Heavy Quark Effective Theory

ANEESH MANOHAR

UNIVERSITY OF CALIFORNIA, SAN DIEGO

LNF School, Frascati, May 17-18, 2004 - p.1

Reference

 A.V. Manohar and M.B. Wise, Heavy Quark Physics, Cambridge University Press (2000)

Outline

Basic Ideas

- Heavy quark spin-flavor symmetry
- HQET Lagrangian
- Hadron Multiplets
- Masses
- Hadron Fields
- States
- Decay Constants
- $\blacksquare B \rightarrow D$ form factors
- Isgur-Wise function

Radiative corrections

- RG evolution
- Matching
- Application
- $\blacksquare 1/m$ corrections
 - Lagrangian
 - Reparameterization Invariance
 - Luke's theorem
 - **Extracting** V_{cb}

Outline

Inclusive Decays (SKIP)
Kinematics
OPE
Endpoint region
Extracting V_{cb} and V_{ub}

QCD describes the dynamics of quarks, and has a non-perturbative scale $\Lambda_{\rm QCD}\sim 200$ MeV.

Simplifications when $m_Q \gg \Lambda_{\rm QCD}$

A single heavy quark interacting with light particles can be described by an effective field theory known as HQET.

Applied to c and b quarks. The t-quark decays via $t \rightarrow bW$ before it forms hadrons. The width in the standard model is $\Gamma_t \approx 1.5 \text{ GeV}$

NRQCD

Systems with two heavy quarks (such as J/ψ , Υ or $\bar{t}t$ near threshold) are described by a completely different effective theory, NRQCD [non-relativistic QCD].

Consider a heavy quark Q interacting with light degrees of freedom, such as light quarks and gluons.

$$v^{\mu} = \frac{p^{\mu}}{m_Q}, \qquad \delta v^{\mu} = \frac{\delta p^{\mu}}{m_Q} \sim \frac{\Lambda_{\text{QCD}}}{m_Q} \to 0$$

Quark has a constant velocity.

$$[x,v] = \frac{1}{m_Q} [x,p] = \frac{i\hbar}{m_Q} \to 0.$$

Cannot simultaneously have a well-defined position and momentum, but can have a well-defined position and velocity. In the $m_Q \rightarrow \infty$ limit: static color **3** source in the rest frame $v^{\mu} = (1, 0, 0, 0)$.

Strong interactions flavor blind \Rightarrow HQ flavor symmetry Symmetry breaking $\propto 1/m_b - 1/m_c$

Color coupling is color electric charge. The magnetic interaction is $\propto 1/m_Q$ for a pointlike spin-1/2 fermion (not true for the proton). \Rightarrow HQ spin symmetry Symmetry breaking $\propto 1/m_Q$.

Combining gives HQ SU(4) spin-flavor symmetry : $b \uparrow$, $b \downarrow$, $c \uparrow$ and $c \downarrow$ transform as a 4

$$\mathcal{L} = \sum_{i=c,b,t} \bar{Q}_i \left(i \not\!\!D - m_{Q_i} \right) Q_i + \mathcal{L}_{\text{light}}$$

The Lagrangian has m_Q term, and no well-defined $m_Q \rightarrow \infty$ limit. It describes the interactions of Q at all energies, including those greater than m_Q .

Want to consider an effective theory valid for momenta smaller than m_Q , which makes the simplications of low momentum manifest.

Should have an expansion in $1/m_Q$

HQET Lagrangian

HQET Lagrangian:

$$\mathcal{L}_{\mathrm{HQET}} = \mathcal{L}_0 + \frac{1}{m_Q}\mathcal{L}_1 + \frac{1}{m_Q^2}\mathcal{L}_2 + \dots$$

 \mathcal{L}_0 has spin-flavor symmetry,

 $1/m_Q$ terms are symmetry breaking corrections.

Quark Propagator

Look at the quark propagator:

$$i\frac{\not p + m_Q}{p^2 - m_Q^2 + i\epsilon}$$

p=mv+k, where k is called the residual momentum, and is of order $\Lambda_{\rm QCD}.$

HQET Propagator

$$i\frac{m_Q\psi + \not k + m_Q}{(m_Q v + \not k)^2 - m_Q^2 + i\epsilon}$$

Expanding this in the limit $k \ll m_Q$ gives

$$i\frac{1+\psi}{2k\cdot v+i\epsilon} + \mathcal{O}\left(\frac{k}{m_Q}\right) = i\frac{P_+}{k\cdot v+i\epsilon} + \mathcal{O}\left(\frac{k}{m_Q}\right),$$

with a well defined limit.

$$P_+ \equiv \frac{1+\psi}{2}$$

Projectors

$$P_{+} = \frac{1 + \psi}{2}, \qquad P_{-} = \frac{1 - \psi}{2},$$

In the rest frame,

$P_{+}^{2} = P_{+}, P_{-}^{2} = P_{-}, P_{+} + P_{-} = 1, P_{+}P_{-} = 0 P_{-}P_{+} = 0.$

Gluon Vertex

The quark-gluon vertex

$$-igT^a\gamma^{\mu} \to -igT^aP_+\gamma^{\mu}P_+ = -igT^av^{\mu},$$

using the identity

$$P_+\gamma^\mu = v^\mu + \gamma^\mu P_-$$

In the rest frame: the coupling is purely that of an electric charge.

