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Chapter I

CP violation and the Standard Model
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Start with the “mirror” transformations C, 
P, and T:

C = charge conjugation

P = parity inversion

T = time reversal

C2 = 1

P2 = 1

T2 = 1

Any symmetry has an associated non-observable quantity:

C⇒ no absolute sign of electric charge
P ⇒ no absolute right-handed coordinate system
T ⇒ no absolute direction of time

How can you tell if an extraterrestrial being  is made of matter or antimatter?
(solution in a few slides)

What is CP violation and why are we trying 
to study it?
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In 1956, Lee and Yang proposed, and in 1957, Wu
and others showed experimentally, that nature is not invariant under the 
PARITY transformation.

In the Standard Model, C and P are maximally violated in charged weak 
interactions…

Parity Violation
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CP Violation
In 1964, Cronin, Fitch and others found that even CP symmetry is violated in the 
weak decays of neutral Kaons. 

In the Standard Model, CP violation can be accommodated in (again) the charged 
weak interaction, in the quark sector.
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Significance of CP Violation
If C, P and CP are violated, does nature 
respect any mirror symmetries?

CPT: combined action of C, P, and T is a 
symmetry of any local relativistic field 
theory.

If CPT is a good symmetry,  CP violation 
⇒ T violation.

Sakharov’s three conditions for a net 
excess of matter over antimatter in the 
universe include CP violation.  

Answer to “extraterrestrial” puzzle: ‘ask it if the 
KL decays most of the time into a lepton of the 
same charge as the nuclei’

( ) ( )
0.33%

( ) ( )
L L

L L

Br K l Br K l

Br K l Br K l

π ν π νδ
π ν π ν

− + + −

− + + −

→ − →= =
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⇒ CP-violating asymmetries between the decay of a particle and its antiparticle can arise from the interference 
between two decay amplitudes with relative CP-violating and non-CP-violating phases.
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|A 2
| e

xp
(iδ 2

) e
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(iθ 2
)

θ2

δ2

A1 + A2exp(iθ2)

A1

|A 2
| exp(iδ2

) exp(-iθ2
)

−θ2

δ2

A1 + A2 exp(-iθ2)

How can physically observable CP-violating 
effects arise?

θi is a phase that does change sign under CP;

δi is a phase that does not change sign under CP.

i f

A1

exp(iθ2) A2

i f

A1

exp(-iθ2) A2

CP

P(i→f) - P(i→f) α 2 |A1 A2| [cos(δ2-θ2)-cos(δ2+θ2)]=

δ1 = θ1 = 0.

2 |A1 A2| sin(δ2) sin(θ2) 
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CP Violation in the Standard Model

Any physical phase in a coefficient (mass, coupling strength) of the Lagrangian
can violate CP symmetry.

We can generally make coefficients real with suitable choice of phase convention for 
fields. 

In the Standard Model, a nontrivial phase does appear in the unitary mixing matrix 
between quark weak interaction and mass eigenstates, in the case of at least three 
generations of quarks.  The elements of this matrix, Vqp, describe the coupling of the 
W boson to quarks p and q.  The matrix is called the Cabibbo-Kobayashi-Maskawa 
(or CKM) matrix.
It is possible to parametrize the quark mixing matrix such that the only elements that 
have a significant complex part are the two that are furthest from the diagonal:  Vub

and  Vtd.

u
c
t

d    s    b

CKM matrix
(     = complex)
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“The” Unitarity triangle

(1,0)
γ

α

β

(ρ,η)

(0,0)

The unitarity condition that gives the most open triangle is 

Vub
*Vud + Vcb

*Vcd + Vtb
*Vtd = 0

The first and last terms contain the most-off-diagonal elements Vub and Vtd , those with 

the most significant complex part.

It is convenient to divide each term by the middle term so that the base of the triangle 

has unit length.

Vub
*Vud

Vcb
*Vcd

Vtb
*Vtd

Vcb
*Vcd
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What were the constraints on the triangle 
before the asymmetric BFs? 

(1,0)
γ

α

β

(ρ,η)

(0,0)

Vub
*Vud

Vcb
*Vcd

Vtb
*Vtd

Vcb
*Vcd

|Vub/Vcb| is determined from the 
momentum spectrum of charged leptons in 
semileptonic B decays.

|Vtd| is determined from 
mixing in the Bd system, and 
the ratio of Bd to Bs mixing.

