$
\frac{\langle\bar{B}(p)| \bar{b} \gamma_{\mu} b|\bar{B}(p)\rangle}{m_{B}}=\langle\bar{B}(v)| \bar{b}_{v} \gamma_{\mu} b_{v}|\bar{B}(v)\rangle=2 \xi(w=1) v_{\mu} .
$$

where ξ for $b \rightarrow b$ is the same as for $b \rightarrow c$.
So $\xi(1)=1$.

Radiative Corrections

Consider heavy quark wavefunction renormalization:

In Feynman gauge $(n=4-\epsilon)$

$$
\begin{aligned}
& \int \frac{d^{n} q}{(2 \pi)^{n}}\left(-i g T^{A} \mu^{\epsilon / 2}\right) v_{\lambda} \frac{i}{(q+p) \cdot v}\left(-i g T^{A} \mu^{\epsilon / 2}\right) v^{\lambda} \frac{(-i)}{q^{2}} \\
= & -\left(\frac{4}{3}\right) g^{2} \mu^{\epsilon} \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{q^{2} v \cdot(q+p)}
\end{aligned}
$$

Add a gluon mass to regulate the IR divergence, so that one can isolate the UV divergence from the $1 / \epsilon$ pole

$$
-\left(\frac{4}{3}\right) g^{2} \mu^{\epsilon} \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{\left(q^{2}-m^{2}\right) v \cdot(q+p)}
$$

Use the identity

$$
\frac{1}{a^{r} b^{s}}=2^{s} \frac{\Gamma(r+s)}{\Gamma(r) \Gamma(s)} \int_{0}^{\infty} d \lambda \frac{\lambda^{s-1}}{[a+2 b \lambda]^{r+s}},
$$

to get

$$
-\left(\frac{8}{3}\right) g^{2} \mu^{\epsilon} \int_{0}^{\infty} d \lambda \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{\left[q^{2}-m^{2}+2 \lambda v \cdot(q+p)\right]^{2}}
$$

Let $q \rightarrow q-\lambda v$

$$
-\left(\frac{8}{3}\right) g^{2} \mu^{\epsilon} \int_{0}^{\infty} d \lambda \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{\left[q^{2}-m^{2}-\lambda^{2}+2 \lambda v \cdot p\right]^{2}} .
$$

Use the standard dim reg formula:

$$
\begin{aligned}
& \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{\left(q^{2}\right)^{\alpha}}{\left(q^{2}-M^{2}\right)^{\beta}}= \\
& \frac{i}{2^{n} \pi^{n / 2}}(-1)^{\alpha+\beta}\left(M^{2}\right)^{\alpha-\beta+n / 2} \frac{\Gamma(\alpha+n / 2) \Gamma(\beta-\alpha-n / 2)}{\Gamma(n / 2) \Gamma(\beta)}, \\
& -\frac{i}{(4 \pi)^{2-\epsilon / 2}}\left(\frac{8}{3}\right) g^{2} \mu^{\epsilon} \Gamma(\epsilon / 2) \int_{0}^{\infty} d \lambda\left[\lambda^{2}-2 \lambda v \cdot p+m^{2}\right]^{-\epsilon / 2} .
\end{aligned}
$$

Recursion Relation

Evaluate λ integral using the recursion relation

$$
\begin{aligned}
& I(a, b, c) \equiv \int_{0}^{\infty} d \lambda\left[\lambda^{2}+2 b \lambda+c\right]^{a} \\
= & \frac{1}{1+2 a}\left[\left.\left(\lambda^{2}+2 b \lambda+c\right)^{a}(\lambda+b)\right|_{0} ^{\infty}+2 a\left(c-b^{2}\right) I(a-1, b, c)\right],
\end{aligned}
$$

to convert it to one that is convergent when $\epsilon=0$,

$$
\begin{aligned}
& \int_{0}^{\infty} d \lambda\left[\lambda^{2}-2 \lambda v \cdot p+m^{2}\right]^{-\epsilon / 2} \\
& =\frac{1}{1-\epsilon}\left[\left.\left(\lambda^{2}-2 \lambda v \cdot p+m^{2}\right)^{-\epsilon / 2}(\lambda-v \cdot p)\right|_{0} ^{\infty}\right. \\
& \left.\quad-\epsilon\left(m^{2}-(v \cdot p)^{2}\right) \int_{0}^{\infty} d \lambda\left[\lambda^{2}-2 \lambda v \cdot p+m^{2}\right]^{-1-\epsilon / 2}\right] .
\end{aligned}
$$