HQET L_0

HQET Lagrangian:

$$\mathcal{L} = \bar{h}_{v}(x) (iD \cdot v) h_{v}(x),$$

 $h_v(x)$ is the quark field in the effective theory and satisfies

$$P_{+}h_{v}\left(x\right) = h_{v}\left(x\right).$$

 h_v annihilates quarks with velocity v, but does not create antiquarks

Dividing up momentum space

v appears explicitly in the HQET Lagrangian. h_v describes quarks with velocity v, and momenta within $\Lambda_{\rm QCD}$ of $m_Q v$.

quarks with velocity $v' \neq v$ are far away in the EFT

Feynman rules

$$\mathcal{L} = \bar{h}_v (iD \cdot v) h_v$$
$$D_\mu = \partial_\mu + igT^a A^a_\mu$$

The $\partial \cdot v$ term gives a propagator

$$\frac{iP_+}{k\cdot v}$$

The $A \cdot v$ term gives a vertex

 $-igT^av^\mu$

Manifest Spin-Flavor Symmetry

$$\mathcal{L}_0 = \sum_{f=c,b,t} \bar{h}_{fv} \left(iD \cdot v \right) h_{fv},$$

has manifest spin-flavor symmetry, since $D \cdot v$ does not depend on the spin or the flavor of the heavy quark. Hadrons containing a single heavy quark contain Q, and light quarks and gluons [light degrees of freedom ℓ].

 D^+ meson has a c quark, \overline{d} quark, plus $\overline{q}q$ pairs and gluons. Quantum numbers of ℓ are the same as the \overline{d} .

Total angular momentum ${\bf J}$ is conserved

 \mathbf{S}_Q is conserved as $m_Q \to \infty$

Define $\mathbf{S}_\ell \equiv \mathbf{J} - \mathbf{S}_Q$

Spin of the light degrees of freedom

Multiplet Structure

$$\mathbf{J}^2 = j(j+1)$$
, $\mathbf{S}^2_Q = s_Q(s_Q+1)$, $\mathbf{S}^2_\ell = s_\ell(s_\ell+1)$

 $s_Q = 1/2$, so heavy hadrons are in degenerate multiplets with $j = s_\ell \pm 1/2$, unless $s_\ell = 0$, in which case there is a single j = 1/2 multiplet.

Ground state mesons: Q and a light antiquark \bar{q} , so $s_{\ell} = 1/2$. $j = 0 \oplus 1$ and negative parity, since quarks and antiquarks have opposite parity

Degenerate 0^- and 1^- mesons which form a flavor $\overline{\mathbf{3}}$

Called $H^{(Q)}$

Ground State Mesons

In the quark model, the first excitation has L=1, with $s_\ell=1/2$ and $s_\ell=3/2$

 $s_\ell = 1/2 \Rightarrow 0^+$ and 1^+ states D_0^* and D_1^*

 $s_\ell = 3/2 \Rightarrow 1^+$ and 2^+ states D_1 and D_2^*

The $s_{\ell} = 1/2$ and $s_{\ell} = 3/2$ multiplets are not related by HQ symmetry, though they are related in a NR quark model

Write the quark field as

$$Q(x) = e^{-im_{Q}v \cdot x} [h_{v}(x) + Q_{v}(x)]$$
$$= e^{-im_{Q}t} \begin{pmatrix} h_{v}(x) \\ Q_{v}(x) \end{pmatrix}$$

 $p = m_Q v + k$, so the x dependence of $h_v(x)$ is k.

$$\psi h_{v}(x) = h_{v}(x),$$

$$\psi \mathcal{Q}_{v}(x) = -\mathcal{Q}_{v}(x)$$

At tree-level, one does not have to worry about renormalization effects:

$$\mathcal{L} = \bar{Q} \left(i \not \!\!\!D - m_Q \right) Q$$

= $\left(\bar{h}_v + \bar{\mathcal{Q}}_v \right) e^{i m_Q v \cdot x} \left(i \not \!\!\!D - m_Q \right) e^{-i m_Q v \cdot x} \left(h_v + \mathcal{Q}_v \right)$
= $\left(\bar{h}_v + \bar{\mathcal{Q}}_v \right) \left(i \not \!\!\!D - m_Q + m_Q \psi \right) \left(h_v + \mathcal{Q}_v \right)$
= $\left(\bar{h}_v + \bar{\mathcal{Q}}_v \right) \left(i \not \!\!\!D h_v + \left[i \not \!\!\!D - 2m_Q \right] \mathcal{Q}_v \right)$

The result can be simplified using

$$P_+\gamma^{\mu}P_+ = v^{\mu}, \ P_-\gamma^{\mu}P_- = -v^{\mu}, \ P_+\gamma^{\mu}P_- = \gamma_{\perp}^{\mu}, \ P_-\gamma^{\mu}P_+ = \gamma_{\perp}^{\mu},$$

where the \perp projector is defined for any vector A by

$$A^{\mu}_{\perp} \equiv A^{\mu} - v^{\mu} \ v \cdot A.$$

 $\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v - \mathcal{Q}_v \left(iv \cdot D + 2m_Q \right) \mathcal{Q}_v + \bar{h}_v i \not\!\!D_\perp \mathcal{Q}_v + \bar{\mathcal{Q}}_v i \not\!\!D_\perp h_v$ Quadratic in \mathcal{Q}_v :

$$\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v + \bar{h}_v i \not\!\!\!D_\perp \frac{1}{2m_Q + iv \cdot D} i \not\!\!\!D_\perp h_v.$$

The last term can be expanded in a power series in $1/m_Q$,

$$\frac{1}{2m_Q + iv \cdot D} = \frac{1}{2m_Q} - \frac{1}{4m_Q^2}iv \cdot D + \dots$$

The effective Lagrangian to order $1/m_Q$ is thus

$$\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v + \frac{1}{2m_Q} \bar{h}_v i \not\!\!\!D_\perp i \not\!\!\!D_\perp h_v.$$

This can be rewritten using the identities

$$\gamma^{\alpha}\gamma^{\beta} = g^{\alpha\beta} - i\sigma^{\alpha\beta}, \ \left[D^{\alpha}, D^{\beta}\right] = igG^{\alpha\beta}$$

$$\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v + \frac{1}{2m_Q} \bar{h}_v \left(iD_\perp \right)^2 h_v - \frac{g}{4m_Q} \bar{h}_v \sigma_{\alpha\beta} G^{\alpha\beta} h_v$$
$$+ \mathcal{O}\left(\frac{1}{m_Q^2}\right)$$

$$\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v + \frac{1}{2m_Q} \bar{h}_v \left(iD_\perp \right)^2 h_v - c_F \frac{g}{4m_Q} \bar{h}_v \sigma_{\alpha\beta} G^{\alpha\beta} h_v$$

The $(iD_{\perp})^2$ term violates flavor symmetry at order $1/m_Q$

 $g\sigma_{lphaeta}G^{lphaeta}$ term violates spin and flavor symmetry at order $1/m_Q$

One can carry out the expansion to higher order in $1/m_Q$ to obtain the tree level HQET Lagrangian.