Measured rate of CP violation in the K system (|εK|) restricts the upper 
apex of the triangle to lie along a hyperbola in the complex plane.
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Experimental Constraints on the Unitarity
Triangle prior to BFs

β

Existing measurements restricted the upper apex of the 
triangle to lie in this region.

In asymmetric B-
Factories, we measure 
the angles  directly.

γ
α
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Chapter II

Time-Dependent CP-Violating Asymmetry 
and Asymmetric B Factories
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In a B Factory

e+ e-
Y(4S)Y(4S)

B0

B0

Since J(Y)=1 and J(B)=0 and the B0 mesons have to obey the bose-
einstein statistics

0 0 0 0| |
| (4 )

2

B B B B
Y S

> − >>=

Two B mesons with opposite flavour  are produced in a coherent 
state
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B0↔B0 Mixing

Meson mixing provides a source of error-free non-CKM phase shift by δ1 – δ2 = 90o ( i ):

|B0 (t)〉 ∝ cos(∆m t/2) |B0〉 – i sin(∆m t/2) |B0〉 exp(2iβ)

The interference between B0 ↔ B0 mixing and decays into a CP eigenstate (accessible to both 
B0 and B0) provides the cleanest theoretical predictions:

with a CP-violating asymmetry ≈ sin 2(β – θ).

The CKM angle φ is associated with the mixing box diagram. 
The CKM angle θ depends on the final state fCP

CPB0 fCP fCPB0

B0 B0

cos(∆mt/2)

 ± i sin(∆m t/2) exp(2iβ)

±cos(∆mt/2) exp(–2iθ)

 i sin(∆m t/2) exp(–2iβ) exp(2iθ)

DK

W

t

b

Vtb

t

db

d

W

Vtd
*

Vtd
* Vtb

BB

0

0

( )
2 ( )

( )
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CP in Oscillations+ Decay

Study the oscillation frequency in decay channels common to B0 and B0

*
2

*

( )
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itd tb

td tb

A B f V V A
e

A B f V V A
βλ −→= ≅

→

~(-γ)

~(-2γ)
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0

sin2α~1B0�ππ,ρρ“sin2α”

sin(2β+γ)~0.02B0�D(*)+π−sin(2β+γ)

sin2β1B0�J/ΨK0 ,φK0“sin2β”

∆MB0~0B0�lνX,D(*)π,ρ,a1mixing

output|λ|f
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Notes:

• the measured λ depends on the final state

• if only one amplitude contributed |λ|=1
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B-Flavor Tagging

c��z/�t� ><≈
Exclusive 

B Meson Reconstruction

+µ

−π

0
SK

ψ/J

+π

−µ

Low BR (10-5) means high 
luminosity

Accurate and unbiased 
measurement of the vertices
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Time-dependent asymmetry
Because of correlation of B0 and B0 state, need to measure difference in decay times 
to see asymmetry due to interference between mixing and direct decay:

Γ(B0 → fCP) ∝
e-Γt [1 + sin2β sin(∆m ∆t)]

asymmetry ∝ sin2β sin(∆m ∆t)
Integrated asymmetry ≡0

∆t = tCP - ttag (picoseconds)

Γ(B0 → fCP) ∝ e-Γt

[1 - sin2β sin(∆m ∆t)]
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From the ideal world to “reality”…

CP analysis:

reconstruct fCP and tag other side as 
B0 or B0.

Mixing analysis:

tag both sides as B0 or B0; e.g., fully 
reconstruct one B decay to a non-CP 
state; tag other side.

Btag= B0Btag= B0

B0 B0 or B0 B0

B0 B0 or  B0 B0

First add dilution due to imperfect tagging.  Assume the mistag rate is ω = 
22%.  Time-dependent CP asymmetry is diluted by (1-2ω) = 0.56

Extract ω from mixing 
analysis.



R. Faccini LNF spring school
20

From the ideal world to reality...

