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Basic Ideas

Interactions at low energies are local. Interactions at

a momentum scale p can be described by interactions

which appear local at distance scales 1/p.

Dynamics at low energies (long distances) does not

depend on the dynamics at high energies (short

distances).

Low energy dynamics using an effective Lagrangian

with only a few degrees of freedom.

Need to make this quantitative.
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Examples

Hydrogen atom energy levels — treated as a

non-relativistic bound state problem:

Need to know the charge of the proton. Details of

quark substructure, weak interactions, GUTS,

. . . irrelevant.

More accurate calculation needs mp, µp

Charge radius, . . .

Weak interactions, . . .
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Effect of higher scales in Hydrogen

Typical scales:

Length scale a0 = 1/(meα),

Time scale 1/R = 1/(meα
2).

Weak interaction correction to the energy levels

(

meα

MW

)2

∼
(

5 × 10−8
)2

and is tiny.

However, if one is interested in atomic parity

violation, weak interactions are the leading

contribution.
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Effective theory in terms of some low energy

parameters.

In some cases, one can compute these from a more

fundamental theory (typically, if it is weakly coupled).

The heavy quark Lagrangian in QCD can be

computed in powers of αs(mQ) and 1/mQ.

Fermi theory from the electroweak theory

Chiral perturbation theory, one has parameters that

are fit to experiment.

Standard model — don’t know the more fundamental

theory
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Dependence on high energy param-

eters

High energy dynamics irrelevant:

H energy levels do not depend on mt — but this

depends on what is held fixed as mt is varied.

Usually, one takes low energy parameters such as mp,

me, α from low energy experiments, and then uses

them in the Schrödinger equation.
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But instead, hold high energy parameters such as

α(µ) and αs(µ) fixed at µ≫ mt.

mt
d

dmt

(

1

α

)

= − 1

3π

The proton mass also depends on the top quark

mass,

mp ∝ m
2/27
t
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There are other constraints from the symmetry of

the high energy theory:

For example, the chiral lagrangian preserves C, P and

CP because QCD does.

More interesting case: Non-relativistic quantum

mechanics satisfies the spin-statistics theorem

because of causality in QED.
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EFT powerful because one can compute low energy

dynamics without knowledge of the high energy

Lagrangian.

Corrections typically fall off at least as fast as (p/M)2.

Bad if you want to find new physics!
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Dimensional Analysis

Effective Lagrangian (neglect topological terms)

L =
∑

ciOi =
∑

LD

is a sum of local, gauge and Lorentz invariant

operators.

The functional integral has

eiS

so S is dimensionless.
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Kinetic terms:

S =

∫

ddx ψ̄ i/D ψ, S =

∫

ddx
1

2
∂µφ ∂

µφ

so

0 = −d+ 2 [ψ] + 1, 0 = −d+ 2 [φ] + 2

Dimensions given by

[φ] = (d−2)/2, [ψ] = (d−1)/2, [D] = 1, [gAµ] = 1

Field strength Fµν = ∂µAν − ∂νAµ + . . . so Aµ has the

same dimension as a scalar field.

[g] = 1 − (d− 2)/2 = (4 − d)/2
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In d = 4,

[φ] = 1, [ψ] = 3/2, [Aµ] = 1, [Dµ] = 1, [g] = 0

Only Lorentz invariant renormalizable interactions

(with D ≤ 4) are

D = 0 : 1

D = 1 : φ

D = 2 : φ2

D = 3 : φ3, ψ̄ψ

D = 4 : φψ̄ψ, φ4

and kinetic terms which include gauge interactions.
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Renormalizable interactions have coefficients with

mass dimension ≥ 0.

In d = 2,

[φ] = 0, [ψ] = 1/2, [Aµ] = 0, [Dµ] = 1, [g] = 1

so an arbitrary potential V (φ) is renormalizable. Also
(

ψ̄ψ
)2

is renormalizable. In d = 6,

[φ] = 2, [ψ] = 5/2, [Aµ] = 2, [D] = 1, [g] = −1

Only allowed interaction is φ3.
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What Fields to use for EFT?