Field redefinition

$$h_v \rightarrow \left[1 + \frac{a}{m_Q} iv \cdot D\right] h_v$$

changes the effective Lagrangian to

$$\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v + \frac{1}{2m_Q} \bar{h}_v \left(iD_\perp \right)^2 h_v - \frac{g}{4m_Q} \bar{h}_v \sigma_{\alpha\beta} G^{\alpha\beta} h_v$$
$$+ \frac{2a}{m_Q} h_v \left(iv \cdot D \right)^2 h_v + \mathcal{O}\left(\frac{1}{m_Q^2}\right)$$

For a = 1/2, one can replace $D_{\perp}^2 \rightarrow D_{\perp}^2 + (v \cdot D)^2 = D^2$

Field redefinition change off-shell amplitudes, but not S-matrix elements.

The only thing that the effective theory and full theory have to agree on are *S*-matrix elements.

Convenient to eliminate t derivatives, i.e. $v \cdot D$ terms in $\mathcal L$

[Use the lowest order equation of motion $(v \cdot D) h_v = 0$ to remove time derivatives] Hadron mass mass in effective theory is $M_H - m_Q$.

Lowest order: all hadrons degenerate, mass m_Q
 Order one: Hadron mass

 $\langle H_Q | \mathcal{H}_0 | H_Q \rangle \equiv \bar{\Lambda}$

where H_0 = Hamiltonian from lowest order Lagrangian (including the light degrees of freedom).

 $\bar{\Lambda}$ has different values for each multiplet:

 $\bar{\Lambda}$ for mesons, $\bar{\Lambda}_{\Lambda}$, $\bar{\Lambda}_{\Sigma}$

$$\lambda_1$$
, λ_2

• Order $1/m_Q$:

$$\frac{\mathcal{H}_1}{m_Q} = -\frac{\mathcal{L}_1}{m_Q} = -\frac{1}{2m_Q} \bar{h}_v \left(iD_{\perp}\right)^2 h_v + c_F \frac{g}{4m_Q} \bar{h}_v \sigma_{\alpha\beta} G^{\alpha\beta} h_v.$$

Define two non-perturbative parameters

$$\lambda_{1} = \langle H_{Q} | \bar{h}_{v} (iD_{\perp})^{2} h_{v} | H_{Q} \rangle,$$

$$8 (\mathbf{S}_{Q} \cdot \mathbf{S}_{\ell}) \lambda_{2} = \langle H_{Q} | \bar{h}_{v} g \sigma_{\alpha\beta} G^{\alpha\beta} h_{v} | H_{Q} \rangle,$$

In the rest frame:

$$(iD_{\perp})^2 = -\mathbf{p}^2$$

$$\sigma_{\alpha\beta}G^{\alpha\beta} = -2\boldsymbol{\sigma} \cdot \mathbf{B}$$

$$m_H = m_Q + \bar{\Lambda} - \frac{\lambda_1}{2m_Q} + c_F \frac{2\lambda_2 \mathbf{S}_Q \cdot \mathbf{S}_\ell}{m_Q}$$

 $\mathbf{S}_Q \cdot \mathbf{S}_\ell = (J^2 - S_Q^2 - S_\ell^2)/2$, so

$$m_B = m_b + \bar{\Lambda} - \frac{\lambda_1}{2m_b} - \frac{3\lambda_2}{2m_b}$$

$$m_{B^*} = m_b + \bar{\Lambda} - \frac{\lambda_1}{2m_b} + \frac{\lambda_2}{2m_b}$$

$$m_D = m_c + \bar{\Lambda} - \frac{\lambda_1}{2m_c} - \frac{3\lambda_2}{2m_c}$$

$$m_{D^*} = m_c + \bar{\Lambda} - \frac{\lambda_1}{2m_c} + \frac{\lambda_2}{2m_c}$$

^C LNF School, Frascati, May 17–18, 2004 – p.33

Note that heavy quark symmetry implies that Λ , λ_1 and λ_2 have the same value in the *b* and *c* systems (upto renormalization)

0.49 GeV² =
$$m_{B^*}^2 - m_B^2 = 4\lambda_2 = m_{D^*}^2 - m_D^2 = 0.55$$
 GeV²,

up to corrections of order $1/m_{b,c}$.

 $90 \pm 3 \text{MeV} = m_{B_s} - m_{B_d} = \overline{\Lambda}_s - \overline{\Lambda}_d = m_{D_s} - m_{D_d} = 99 \pm 1 \text{MeV}$ $345 \pm 9 \text{MeV} = m_{\Lambda_b} - m_B = \overline{\Lambda}_\Lambda - \overline{\Lambda}_d = m_{\Lambda_c} - m_D = 416 \pm 1 \text{MeV}$

 $\overline{\Lambda}$, λ_1 and λ_2 will occur elsewhere

 $Q\bar{q}$ mesons \rightarrow field $H_v^{(Q)}$ (4 × 4 matrix, bispinor)

$$H_{v}^{(Q)}\left(x\right) \to D\left(\Lambda\right) H_{\Lambda^{-1}v}^{(Q)}\left(\Lambda^{-1}x\right) D\left(\Lambda\right)^{-1}$$

Pseudoscalar $P_v^{(Q)}(x)$ and vector $P_{v\mu}^{*(Q)}(x)$ Vector particles have a polarization vector ϵ_{μ} , with $\epsilon \cdot \epsilon = -1$, and $v \cdot \epsilon = 0$.