Can set $\epsilon=0$ in the last term. Also use

$$
\lim _{\lambda \rightarrow \infty} \lambda^{z}=0
$$

to get

$$
-i \frac{g^{2}}{3 \pi^{2} \epsilon} v \cdot p+\text { finite }
$$

This gives

$$
Z_{h}=1+\frac{g^{2}}{3 \pi^{2} \epsilon}, \quad \gamma_{h}=\frac{1}{2} \frac{\mu}{Z_{h}} \frac{d Z_{h}}{d \mu}=-\frac{g^{2}}{6 \pi^{2}}
$$

Note that $Z_{q}=1-\frac{g^{2}}{6 \pi^{2} \epsilon}$

Heavy-Light Current

Compute the anomalous dimension for

$$
O_{\Gamma}=\bar{q} \Gamma Q_{v}
$$

The light quark vertex is γ^{μ} and the heavy quark vertex is v^{μ}. Find that

$$
\gamma_{O}=-\frac{g^{2}}{4 \pi^{2}}
$$

independent of Γ.

Operator Mixing

Use the convention that

$$
\begin{aligned}
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} O_{j} & =-\gamma_{j i} O_{i} \\
\mu \frac{\mathrm{~d}}{\mathrm{~d} \mu} C_{i} & =\gamma_{j i} C_{j}
\end{aligned}
$$

with

$$
L=C_{i} O_{i}
$$

Heavy-Heavy Current

$$
\begin{aligned}
& \\
& \gamma=\frac{g^{2}}{3 \pi^{2}}[w r(w)-1] \\
& r(w)=\frac{1}{\sqrt{w^{2}-1}} \ln \left(w+\sqrt{w^{2}-1}\right) \\
& \gamma=\frac{g^{2}}{\pi^{2}}\left[\frac{2}{9}(w-1)-\frac{1}{15}(w-1)^{2}+\ldots\right],
\end{aligned}
$$

that vanishes at $w=1$.

Matching heavy-light currents

$$
\bar{q} \gamma^{\lambda} Q=C_{1}^{(V)} \bar{q} \gamma^{\lambda} Q_{v}+C_{2}^{(V)} \bar{q} v^{\lambda} Q_{v}
$$

where to lowest order $C_{1}=1, C_{2}=0$.
To compute the α_{s} corrections, compute on-shell matrix elements of both sides at one loop.

Computation of a matching coefficient. Need the difference between the full and effective theory results.

Full and EFT results can have IR divergences, but the difference is IR finite. [UV divergences taken care of by renormalization]

Full Theory

Full theory: evaluate on-shell with $p=m_{Q} v$

$$
C_{1}=-\frac{2 \alpha_{s}}{3 \pi}\left[\frac{1}{\epsilon_{I R}}+1\right], \quad C_{2}=\frac{2 \alpha_{s}}{3 \pi} .
$$

Wavefunction renormalization:

$$
\Sigma(p)=A\left(p^{2}\right) m+B\left(p^{2}\right) \not p
$$

$$
\delta Z \equiv B+\left.2 m^{2} \frac{\mathrm{~d}(A+B)}{\mathrm{d} p^{2}}\right|_{p^{2}=m^{2}}
$$

Gives $C_{1}=\delta Z_{Q} / 2$,

$$
C_{1}=-\frac{\alpha_{s}}{3 \pi}\left[\frac{2}{\epsilon_{I R}}+2+3 \ln \frac{\mu}{m_{Q}}\right], \quad C_{2}=0
$$

(including UV counterterm)
Neglect Z_{q} as it will cancel out.