DK

Now add effect of imperfect measurement of ∆t. Assume double Gaussian ∆z
resolution of 100 microns (80%) and 300 microns (20%).  [βγc ~ 170 microns/ps]

Finally add background contribution.  Assume NS/NB ~ 10:1 for mixing analysis, 50:1 
for CP analysis.
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PEP-II &KEK-B
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PEPII @ SLAC

BaBar



R. Faccini LNF spring school
23

The Detectors

WARNING : All future detector 
descriptions refer to BaBar



R. Faccini LNF spring school
24

The BaBar experiment

K+K+

e,π0

µ,Κ�

Ee-=9GeV Ee+=3.1GeV
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Current Luminosities
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The BABAR Author List

~ 600 collaborators
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Chapter III
Reconstructing B Mesons
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B FACTORY:
flavour eigenstates

• B0 → D(*) -π+, D(*) -ρ+, D(*) -a1
+, 

J/ΨK*0

• B− → D(*)0 π− ,J/ΨK-, Ψ(2�)K-

• Kinematic variables for signal and 
background estimates

∆E=E*B - √s /2         σ~15 MeV
mES= √(s/4 - p*B

2)    σ~3MeV

Neutral Neutral 
BB MesonsMesons

Charged Charged 
BB MesonsMesons

%38  purity %85  purity
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J/Ψ Ks reconstruction
Reconstruction of B�J/ΨKs , J/Ψ�ee,µµ and Ks �ππ 
requires :

• reconstruction of charged tracks, in particular daughters 
of long living particles

⇒ Drift Chamber (DCH)
• identification of electrons and muons

⇒ Electromagnetic Calorimeter (EMC)
⇒ Instrumented Flux Return (IFR)
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Drift Chamber
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DCH Performances

TDR ex
pect

ati
on: 0

.3% pt

Momentum resolution

Ks→π-π+

Ks mass reconstruction
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Electromagnetic Calorimeter

~6500 crystals   of  CsI ~18 X0
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EMC performances

mrad
GeVE

)04.0
)(

9.3
( ±=θσ%8.1

)(

%3.2
4

⊕=
GeVEE

Eσ



R. Faccini LNF spring school
34

�����	������	�������	���

���	��������
������
� 
����	����	��������
� ����	���
����	�
���
� ����������Θ� ���
�
�����

 ���	���
�����
�
��!!���������� �� → � �� � ��

��������
"�#$��
�%�� ����&
�	����τ �����


Electron  identification
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BremsStrahlung recovery

����	
�	�������	������
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���	����	�→�γ :����	
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�

Effect on J/Ψ mass reconstruction
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Instrumented Flux Return

Endcap
19 RPC layers 
60cm of Iron, 
13cm of Brass
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Some History
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CP sample:  cleanest modes
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KL reconstruction
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CP modes: J/ΨKL

��������	���
��
���

�����
�����

��������	���
��
����

���

������ =56%

������ =65%

CP eigenvalue is opposite to J/ΨKS because KL has opposite CP

Signal ��Ψ �
�

��Ψ � ����	
��
�

Continuum bckg
• data
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Chapter IV

Other Ingredients: tagging and vertexing
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z∆

0
tagB

−e

( )S4Υ

0
recB

−
�

−K

B-Flavor Tagging

c��z/�t� ><≈
Exclusive 

B Meson Reconstruction

+µ

−π

0
SK

ψ/J

+π

−µ

Low BR (10-5) means high luminosity

Accurate and unbiased 
measurement of the vertices
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b quark (Q = -1/3)

W-

e- or  µ-

ν

anti-b quark (Q = +1/3)

W+

e- or  µ-

ν

Tagging with leptons 

b quarks are tagged by negatively charged leptons. 

c quark (Q = +2/3)

anti-c quark 

Anti- b quarks are tagged by positively charged leptons. 

W-

anti-s quark (Q = +1/3)

BUT : cascade events can mimic opposite tag
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b quark (Q = -1/3)

W-

Tagging with Kaons 

b quarks are tagged by negatively charged kaons. 