$$H_v^{(Q)} = \frac{1+\psi}{2} \left[\mathcal{P}_v^{*(Q)} + i P_v^{(Q)} \gamma_5 \right].$$

$$H_v^{(Q)} = \frac{1+\psi}{2} \left[\not\!\!P_v^{*(Q)} + i P_v^{(Q)} \gamma_5 \right].$$

Parity:

$$H_v^{(Q)}(x) \to \gamma^0 H_{v_P}^{(Q)}(x_P) \gamma^0,$$

where

$$x_P = (x^0, -\mathbf{x}), \ v_P = (v^0, -\mathbf{v}).$$
$$H_v^{(Q)} = \frac{1+\psi}{2} \left[\mathcal{P}_v^{*(Q)} + i P_v^{(Q)} \gamma_5 \right].$$

$$\psi H_v^{(Q)} = H_v^{(Q)}, \qquad H_v^{(Q)} \psi = -H_v^{(Q)}.$$

using $v \cdot P_v^{*(Q)} = 0$

Conjugate field:

$$\bar{H}_{v}^{(Q)} = \gamma^{0} H_{v}^{(Q)\dagger} \gamma^{0} = \left[\not\!\!\!P_{v}^{*(Q)\dagger} + i P_{v}^{(Q)\dagger} \gamma_{5} \right] \frac{1 + \psi}{2},$$

which also transforms as a bispinor,

$$\bar{H}_{v}^{(Q)} \to D(\Lambda) \,\bar{H}_{v'}^{(Q)} D(\Lambda)^{-1}.$$

since

$$\gamma^{0} D \left(\Lambda \right)^{\dagger} \gamma^{0} = D \left(\Lambda \right)^{-1}.$$

$$\langle H(\mathbf{p}',\varepsilon')| H(\mathbf{p},\varepsilon) \rangle = 2E_{\mathbf{p}} (2\pi)^3 \,\delta^{(3)} (\mathbf{p}-\mathbf{p}') \,\delta_{\varepsilon\varepsilon'},$$

Mass dimension -1

HQET states eigenstates of the $m_Q \rightarrow \infty$ theory and labelled by v and k, with $v \cdot k = 0$. They differ from full QCD states.

$$\langle H(\boldsymbol{v}',\boldsymbol{k}',\varepsilon')|H(\boldsymbol{v},\boldsymbol{k},\varepsilon)\rangle = 2v^0 (2\pi)^3 \,\delta_{\boldsymbol{v}\boldsymbol{v}'}\delta^3(\mathbf{k}-\mathbf{k}')\delta_{\varepsilon\varepsilon'}.$$

Usually take k = 0. States have mass dimension -3/2

$$|H(\mathbf{p})\rangle = \sqrt{m_H} \left[|H(\mathbf{v})\rangle + \mathcal{O}\left(\frac{1}{m_Q}\right) \right]$$

Similarly

$$\overline{u}(\boldsymbol{p},s)\gamma^{\mu}u(\boldsymbol{p},s) = 2p^{\mu}$$
$$\overline{u}(\boldsymbol{v},s)\gamma^{\mu}u(\boldsymbol{v},s) = 2v^{\mu}$$
$$u(\boldsymbol{p},s) = \sqrt{m_{H}}u(\boldsymbol{v},s)$$

$$\langle 0 | \bar{q} \gamma^{\mu} \gamma_5 Q | P(p) \rangle = -i f_P p^{\mu},$$

where f_P has mass dimension one. $(f_{\pi} = 131 \text{ MeV})$

$$\langle 0 | \bar{q} \gamma^{\mu} Q | P^* (p, \epsilon) \rangle = f_{P^*} \epsilon^{\mu},$$

 f_{P^*} has mass dimension two.

$$\bar{q}\,\Gamma\,Q = \bar{q}\,\Gamma\,Q_v + \mathcal{O}\left(\alpha_s\right) + \mathcal{O}\left(\frac{1}{m_Q}\right)$$

so we need

 $\langle 0 | \bar{q} \Gamma Q_v | H(v) \rangle$,

$\bar{q}\,\Gamma\,Q_v \to \bar{q}\,\Gamma\,D(R)_Q Q_v$

Pretend that Γ transforms as $\Gamma \to \Gamma D(R)_Q^{-1}$

- Write down operators which are invariant when $Q_v \to D(R)_Q Q_v$, $\Gamma \to \Gamma D(R)_Q^{-1}$, $H_v^{(Q)} \to D(R)_Q H_v^{(Q)}$.
- Set Γ to its fixed value γ^{μ} or $\gamma^{\mu}\gamma_5$ to obtain the operator with the correct transformation properties.

Decay Matrix Element

$$\langle 0 | \bar{q} \Gamma Q_v | H(v) \rangle = \text{Tr} \ \frac{a}{2} \Gamma H_v^{(Q)}$$

 $a = a_0(v^2) + a_1(v^2)\psi$

$$a \times \begin{cases} -iv^{\mu} P_v^{(Q)} & \text{if } \Gamma = \gamma^{\mu} \gamma_5 \\ P_v^{*(Q)\mu} & \text{if } \Gamma = \gamma^{\mu}, \end{cases}$$

$$\begin{aligned} \langle 0 | \, \bar{q} \, \gamma^{\mu} \gamma_5 \, Q_v \, | P(v) \rangle &= -iav^{\mu} \\ \langle 0 | \, \bar{q} \, \gamma^{\mu} \, Q_v \, | P^*(v) \rangle &= a\epsilon^{\mu}. \end{aligned}$$

$$f_P = \frac{a}{\sqrt{m_P}}, \qquad f_{P^*} = a\sqrt{m_{P^*}}.$$

$$f_P = \frac{a}{\sqrt{m_P}}, \qquad f_{P^*} = m_P f_P,$$

so $f_P \propto m_P^{-1/2}$, $f_{P^*} \propto m_P^{1/2}$.