Effective Theory

Effective theory:

$$
\begin{gathered}
C_{1}=-\frac{2 \alpha_{s}}{3 \pi \epsilon_{I R}} \quad C_{2}=0 . \\
C_{1}=-\frac{2 \alpha_{s}}{3 \pi \epsilon_{I R}} \quad C_{2}=0
\end{gathered}
$$

Light quark wavefunction cancels between full and EFT

Scaleless Integrals

EFT integrals: have no scale in them when evaluated on-shell. e.g. wavefunction graph

$$
\int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{q^{2} v \cdot(q+p)} \rightarrow \int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{q^{2}(v \cdot q)^{2}}
$$

and is zero in dim-reg. Adding the UV counterterm gives the $1 / \epsilon$ terms.

$$
\begin{gathered}
\int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{q^{4}}=\frac{i}{8 \pi^{2} \epsilon_{U V}}-\frac{i}{8 \pi^{2} \epsilon_{I R}}, \\
\int \frac{d^{n} q}{(2 \pi)^{n}} \frac{1}{q^{4}}+\text { counterterm }=-\frac{i}{8 \pi^{2} \epsilon_{I R}},
\end{gathered}
$$

Matching UV and IR

Full theory integrals can have finite parts, since they depend on m_{Q}.

IR divergence match between full and effective theory. Since the EFT integrals are scaleless, UV=IR in the EFT. Thus one finds

$$
\left.\frac{1}{\epsilon_{I R}}\right|_{\mathrm{FULL}}=-\left.\frac{1}{\epsilon_{U V}}\right|_{\mathrm{EFT}}
$$

The anomalous dimensions in the EFT are related to the IR behavior in the full theory.

Matching Correction

Full theory:

$$
C_{1}=-\frac{\alpha_{s}}{3 \pi}\left[\frac{4}{\epsilon}+4+3 \ln \frac{\mu}{m_{Q}}\right], \quad C_{2}=\frac{2 \alpha_{s}}{3 \pi}
$$

EFT:

$$
C_{1}=-\frac{\alpha_{s}}{3 \pi}\left[\frac{4}{\epsilon}\right] \quad C_{2}=0
$$

Difference

$$
C_{1}=-\frac{\alpha_{s}}{3 \pi}\left[4+3 \ln \frac{\mu}{m_{Q}}\right], \quad C_{2}=\frac{2 \alpha_{s}}{3 \pi}
$$

Or compute in full theory and drop $1 / \epsilon$ terms.

Log in matching related to difference in anomalous dimensions in Full and EFT.

Usually choose matching scale $\mu=m_{Q}$, so one finds:

$$
C_{1}^{(V)}(m)=1-\frac{4 \alpha_{s}}{3 \pi} \quad C_{2}^{(V)}(m)=\frac{2 \alpha_{s}}{3 \pi}
$$

One can show that the matching for the axial current is $C_{1} \rightarrow C_{1}, C_{2} \rightarrow-C_{2}$

$$
C_{1}^{(A)}(m)=1-\frac{4 \alpha_{s}}{3 \pi} \quad C_{2}^{(A)}(m)=-\frac{2 \alpha_{s}}{3 \pi}
$$

Meson Decay Constants

Compute the radiative corrections to the meson decay constants:

Match at the scale m to the EFT:

$$
\bar{q} \gamma^{\mu} \gamma_{5} Q \rightarrow C_{1}^{(A)}(m) \bar{q} \gamma^{\mu} \gamma_{5} Q_{v}+C_{2}^{(A)}(m) \bar{q} v^{\mu} \gamma_{5} Q_{v}
$$

Run in the EFT to μ :

$$
\bar{q} \gamma^{\mu} \gamma_{5} Q \rightarrow C_{1}^{(A)}(\mu) \bar{q} \gamma^{\mu} \gamma_{5} Q_{v}+C_{2}^{(A)}(\mu) \bar{q} v^{\mu} \gamma_{5} Q_{v}
$$