Anti- b quarks are tagged by positively charged kaons. 

s quark (Q = -1/3)

W+

c quark →K-

BUT:

• W decays can also contain Kaons of any charge

• also neutral kaons could be produced

• s-quarks can also produce φ→K+K-,KsKL mesons
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Detector of Internally Reflected Cherenkov Light

Basic Design idea:
Have the radiator and the light pipes in the same 

physical space
Fused synthetic silica:

• Resistent to ionizing radiation
• Long attenuation length
• Low chromatic dispersion
• Appropriate refraction index

Find a material that has the correct refraction index to emit cherenkov 
and have internal reflection. 
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DRC

Light Cone is amplified in a water filled tank and photons are detected by FMT
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DRC:
from the photons to the angles

Several PID 
hypotheses are 
tested 
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Cherenkov angle measurement

πand K candidates from D0 decays 
tagged by soft π from D*+; about 11% 
contamination from backgrounds

γγσσ N/c,1trackc, =

��
Θ�'(��β
Θ� 	�
��)�����
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PID in DCH

Measurement of energy loss by 
ionization in traversing the cells
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PID in DCH: performances
Gas mixture design:

• Light gas (Helium) to reduce 
multiple scattering

• Heavy and complex gas 
(Isobutane) to avoid recombination 
and increase gain

Feature extraction: from TDC and ADC 
reading to charge.
• Elephant CHIP returns total 

integrated charge in time intervals 
(ADC) & time at which threshold 
is overcome 

Truncated mean algorithm
• 7% dE/dX resolution
• K/π separation better than 2σ up to 

700 MeV
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KAON ID PERFORMANCES
Performances 
evaluated on control 
samples
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Tagging Algorithm

Inclusive: Neural network exploits information carried by non-
identified leptons and kaons, soft pions from D* decays

Effective efficiency:
2

2

(1 2 )

1

(sin 2 )

Q ε ω

σ β

= −

∝
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Vertexing Algorithm

Beam spot

Interaction Point

BREC Vertex BREC daughters

BREC direction

BTAG direction

TAG Vertex
TAG tracks, V0s

One of the two B mesons is fully reconstructed (“CP”), while the other is 
only partially reconstructed (dropping tracks with bad χ2)

Full power of the SVT and of the kinematic and vertexing constraints 
exploited

σ~70 µm

σ~180 µm

~1cm

~0
.1

 m
m
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Silicon Vertex Tracker (SVT)
BABAR
•5 double-sided layers
•Radiation hard (2 MRad)
•radius = (32 - 140) mm
•angular acceptance in lab: 20.1o to 
150.2o

•143k channels (0.94 m2)

~14 cm
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Silicon Vertex Tracker
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Vertexing Algorithm: performances

One of the two B mesons is fully reconstructed (“CP”), while the other is 
only partially reconstructed (dropping tracks with bad χ2)

σ µ�! 5�� ∆5

%���
��������� 
�

6+
��
�

--7
����

�"8 97 -:7

In order to use all the detector 
knowledge we use the event 
per event error and 
parametrize the resolution 
function with scaling factors

∆t=∆z/< βγc>
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Chapter V

Fit for sin2β
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Measurements of β

d

c

d
B0

J/Ψ

K0

b

s

d

c

d
B0

D(*)+

D(∗ )−b

d

c

d

c

d

b

c

s

%���������	��

������� ��� ���� ���� ���
���� ���� �����

d

c

d

b

c

d

;���;��� ���	<=Ψπ�

������� ��� ���� ���� ���������
���� ������� ��������� ���

����������� � ��� β

φ

K0

φ�� ���	η�����

������ ��	
��	
 �	 ���	�����
�������� ��	�β� ��� ��	������
�� 	�� �������

c

t

W-

t

s

d

b

s

st

W-

W-



R. Faccini LNF spring school
61

Fitting Strategy

Mixing and sin2β measurements are done with the same strategy: do a 
global fit to all the events that can carry information:

Mixing   :  tagged flavour eigenstates

sin2β :  tagged flavour and CP eigenstates

Extract as many parameters as possible from data
� � � � � � � � � � � � � � � � 	 � 
 � � � � � � � � � �

� � 
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∆ � � � � � � � � � �

� � ∆ � � � � � � � � �
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Only in CP fit
Only in mixing

Biggest correlation with sin2β: 12%
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Blind Analysis

The sin2� analysis was done blind to eliminate possible experimenter 
bias

• The amplitude in the asymmetry �CP(�t) was hidden by arbitrarily 
flipping its sign and by adding an arbitrary offset

• The CP asymmetry in the �t distribution was hidden by 
multiplying �t by the sign of the tag and by adding an arbitrary 
offset 

• The blinded approach allows systematic studies of
tagging, vertex resolution and their correlations to be done while 
keeping the value of sin2� hidden  

• The result was unblinded two weeks before publication for final 
checks
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Mixing Measurement