a has the same value for c and b:

$$\frac{f_B}{f_D} = \sqrt{\frac{m_D}{m_B}}, \qquad f_{D^*} = m_D f_D, \qquad f_{B^*} = m_B f_B.$$

Measure from the decays $D \to \overline{\ell} \nu_{\ell}$ and $\overline{B} \to \ell \overline{\nu}_{\ell}$

$$\Gamma = \frac{G_F^2 |V_{Qq}|^2}{8\pi} f_P^2 m_\ell^2 m_P \left(1 - \frac{m_\ell^2}{m_P^2}\right)^2.$$

JLQCD Collaboration [S. Aoki et al., Phys. Rev. Lett. 80 (1998) 5711]

Decay Constant	Value in MeV
f_D	197 ± 2
${f_D}_s$	224 ± 2
f_B	173 ± 4
f_{B_s}	199 ± 3

Note that this simulation suggests that there is a substantial correction to the heavy quark symmetry prediction $f_B/f_D = \sqrt{m_D/m_B} \simeq 0.6$.

Semileptonic $b \rightarrow c$ decays via the weak current $\bar{c} \gamma_{\mu} P_L b$ Decay form-factors are defined by:

$$\begin{split} \left\langle D(p') \right| V^{\mu} \left| \bar{B}(p) \right\rangle &= f_{+}(q^{2}) \left(p + p' \right)^{\mu} + f_{-}(q^{2}) \left(p - p' \right)^{\mu}, \\ \left\langle D^{*}(p', \epsilon) \right| V^{\mu} \left| \bar{B}(p) \right\rangle &= g(q^{2}) \epsilon^{\mu\nu\alpha\tau} \epsilon_{\nu}^{*} \left(p + p' \right)_{\alpha} \left(p - p' \right)_{\tau}, \\ \left\langle D^{*}(p', \epsilon) \right| A^{\mu} \left| \bar{B}(p) \right\rangle &= -if(q^{2}) \epsilon^{*\mu} \\ -i\epsilon^{*} \cdot p \Big[a_{+}(q^{2}) \left(p + p' \right)^{\mu} + a_{-}(q^{2}) \left(p - p' \right)^{\mu} \Big], \end{split}$$

where q = p - p'Six form-factors Label states by v and v', and use

$$w = v \cdot v' = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}}$$

The allowed kinematic range for w is

$$0 \le w - 1 \le \frac{\left(m_B - m_{D^{(*)}}\right)^2}{2m_B m_{D^{(*)}}}$$

The zero-recoil point, at which $D^{(*)}$ is at rest in the \overline{B} rest frame, is w = 1 (maximum q^2)

Better to use:

$$\frac{\langle D(p')|V^{\mu}|\bar{B}(p)\rangle}{\sqrt{m_{B}m_{D}}} = h_{+}(w)(v+v')^{\mu} + h_{-}(w)(v-v')^{\mu},$$

$$\frac{\langle D^{*}(p',\epsilon)|V^{\mu}|\bar{B}(p)\rangle}{\sqrt{m_{B}m_{D^{*}}}} = h_{V}(w)\epsilon^{\mu\nu\alpha\beta}\epsilon^{*}_{\nu}v'_{\alpha}v_{\beta},$$

$$\frac{\langle D^{*}(p',\epsilon)|A^{\mu}|\bar{B}(p)\rangle}{\sqrt{m_{B}m_{D^{*}}}} = -ih_{A_{1}}(w)(w+1)\epsilon^{*\mu} + ih_{A_{2}}(w)(\epsilon^{*}\cdot v)v^{\mu}$$

$$+ih_{A_{3}}(w)(\epsilon^{*}\cdot v)v'^{\mu}.$$

$$q_{\text{light}}^2 \sim (\Lambda_{\text{QCD}}v - \Lambda_{\text{QCD}}v')^2 = 2\Lambda_{\text{QCD}}^2(1-w)$$

HQ symmetry should hold if:

$$2\Lambda_{\text{QCD}}^2 \left(w - 1 \right) \ll m_{b,c}^2.$$

The heavy meson form factors are expected to vary on the scale $q_{\rm light}^2 \sim \Lambda_{\rm QCD}^2$, i.e. on the scale $w \sim 1$.

QCD matrix elements are of the form: $\left< H^{(c)}(p') \right| \bar{c} \, \Gamma \, b \left| H^{(b)}(p) \right>$

At leading order in $1/m_{c,b}$ and $\alpha_s(m_{c,b})$:

 $\langle H^{(c)}(v') | \bar{c}_{v'} \Gamma b_v | H^{(b)}(v) \rangle$

use trick as before $\Gamma \to D(R)_c \Gamma D(R)_b^{-1}$ $\bar{c}_{v'} \Gamma b_v = \text{Tr } X \bar{H}_{v'}^{(c)} \Gamma H_v^{(b)},$

$$X = X_0 + X_1 \psi + X_2 \psi' + X_3 \psi \psi',$$

where the coefficients are functions of $w = v \cdot v'$.

Isgur-Wise Function

Use
$$X = -\xi(w)$$
:

$$\begin{split} \left\langle D(v') \left| \, \bar{c}_{v'} \, \gamma_{\mu} \, b_{v} \, \left| \bar{B}(v) \right\rangle &= \xi(w) \left[v_{\mu} + v'_{\mu} \right], \\ \left\langle D^{*}(v', \epsilon) \right| \, \bar{c}_{v'} \, \gamma_{\mu} \gamma_{5} \, b_{v} \, \left| \bar{B}(v) \right\rangle &= -i\xi(w) \left[(1+w)\epsilon_{\mu}^{*} - (\epsilon^{*} \cdot v)v'_{\mu} \right], \\ \left\langle D^{*}(v', \epsilon) \right| \, \bar{c}_{v'} \, \gamma_{\mu} \, b_{v} \, \left| \bar{B}(v) \right\rangle &= \xi(w) \, \epsilon_{\mu\nu\alpha\beta} \epsilon^{*\nu} v'^{\alpha} v^{\beta}. \end{split}$$