The two dimensional Thirring model with a

fundamental fermion field

L = ψ̄
(

i/∂ −m
)

ψ − 1

2
g
(

ψ̄γµψ
)2
,

is dual to the sine-Gordon model with a fundamental

scalar field

L =
1

2
∂µφ∂

µφ+
α

β2
cosβφ,

where the coupling constants g and β are related by

β2

4π
=

1

1 + g/π
.
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The fermion of the Thirring model is the sine-Gordon

soliton, and the boson of the sine-Gordon model is a

fermion-antifermion bound state in the Thirring

model.

Strongly coupled sine-Gordon theory with β2 ∼ 4π is

better described as a weakly coupled theory of the

soliton ψ.

Low energy QCD described in terms of meson fields.
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Effective Lagrangian:

LD =
OD

MD−d

so in d = 4,

Left = LD≤4 +
O5

M
+
O6

M 2
+ . . .

An infinite number of terms (and parameters)
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Power Counting

If one works at some typical momentum scale p, and

neglects terms of dimension D and higher, then the

error in the amplitudes is of order

( p

M

)D−4

A non-renormalizable theory is just as good as a

renormalizable theory for computations, provided one

is satisfied with a finite accuracy.

Usual renormalizable case given by taking M → ∞.
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Photon-Photon Scattering

(a) (b)

L = −1

4
FµνF

µν +
α2

m4
e

[

c1 (FµνF
µν)2 + c2

(

FµνF̃
µν
)2
]

.

(Terms with only three field strengths are forbidden

by charge conjugation symmetry.)

e4 from vertices, and 1/16π2 from the loop.
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An explicit computation gives

c1 =
1

90
, c2 =

7

90
.

Scattering amplitude

A ∼ α2ω4

m4
e

and

σ ∼
(

α2ω4

m4
e

)2
1

ω2

1

16π
∼ α4ω6

16πm8
e

× 15568

22275
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Even if one did not know the details of the electron

photon interaction (e.g. the charge of the electron),

one would still get

σ ∝ ω6

m8
e

If instead of γ, we considered φ scattering, the same

analysis would give

σ ∝ 1

ω2

and ψ scattering would give

σ ∝ ω2

M 4
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Rayleigh Scattering

Scattering of light from atoms

L = ψ†

(

i∂t −
p2

2M

)

ψ + a3
0 ψ

†ψ
(

c1E
2 + c2B

2
)

Atoms are neutral, so no gauge interactions in the

kinetic term

A ∼ cia
3
0ω

2

σ ∝ a6
0 ω

4.
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Other examples

Proton decay: Operator is dimension six qqql

Γ ∝
m5

p

M 4

SUSY can have dimension 5 operators

Γ ∝
m3

p

M 2

Rate is larger by

(

M

mp

)2

∼ 1030
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Other examples

New physics in KK̄ mixing: Dimension six ssd̄d̄

∆M ∝ 1

M 2

In the standard model

∆M ∝ m2
c

M 4
W

Find

M >
M 2

W

mc

∼ 5 TeV

Put in 16π2, CKM, get 1000 TeV.
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Low energy weak interactions

− ig√
2
Vij q̄i γ

µ PL qj,

u

c

d

b

W

A =

(

ig√
2

)2

VcbV
∗
ud (c̄ γµ PL b)

(

d̄ γν PL u
)

(

−igµν

p2 −M 2
W

)

,

LNF School, Frascati, May 17–18, 2004 – p.25



1

p2 −M 2
W

= − 1

M 2
W

(

1 +
p2

M 2
W

+
p4

M 4
W

+ . . .

)

,

and retaining only a finite number of terms.

A =
i

M 2
W

(

ig√
2

)2

VcbV
∗
ud (c̄ γµ PL b)

(

d̄ γµ PL u
)

+ O
(

1

M 4
W

)

.

L = −4GF√
2
VcbV

∗
ud (c̄ γµ PL b)

(

d̄ γµ PL u
)

+ O
(

1

M 4
W

)

,

GF√
2
≡ g2

8M 2
W

.
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Effective Lagrangian for µ decay

L = −4GF√
2

(ē γµ PL νe) (ν̄µ γ
µ PL µ) + O

(

1

M 4
W

)

,

Gives the standard result for the muon lifetime at

lowest order,

Γµ =
G2

Fm
5
µ

192π3
.

The advantages of EFT show up in higher order

calculations
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EFT: a theory, need to be able to compute

observable quantities which are finite and

unambiguous.

Need a renormalization procedure. Also, note that

the EFT is a different theory from the full theory,

and has a different divergence structure.