Simultaneous likelihood fit to each tagging category; mixed and unmixed 
events with  common resolution function

1/4 Γ e-Γ|∆t| [1 ± (1-2w)cos(∆md ∆t)] ⊗ R(∆t;a)

Allows extraction of mistag rates and resolution function parameters

∆md = 0.519 ± 0.020 (stat) ± 0.016 (syst) ps-1 (BaBar hadronic)

�	���������
����



R. Faccini LNF spring school
64

Charmonium K0

sin2β = 0.739�0.048
(Belle+BaBar)

%$>?-

%$>@-
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systematics

7�7-A	
���	
���
�����

7�779	
���	

������

7�7B7	
���	
����������

7�7B7	
���		

�
	
��������

���������������������

C�
��	7�7A+	
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Unitarity triangle Fit with golden modes

sin2βdir=0.739±0.048

A-posteriori probabilities
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Precision Measurement of angles 
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Chapter VI

Measurement of the other angles



R. Faccini LNF spring school
70

Measuring α: Β→π+π−

d

u

d
B0

π+

π−

b

d

d

u

d

b

u

d

u

π+

π−

Tree is promising because

*
2iub

ub

VT
e

T V
γ−= =

… but penguin has a different phase

(2 )2 2
1

1

i Ki i

P
T P Te e e

PT P
T

ππαβ αλ − +− −
++= = =

+ +

Is P large?  

YES (see next slide)
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Large penguins: Β→Κ+π−

d

u

d
B0

π,Κ+

π−

b

d,s

d

u

d

b

u

d,s

u

π,Κ+

π−

Aππ =          Tππ +              Pππ

AΚπ =         TΚπ +              PΚπ

 ∼         Tππ |Vus/Vud| +              Pππ|Vts/Vtd|

 ∼         0.2 Tππ +              5 Pππ

The measured  AΚπ~2Aππ implies P/T~0.6 !!!

(Naïve but conceptually right)
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Isospin analysis

Need to measure

0

0

( )
( ) ( )

( )

A B T
K Arg Arg

A B Tππ
π π
π π

+ −

+ −

→= −
→

Ingredients:

• T has contributions from ∆I=3/2 and ½

• P has contributions from ∆I= ½ only because of  I=0 for gluons

• no I=1 ππstate can be produced in B decays because of bose-einstain 
statistics

0
3/ 2

0
3/ 2 1/ 2

0 0 0
3/ 2 1/ 2

3
( )

2
1 1

( )
6 3

1 1
( )

3 6

A B A

A B A A

A B A A

π π

π π

π π

+ +
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→ =
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0 2
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0 2 2
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0 0 0 2 2
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3
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2
1 1

( )
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1 1
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3 6

i
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i i

A B A e

A B A e A e

A B A e A e

γ

γ ϕ

γ ϕ

π π

π π

π π

− − −
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− −

→ =
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Isospin analysis (II)
⇒ Two relationships in the  complex plane :

0 0 0 0 0

0 0 0 0 0

1
( ) ( ) ( )

2
1

( ) ( ) ( )
2

A B A B A B

A B A B A B

π π π π π π

π π π π π π

+ − + +

+ − − −

→ + → = →

→ + → = →

Rotating the plane appropriately :

Measure B0→π0π0 

and B0→π0π0 

separately or prove 
them small
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Experimentally: LARGE BACKGROUNDS

uuee →−+

“Jets”

��BBee 00 →→−+

i�

πcandidate

πcandidateπcandidate

πcandidate

• Spherical B events vs jet-like continuum:
� Techniques exploiting event topology and angular distributions

• Fisher variable:
� Combine two “monomials”

� Use as a discriminating variable in the Likelihood

∑=
i

ipL *
0 ∑=

i
iipL

2**
2 )cos(θand



R. Faccini LNF spring school
75

High energy K/πSeparation

+−++ →→ ππ KDDD 00*  ,

� ��������	�

π ��������	�

DIRC:
� Cherenkov light emitted by the track 
around a cone with 

� Photons are captured by internal 
reflection in the bar and transmitted to a 
PMT matrix. 