Six form-factors in terms of one Isgur-Wise function

$$h_{+}(w) = h_{V}(w) = h_{A_{1}}(w) = h_{A_{3}}(w) = \xi(w),$$

$$h_{-}(w) = h_{A_{2}}(w) = 0$$

Consider the forward matrix element of the vector current $\bar{b}\gamma^{\mu}b$ between \bar{B} meson states. Setting v' = v, and letting $c \to b$, $D \to \bar{B}$,

$$\frac{\langle \bar{B}(p)|\bar{b}\gamma_{\mu}b|\bar{B}(p)\rangle}{m_{B}} = \langle \bar{B}(v)|\bar{b}_{v}\gamma_{\mu}b_{v}|\bar{B}(v)\rangle = 2 \ \xi(w=1) v_{\mu}.$$

where ξ for $b \rightarrow b$ is the same as for $b \rightarrow c$.

So $\xi(1) = 1$. This fixes the absolute normalization and allows one to determine V_{cb} .

Radiative Corrections

Consider heavy quark wavefunction renormalization:

In Feynman gauge $(n = 4 - \epsilon)$

$$\int \frac{d^n q}{(2\pi)^n} (-igT^A \mu^{\epsilon/2}) v_\lambda \frac{i}{(q+p) \cdot v} (-igT^A \mu^{\epsilon/2}) v^\lambda \frac{(-i)}{q^2}$$
$$= -\left(\frac{4}{3}\right) g^2 \mu^\epsilon \int \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 \cdot v \cdot (q+p)}$$

Add a gluon mass to regulate the IR divergence, so that one can isolate the UV divergence from the $1/\epsilon$ pole

$$-\left(\frac{4}{3}\right)g^2\mu^{\epsilon}\int\frac{d^nq}{\left(2\pi\right)^n}\frac{1}{\left(q^2-m^2\right)v\cdot\left(q+p\right)}$$

Use the identity

$$\frac{1}{a^r b^s} = 2^s \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \int_0^\infty d\lambda \frac{\lambda^{s-1}}{[a+2b\lambda]^{r+s}}$$

to get

$$-\left(\frac{8}{3}\right)g^{2}\mu^{\epsilon}\int_{0}^{\infty}d\lambda\int\frac{d^{n}q}{\left(2\pi\right)^{n}}\frac{1}{\left[q^{2}-m^{2}+2\lambda v\cdot\left(q+p\right)\right]^{2}}$$

Let $q \rightarrow q - \lambda v$

$$-\left(\frac{8}{3}\right)g^{2}\mu^{\epsilon}\int_{0}^{\infty}d\lambda\int\frac{d^{n}q}{\left(2\pi\right)^{n}}\frac{1}{\left[q^{2}-m^{2}-\lambda^{2}+2\lambda v\cdot p\right]^{2}}$$

Use the standard dim reg formula:

$$\begin{split} &\int \frac{d^n q}{(2\pi)^n} \frac{(q^2)^{\alpha}}{(q^2 - M^2)^{\beta}} = \\ &\frac{i}{2^n \pi^{n/2}} (-1)^{\alpha + \beta} (M^2)^{\alpha - \beta + n/2} \frac{\Gamma(\alpha + n/2)\Gamma(\beta - \alpha - n/2)}{\Gamma(n/2)\Gamma(\beta)}, \end{split}$$

$$-\frac{i}{\left(4\pi\right)^{2-\epsilon/2}}\left(\frac{8}{3}\right)g^{2}\mu^{\epsilon}\Gamma\left(\epsilon/2\right)\int_{0}^{\infty}d\lambda\left[\lambda^{2}-2\lambda v\cdot p+m^{2}\right]^{-\epsilon/2}.$$

Evaluate λ integral using the recursion relation

$$I(a,b,c) \equiv \int_0^\infty d\lambda \left[\lambda^2 + 2b\lambda + c\right]^a$$

= $\frac{1}{1+2a} \Big[\left(\lambda^2 + 2b\lambda + c\right)^a \left(\lambda + b\right) \Big|_0^\infty + 2a \left(c - b^2\right) I(a - 1, b, c) \Big],$

to convert it to one that is convergent when $\epsilon = 0$,

$$\int_{0}^{\infty} d\lambda \left[\lambda^{2} - 2\lambda v \cdot p + m^{2}\right]^{-\epsilon/2}$$

= $\frac{1}{1-\epsilon} \left[\left(\lambda^{2} - 2\lambda v \cdot p + m^{2}\right)^{-\epsilon/2} \left(\lambda - v \cdot p\right) \Big|_{0}^{\infty}$
 $-\epsilon \left(m^{2} - (v \cdot p)^{2}\right) \int_{0}^{\infty} d\lambda \left[\lambda^{2} - 2\lambda v \cdot p + m^{2}\right]^{-1-\epsilon/2} \right].$

Can set $\epsilon = 0$ in the last term. Also use

 $\lim_{\lambda \to \infty} \lambda^z = 0,$

to get

$$-i\frac{g^2}{3\pi^2\epsilon}v\cdot p + \text{finite}$$

This gives

$$Z_h = 1 + \frac{g^2}{3\pi^2\epsilon}, \qquad \gamma_h = \frac{1}{2}\frac{\mu}{Z_h}\frac{dZ_h}{d\mu} = -\frac{g^2}{6\pi^2}.$$

Note that $Z_q = 1 - \frac{g^2}{6\pi^2\epsilon}$

Heavy-Light Current

Compute the anomalous dimension for

 $O_{\Gamma} = \bar{q} \Gamma Q_v$

The light quark vertex is γ^{μ} and the heavy quark vertex is v^{μ} . Find that

$$\gamma_O = -\frac{g^2}{4\pi^2}.$$

independent of Γ .