μ dependence given by the anomalous dimension in the EFT

RGE

$$
\mu \frac{\mathrm{d} C}{\mathrm{~d} \mu}=\gamma_{O} C=\frac{\alpha_{s}}{\pi} C
$$

Can integrate a one-loop anomalous dimension:

$$
\begin{aligned}
\mu \frac{\mathrm{d} C}{\mathrm{~d} \mu} & =\gamma C, \quad \gamma=\gamma_{0} \frac{g^{2}}{16 \pi^{2}} \\
\mu \frac{\mathrm{~d} g}{\mathrm{~d} \mu} & =-\frac{g^{3}}{16 \pi^{2}} b_{0}
\end{aligned}
$$

Then

$$
\frac{\mathrm{d} C}{\mathrm{~d} g}=-\frac{\gamma_{0} C}{b_{0} g},
$$

Solution to one-Ioop RGE

$$
\begin{aligned}
\frac{C\left(\mu_{1}\right)}{C\left(\mu_{2}\right)} & =\left[\frac{\alpha_{s}\left(\mu_{1}\right)}{\alpha_{s}\left(\mu_{2}\right)}\right]^{-\gamma_{0} /\left(2 b_{0}\right)} \\
b_{0} & =11-\frac{2}{3} n_{f} \\
\gamma_{0} & =-\frac{g^{2}}{4 \pi^{2}}
\end{aligned}
$$

so $\gamma_{0}=-4, b_{0}=25 / 3$ below m_{b}, and

$$
\frac{C(\mu)}{C\left(m_{b}\right)}=\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(m_{b}\right)}\right]^{6 / 25}
$$

Compute matrix elements at μ :

$$
a(\mu) \times\left\{\begin{array}{cl}
-i v^{\mu} P_{v}^{(Q)} & \text { if } \Gamma^{\mu}=\gamma^{\mu} \gamma_{5} \\
i v^{\mu} P_{v}^{(Q)} & \text { if } \Gamma^{\mu}=v^{\mu} \gamma_{5} \\
P_{v}^{*(Q)_{\mu}} & \text { if } \Gamma^{\mu}=\gamma^{\mu} \\
0 & \text { if } \Gamma^{\mu}=v^{\mu}
\end{array}\right.
$$

so that

$$
\begin{aligned}
f_{P^{*}} & =\sqrt{m_{P *}} a(\mu) C_{1}^{(V)}(\mu), \\
f_{P} & =\frac{1}{\sqrt{m_{P}}} a(\mu)\left(C_{1}^{(A)}(\mu)-C_{2}^{(A)}(\mu)\right) .
\end{aligned}
$$

$a(\mu) C(\mu)$ is μ independent.

$$
\frac{f_{P^{*}}}{f_{P}}=\sqrt{m_{P^{*}} m_{P}}\left\{\frac{C_{1}^{(V)}}{C_{1}^{(A)}-C_{2}^{(A)}}\right\}=\sqrt{m_{P^{*}} m_{P}}\left\{1-\frac{2}{3} \frac{\alpha_{s}\left(m_{Q}\right)}{\pi}\right\} .
$$

$$
\begin{aligned}
f_{B} \sqrt{m_{B}} & =a(\mu)\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(m_{b}\right)}\right]^{6 / 25}\left\{1-\frac{2}{3} \frac{\alpha_{s}\left(m_{b}\right)}{\pi}\right\} \\
f_{D} \sqrt{m_{D}} & =a\left(m_{c}\right)\left\{1-\frac{2}{3} \frac{\alpha_{s}\left(m_{c}\right)}{\pi}\right\} \\
\frac{f_{B} \sqrt{m_{B}}}{f_{D} \sqrt{m_{D}}} & =\left[\frac{\alpha_{s}\left(m_{c}\right)}{\alpha_{s}\left(m_{b}\right)}\right]^{6 / 25}
\end{aligned}
$$

One-loop running and tree-level matching two-loop running and one-loop matching

Matching and running must be computed in the same scheme.