�Resolution σ(θc) = 2.5 mrad (e+e-→µ+µ-)

βθ n/1cos c =

Cherenkov angle θc is 
used  in the likelihood
to separate ππ, πK, KK 

8 σ at 2GeV/c
2.5 σ at 4GeV/c
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Likelihood fit

signal background

mES

⇒ Extended global maximum likelihood fit → signal yields (nsig) 
mES, ∆E, Fisher, θC, ∆t

⇒ Uncorrelated variables 

���� ����� � 	

( )

)()(

! 1

i
bkg
j

bkg
jji

sig
j

sig
jji

i
N
i

n

xPnxPnL

L
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e
L

j

�� Σ+Σ=

Π
∑

= =

−

����������� ������� ��	
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π+π− CP AsymmetriesS C

BaBar: 113 fb-1

~ 2σ CPV

Belle: 140 fb-1

5.2σ CPV (!)
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π+π− CP Asymmetries

Disagreement at the ~ 2.2σ level between Belle and BaBar
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σ���� ������

η

σ
���	 �����

�

η

Ks→ π0π0

π0 and η identification
Belle: σ(mπ0) ~ 5MeV
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π0π0 has now been seen…….

46 ± 13 events
BR = (2.1 ± 0.6 ± 0.3) 10-6

4.2σ significance

26 ± 9 events
BR = (1.7 ± 0.6 ± 0.2) 10-6

3.4σ significance
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……but we don’t like it !

Too small for isospin analysis
Too large for useful bound

•e.g., Grossmann-Quinn bound (PRD58, 017504, 1998)

Gives |αeff - α| < 47o
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B�ρ+ρ−: it gets better….

B � ρ0ρ0 is very small!
Grossman-Quinn bound is useful
|αeff - α | < 16o (13o)  @ 90% (68.3%) C.L.
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B�ρ+ρ− asymmetry

113 fb-1

0B

0B
81 fb-1

Slong = -0.19 � 0.33 � 0.11
Clong = -0.23 � 0.24 � 0.14
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B�ρρ isospin analysis

α = 96o
� 10o (stat.) � 4o (syst.) � 13o (penguin)

Preliminary, neglecting interference, NR contribution, I=1 amp.
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B→πππ0
Trying two approaches:

•Measure sin2αeff and individual BF and the apply the 
isospin relationships:

⇒ Quite hopeless, also because of multiple solutions

•Do the full time-dependent and Dalitz analysis →
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Full Dalitz analysis

σαD-7� ��	--A	
��� ��
�	��	
�������
�
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Sensitivity to γ in B0�D(*) π

c
0B

d

b
u

d

*D −

π +

( )

d

b
c

d

π+0B

u

*D −( )

Dominant diagram 
b � c transition

Suppressed diagram 
b � u transition

CP violation appearing in interference between 2 amplitudes

• Final states are not CP eigenstates

• No penguin pollution

CP violation proportional to:
* */ 0.020ub cd cb udr V V V V≈ ≈

( )
( )

0 (*) 3
favored

0 (*) 6
suppressed

BF 3.10

BF 10

B D

B D

π

π

− + −

+ − −

 → ≈


→ ≈

• b 

��

u transition 
��

relative weak 
phase γ between the 2 amplitudes

• Mixing 

��

2β
• Relative strong phase δ between 
the 2 amplitudes

��
Measure sin(2β+γ±δ)

0B

b

d
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Determination of sin(2β+γ) from Time 
Dependent Evolution

• Time evolution for D-π+ final states:

( ) ( ) ( ){ }
( ) ( ) ( ){ }

0

0

--

--

cos

c

 , 1B  deca sin

sin

ys:

B  decays: , 1 - os -

t
d

d

d

d
t

S m t

S

C m t

C m t

R D t N e

R D t N e m t

π

π

Γ ∆+

Γ ∆+

∆ = + +

∆

∆ ∆

∆

∆ ∆

∆ ∆ ∆=

( ) ( ) ( ){ }
( ) ( ) ( ){ }

0

0

 � �� �
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cos sin � �

sin �

B  decays:

B  dec �

� �

cos �ays: �

d d

dd

t

t

S m tR D C m t

C S m t

t N e

R mN e tD t

− Γ ∆+ −

− Γ ∆+ −

= + −

= − +

• Time evolution for D+π- final states:

2

2

1
1

1
r

C
r

−=
+

≈

( )

( )
[ ]

2

2

2
sin 2

1
2

sin 2
0.04, 0.04

1

r
S

r
r

S
r

β γ δ

β γ δ

= + − +

= + +

≈ − +

+ 

• Similar equation for D* π

Need to know both S and S to determine (2β+γ

� ���� ���

δ
� ����� ��� ���� �	
����
��� �� (2β+γ� ��
��	���
���
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Determination of Amplitude Ratio: r

Simultaneous determination of sin(2β+γ) and r(*) is 
not possible with the current statistics

• Use B0�Ds
(*)+π- (I. Dunietz, Phys. Lett. 