Operator Mixing

Use the convention that

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} O_j = -\gamma_{ji} O_j$$
$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} C_i = \gamma_{ji} C_j$$

with

 $L = C_i \overline{O_i}$

Heavy-Heavy Current

that vanishes at w = 1.

LNF School, Frascati, May 17–18, 2004 – p.60

$$\bar{q}\gamma^{\lambda}Q = C_1^{(V)} \bar{q}\gamma^{\lambda}Q_v + C_2^{(V)} \bar{q}v^{\lambda}Q_v$$

where to lowest order $C_1 = 1$, $C_2 = 0$.

To compute the α_s corrections, compute on-shell matrix elements of both sides at one loop.

Computation of a matching coefficient. Need the difference between the full and effective theory results.

Full and EFT results can have IR divergences, but the difference is IR finite. [UV divergences taken care of by renormalization]

Full Theory

Full theory: evaluate on-shell with $p = m_Q v$

Wavefunction renormalization:

$$\Sigma(p) = A(p^2)m + B(p^2)p$$

$$\delta Z \equiv B + 2m^2 \frac{\mathrm{d}(A+B)}{\mathrm{d}p^2} \bigg|_{p^2 = m^2}$$

Gives $C_1 = \delta Z_Q/2$,

$$C_1 = -\frac{\alpha_s}{3\pi} \left[\frac{2}{\epsilon_{IR}} + 2 + 3\ln\frac{\mu}{m_Q} \right], \qquad C_2 = 0$$

(including UV counterterm)

Neglect Z_q as it will cancel out.

Effective Theory

Effective theory:

Light quark wavefunction cancels between full and

LNF School, Frascati, May 17-18, 2004 - p.64

EFT integrals: have no scale in them when evaluated on-shell. e.g. wavefunction graph

$$\int \frac{d^n q}{\left(2\pi\right)^n} \frac{1}{q^2 \ v \cdot \left(q+p\right)} \to \int \frac{d^n q}{\left(2\pi\right)^n} \frac{1}{q^2 \ \left(v \cdot q\right)^2}$$

and is zero in dim-reg. Adding the UV counterterm gives the $1/\epsilon$ terms.

$$\int \frac{d^n q}{(2\pi)^n} \frac{1}{q^4} = \frac{i}{8\pi^2 \epsilon_{UV}} - \frac{i}{8\pi^2 \epsilon_{IR}},$$
$$\int \frac{d^n q}{(2\pi)^n} \frac{1}{q^4} + \text{counterterm} = -\frac{i}{8\pi^2 \epsilon_{IR}},$$

Full theory integrals can have finite parts, since they depend on m_Q .

IR divergence match between full and effective theory. Since the EFT integrals are scaleless, UV=IR in the EFT. Thus one finds

$$\frac{1}{\epsilon_{IR}}\bigg|_{\rm FULL} = -\left.\frac{1}{\epsilon_{UV}}\right|_{\rm EFT}$$

The anomalous dimensions in the EFT are related to the IR behavior in the full theory.

Matching Correction

Full theory:

$$C_1 = -\frac{\alpha_s}{3\pi} \left[\frac{4}{\epsilon} + 4 + 3\ln\frac{\mu}{m_Q} \right], \qquad C_2 = \frac{2\alpha_s}{3\pi}.$$

EFT:

$$C_1 = -\frac{\alpha_s}{3\pi} \left[\frac{4}{\epsilon}\right] \qquad C_2 = 0$$

Difference

$$C_1 = -\frac{\alpha_s}{3\pi} \left[4 + 3\ln\frac{\mu}{m_Q} \right], \qquad C_2 = \frac{2\alpha_s}{3\pi}.$$

Or compute in full theory and drop $1/\epsilon$ terms.

Log in matching related to difference in anomalous dimensions in Full and EFT.

Usually choose matching scale $\mu = m_Q$, so one finds:

$$C_1^{(V)}(m) = 1 - \frac{4\alpha_s}{3\pi}$$
 $C_2^{(V)}(m) = \frac{2\alpha_s}{3\pi}.$

One can show that the matching for the axial current is $C_1 \rightarrow C_1$, $C_2 \rightarrow -C_2$

$$C_1^{(A)}(m) = 1 - \frac{4\alpha_s}{3\pi}$$
 $C_2^{(A)}(m) = -\frac{2\alpha_s}{3\pi}$

Meson Decay Constants

Compute the radiative corrections to the meson decay constants:

Match at the scale m to the EFT:

 $\bar{q}\gamma^{\mu}\gamma_5 Q \rightarrow C_1^{(A)}(m) \ \bar{q}\gamma^{\mu}\gamma_5 Q_v + C_2^{(A)}(m) \ \bar{q}v^{\mu}\gamma_5 Q_v$

Run in the EFT to μ :

 $\bar{q}\gamma^{\mu}\gamma_5 Q \to C_1^{(A)}(\mu) \ \bar{q}\gamma^{\mu}\gamma_5 Q_v + C_2^{(A)}(\mu) \ \bar{q}v^{\mu}\gamma_5 Q_v$

 μ dependence given by the anomalous dimension in the EFT

RGE

$$\mu \frac{\mathrm{d}C}{\mathrm{d}\mu} = \gamma_O C = \frac{\alpha_s}{\pi} C$$

Can integrate a one-loop anomalous dimension:

$$\mu \frac{\mathrm{d}C}{\mathrm{d}\mu} = \gamma C, \qquad \gamma = \gamma_0 \frac{g^2}{16\pi^2}$$
$$\mu \frac{\mathrm{d}g}{\mathrm{d}\mu} = -\frac{g^3}{16\pi^2} b_0$$