1/m Corrections

$$
\begin{gathered}
\mathcal{L}=\bar{h}_{v}(i v \cdot D) h_{v}+\frac{1}{2 m_{Q}} \bar{h}_{v}\left(i D_{\perp}\right)^{2} h_{v}-c_{F} \frac{g}{4 m_{Q}} \bar{h}_{v} \sigma_{\alpha \beta} G^{\alpha \beta} h_{v} \\
c_{F}(\mu)=\left[\frac{\alpha_{s}\left(m_{Q}\right)}{\alpha_{s}(\mu)}\right]^{9 /\left(33-2 n_{f}\right)}
\end{gathered}
$$

Reparameterization Invariance

$$
\begin{aligned}
p_{Q} & =m_{Q} v+k \\
v & \rightarrow v+\varepsilon / m_{Q} \\
k & \rightarrow k-\varepsilon
\end{aligned}
$$

Since $v^{2}=1, v \cdot \varepsilon=0$.
Also $\not b Q_{v}=Q_{v}$ so the change in the field:

$$
Q_{v} \rightarrow Q_{v}+\delta Q_{v}
$$

δQ_{v} satisfies

$$
\left(\nLeftarrow+\frac{\notin}{m_{Q}}\right)\left(Q_{v}+\delta Q_{v}\right)=Q_{v}+\delta Q_{v}
$$

so that

$$
(1-\nLeftarrow) \delta Q_{v}=\frac{\notin}{m_{Q}} Q_{v} .
$$

One can choose:

$$
\delta Q_{v}=\frac{\notin}{2 m_{Q}} Q_{v} .
$$

[Not unique, one can always make field redefinitions]
L invariant under

$$
\begin{aligned}
v & \rightarrow v+\varepsilon / m_{Q} \\
Q_{v} & \rightarrow e^{i \varepsilon \cdot x}\left(1+\frac{\notin}{2 m_{Q}}\right) Q_{v},
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{0} & \rightarrow \mathcal{L}_{0}+\frac{1}{m_{Q}} \bar{Q}_{v}(i \varepsilon \cdot D) Q_{v}, \\
\mathcal{L}_{1} & \rightarrow \mathcal{L}_{1}-\frac{1}{m_{Q}} \bar{Q}_{v}(i \varepsilon \cdot D) Q_{v} .
\end{aligned}
$$

so that the kinetic energy is not renormalized.
Other connections that follow form reparameterization invariance:

$$
c_{S}=2 c_{F}-1, \quad \sigma \cdot \nabla \times E
$$

E.g. relates matching coefficients of leading order and $1 / m$ operators, and their anomalous dimensions.

Luke's Theorem

Can compute $1 / m$ corrections to meson form-factors. Two sources of $1 / m$ corrections, those from the Lagrangian, and from the current. So one has

$$
T\left(\mathcal{L}_{1}, J_{0}\right), \quad J_{1}
$$

where

$$
\mathcal{L}=\mathcal{L}_{0}+\frac{1}{m} \mathcal{L}_{1}+\ldots, \quad J=J_{0}+\frac{1}{m} J_{1}+\ldots
$$

Can apply the same spurion analysis as before, and work out the form-factors. Complicated expressions involving more Isgur-Wise functions for the matrix elements that enter.

Luke's theorem: no 1/m corrections to the form-factor at zero recoil.

Experimentally, measure $\bar{B} \rightarrow D^{*}$ which determines $\left|V_{c b} \mathcal{F}(1)\right|$.

$$
\mathcal{F}(1)=\eta_{A}+0+\mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

$\eta_{A}=0.96$, and $1 / m^{2} \approx-0.05$, so

$$
\mathcal{F}(1)=0.91 \pm 0.05
$$

and from this one finds

$$
\left|V_{c b}\right|=[38.6 \pm 1.5(\exp) \pm 2.0(\text { th })] \times 10^{-3},
$$