B 427, 179 (1998))
• and SU(3) symmetry

0 (*)
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(*) 0 (*)

( )
( ) 0.02

( )
A B D

r D r
A B D

ππ
π

− +

− +

→≡ = ≈
→

0B

d

( )

u
π−

*
SD +

b
c
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d

d
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u
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*D +

b
c

s
csV cdV�����
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s cd D

cs D

fBr B D V
r

Br B D V f

π
π
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0.004 * 0.005
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Partial Reconstruction
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Full reconstruction 
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Constraints in the ρ, η Plane from BaBar
Measurements

���
�	���� �	�� sin��β�γ� ������	
 � 
���	 ��
�� �� � ���� ��� ����������
 �����

Infinite statistics
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What Shall Thou Remember
• There are lots of phenomena associated to CP violation weak interactions among quarks,  and 
the Standard Model has only 1 parameter to explain all of them

• redundant measurements test SM and are sensitive to New Physics

• info summarized in the Unitarity Triangle

•There are two Asymmetric B-Factories, KEK-B (Japan) and PEP-II (US)

• there is one experiment on each of them : Belle and BaBar

• their luminosity are about 12 and 8 1033 cm-2 s-1 respectively

• they have collected ~200fb-1 respectively so far

• CP violation manifests itself in distribution of the time elapsed before the decays of B mesons 

• B-Factories need to be asymmetric in order to stretch time intervals

• Given a final state ‘f’ we are sensitive to Im(λ) where                                       

• examples where shown on how to measure all angles  

2( )

( )
iA B f

e
A B f

βλ −→=
→

PHYSICS PROGRAM AT B-FACTORIES IS MUCH BROADER, 
BUT I ONLY HAD 3 HOURS …
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APPENDICES
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Measurements of γ
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Grafically:

B0

B0~ eiβ

A(B0 � D+π-)

A(B0
� D+π-)

~ |Vub| eiγ

�������� ���	2β+γ
���	∆�∆�
 D+π-

B+

D0K+

A(D0
� f)

~ rb eiγ


�������� �� ���γ [f]K+

D0K+

A(D0 � f)
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γ from B�DK, the classic Gronau-
London-Wyler (GLW) method
D± is CP-odd or CP-even neutral D combination

with
strong phase
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DK Dπ

D � K+K-, π+π−

D � KSπ0, Ksφ,
KSω, KSη, KSη‘

O(90M)
BB pairs
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GLW 

No useful constraints yet.
•Asym = 2rB sinδB sinγ ~ (0.0-0.4)sinγ
•Stat uncertainties ~ 20% / experiment

Important point:
•This and (likely) all other methods will not 
work by themselves at the B-factories.

•But: when combined together they might.
•Combinations are straightforward

⇒ Root-N statistics
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Atwood-Dunietz-Soni (ADS)

Like GLW, but common D0/D0 final state not CP eigenstate.
• ADS: Cabibbo favored and doubly-Cabibbo suppressed

• e.g.  D0�K+π- and D0�K+π-

• Both singly Cabibbo suppressed
• e.g. K*+K-

• Treatment like to GLW, but strong phase in D decay comes in 
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ADS

e.g., for final state K+π- ratio of ADS rate to Cabibbo favored
modes, D0�K-π+ and c.c. is simply:

Where

Bonus: large CP violation because rB ~ rD
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ADS (Kπmode)

No signal � turn it into limit
rB < 0.22       (any γ) 
rB < 0.20       (48± < γ < 73±)
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A promising method

Interference in the Dalitz plot of B-

�

DK- with D/D

�

KS π+ π−.
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Belle Analysis

f = sum of resonances 
determined from large
sample of D*-�D0π-

some model dependency
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B � D/D K      D/D � KSπ+π−
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B � D*/D* D*/D*� D/Dπ0 D/D�KS π+π−