Then

$$\frac{\mathrm{d}C}{\mathrm{d}g} = -\frac{\gamma_0 C}{b_0 g},$$

Solution to one-loop RGE

$$\frac{C(\mu_1)}{C(\mu_2)} = \left[\frac{\alpha_s(\mu_1)}{\alpha_s(\mu_2)}\right]^{-\gamma_0/(2b_0)}$$

$$b_0 = 11 - \frac{2}{3}n_f$$
$$\gamma_O = -\frac{g^2}{4\pi^2}$$

so $\gamma_0 = -4$, $b_0 = 25/3$ below m_b , and

$$\frac{C(\mu)}{C(m_b)} = \left[\frac{\alpha_s(\mu)}{\alpha_s(m_b)}\right]^{6/25}$$

Compute matrix elements at μ :

$$a\left(\mu\right)\times\begin{cases} -iv^{\mu}P_{v}^{(Q)} & \text{if } \Gamma^{\mu}=\gamma^{\mu}\gamma_{5},\\ iv^{\mu}P_{v}^{(Q)} & \text{if } \Gamma^{\mu}=v^{\mu}\gamma_{5},\\ P_{v}^{*(Q)\mu} & \text{if } \Gamma^{\mu}=\gamma^{\mu},\\ 0 & \text{if } \Gamma^{\mu}=v^{\mu}. \end{cases}$$

so that

$$f_{P^*} = \sqrt{m_{P^*}} a(\mu) C_1^{(V)}(\mu),$$

$$f_P = \frac{1}{\sqrt{m_P}} a(\mu) \left(C_1^{(A)}(\mu) - C_2^{(A)}(\mu) \right).$$
$a(\mu)C(\mu)$ is μ independent.

$$\frac{f_{P^*}}{f_P} = \sqrt{m_{P^*}m_P} \left\{ \frac{C_1^{(V)}}{C_1^{(A)} - C_2^{(A)}} \right\} = \sqrt{m_{P^*}m_P} \left\{ 1 - \frac{2}{3} \frac{\alpha_s(m_Q)}{\pi} \right\}.$$

$$f_B \sqrt{m_B} = a(\mu) \left[\frac{\alpha_s(\mu)}{\alpha_s(m_b)} \right]^{6/25} \left\{ 1 - \frac{2}{3} \frac{\alpha_s(m_b)}{\pi} \right\}$$
$$f_D \sqrt{m_D} = a(m_c) \left\{ 1 - \frac{2}{3} \frac{\alpha_s(m_c)}{\pi} \right\}$$
$$\frac{f_B \sqrt{m_B}}{f_D \sqrt{m_D}} = \left[\frac{\alpha_s(m_c)}{\alpha_s(m_b)} \right]^{6/25}$$

One-loop running and tree-level matching two-loop running and one-loop matching Matching and running must be computed in the same scheme.

$$\mathcal{L} = \bar{h}_v \left(iv \cdot D \right) h_v + \frac{1}{2m_Q} \bar{h}_v \left(iD_\perp \right)^2 h_v - c_F \frac{g}{4m_Q} \bar{h}_v \sigma_{\alpha\beta} G^{\alpha\beta} h_v$$

$$c_F(\mu) = \left[\frac{\alpha_s(m_Q)}{\alpha_s(\mu)}\right]^{9/(33-2n_f)}$$

$$p_Q = m_Q v + k,$$

$$v \rightarrow v + \varepsilon / m_Q,$$

$$k \rightarrow k - \varepsilon.$$

Since $v^2 = 1$, $v \cdot \varepsilon = 0$. Also $\psi Q_v = Q_v$ so the change in the field:

 $\overline{Q_v} \to Q_v + \delta Q_v,$

 δQ_v satisfies

$$\left(\psi + \frac{\not}{m_Q}\right)\left(Q_v + \delta Q_v\right) = Q_v + \delta Q_v.$$

so that

$$(1-\psi)\delta Q_v = \frac{\not \epsilon}{m_Q}Q_v.$$

One can choose:

$$\delta Q_v = \frac{\not e}{2m_Q} Q_v.$$

[Not unique, one can always make field redefinitions] L invariant under

$$v \rightarrow v + \varepsilon/m_Q,$$

 $Q_v \rightarrow e^{i\varepsilon \cdot x} \left(1 + \frac{\not \epsilon}{2m_Q}\right) Q_v,$

$$\mathcal{L}_{0} \rightarrow \mathcal{L}_{0} + \frac{1}{m_{Q}} \bar{Q}_{v} \left(i\varepsilon \cdot D \right) Q_{v},$$

$$\mathcal{L}_{1} \rightarrow \mathcal{L}_{1} - \frac{1}{m_{Q}} \bar{Q}_{v} \left(i\varepsilon \cdot D \right) Q_{v}.$$

so that the kinetic energy is not renormalized.

Other connections that follow form reparameterization invariance:

$$c_S = 2c_F - 1, \qquad \boldsymbol{\sigma} \cdot \nabla \times E$$

E.g. relates matching coefficients of leading order and 1/m operators, and their anomalous dimensions. Can compute 1/m corrections to meson form-factors. Two sources of 1/m corrections, those from the Lagrangian, and from the current. So one has

 $T\left(\mathcal{L}_{1},J_{0}
ight),\qquad J_{1}$

where

$$\mathcal{L} = \mathcal{L}_0 + \frac{1}{m}\mathcal{L}_1 + \dots, \qquad J = J_0 + \frac{1}{m}J_1 + \dots$$

Can apply the same spurion analysis as before, and work out the form-factors. Complicated expressions involving more Isgur-Wise functions for the matrix elements that enter.

Luke's theorem: no 1/m corrections to the form-factor at zero recoil.

$$V_{cb}$$

Experimentally, measure $\overline{B} \to D^*$ which determines $|V_{cb}\mathcal{F}(1)|$.

$$\mathcal{F}(1) = \eta_A + 0 + \mathcal{O}\left(\frac{1}{m^2}\right)$$

 $\eta_A=0.96$, and $1/m^2pprox -0.05$, so

$$\mathcal{F}(1) = 0.91 \pm 0.05$$

and from this one finds

 $|V_{cb}| = [38.6 \pm 1.5(\exp) \pm 2.0(\th)] \times 10^{-3},$