∫

d4p
1

(p2 −M 2
W )2(p2 −m2)

→
∫

d4p
1

M 4
W (p2 −m2)
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Power counting scheme: An expansion in powers of

p/M .

EFT useful to a certain order in p/M . If one needs

the complete expression, better to use the full theory.

Renormalization procedure needs to be consistent

with the power counting scheme.
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Loops

Gives a contribution

I ∼ 1

M 2
W

Λ2 ∼ O (1)

Similarly, a dimension eight operator has vertex

k2/M 4
W , and gives a contribution

I ′ ∼ 1

M 4
W

∫

d4k
1

k2
k2 ∼ Λ4

M 4
W

∼ O (1)
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Would need to know the entire effective Lagrangian,

since all terms are equally important. The reason for

this breakdown is using a cutoff procedure with a

dimensionful parameter Λ.

More generally, need to make sure that dimensionful

parameters at the high scale do not occur in the

numerator in Feynman diagrams.

In doing weak interactions, one should not have MG

or MP appear in the numerator.
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Need to use a mass independent subtraction scheme

such as MS. In this case, µ can only occur in

logarithms, so

I =
1

M 2
W

∫

d4k
1

k2
∼ m2

M 2
W

log µ,

I ′ =
1

M 4
W

∫

d4k
1

k2
k2 ∼ m4

M 4
W

log µ,

Expanding 1/(p2 −M 2
W ) in a power series ensures that

there is no pole for p ∼MW , and so MW cannot

appear in the numerator.

LNF School, Frascati, May 17–18, 2004 – p.32



Compare

∫ ∞

0

dk2 (k2)a

(k2 +m2
1)(k

2 +m2
2)

=
π

sinπa

(m2
1)

a − (m2
2)

a

m2
1 −m2

2

with first expanding:

∫ ∞

0

dk2 (k2)a

(k2 +m2
1)

[

1

k2
− m2

2

k4
+ . . .

]

=
π

sin πa

(m2
1)

a

m2
1 −m2

2

The (m2
2)

a is non-analytic at the origin when a 6= 0.
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Pole at k2 = −m2
2 does not contribute to the integral.

These are terms in the full theory that must be

reproduced in the effective theory.

If a→ 1 + ǫ, then the full theory answer is

−1

ǫ
− m2

1 lnm2
1/µ

2 −m2
2 lnm2

2/µ
2

m2
1 −m2

2

and the effective field theory answer is

−1

ǫ

m2
1

m2
1 −m2

2

− m2
1 lnm2

1/µ
2

m2
1 −m2

2
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Difference of 1/ǫ terms is given by different

counterterms in the full and effective theories.

Anomalous dimensions are different.

Difference of finite parts is

−m
2
2 lnm2

2/µ
2

m2
1 −m2

2

Taken care of by matching corrections in the

effective theory.
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Manifest power counting in p/M .

Loop graphs consistent with the power counting,

since one can never get any M ’s in the numerator.

If the vertices have 1/Ma, 1/M b, etc. then any

amplitude (including loops) will have

1

Ma

1

M b
. . . =

1

Ma+b+...

Correct dimensions due to factors of the low scale in

the numerator.
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Only a finite number of terms to any given order.

To order 1/M : L5 at tree level

To order 1/M 2: L5 and L6 at tree level,

or loop graphs with at most two insertions of L5.

General power counting result: you can count the

powers of M . Sometimes, this is written in a fancier

form.

pr, r =
∑

k

nk(k − 4)
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There can also be logarithmic dependence on M . So

dimension 5 operators can depend on

1

M
ln
M

m

The log’s are calculable using the RG.

Dimension four operators can depend on

ln
M

m

This is the dependence of α and mp on mt mentioned

earlier.
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Renormalizable interaction: like having M in the

numerator. Iterations can then only produce positive

powers of M , so one gets only operators with

dimension ≤ d. There are only a finite number of

these.

If one has operators with D < d and D > d, then

expect M in numerator and denominators. For

example M 2φ2. To have m≪M is the hierarchy

problem.

Not a problem for fermion masses because of chiral

symmetry. (ψ̄LψR)
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Radiative Corrections

Look at radiative corrections, which can generate

(

αs ln
MW

mb

)n

which need to be summed.

In the full theory, corrections to Fermi amplitude are

box type graphs,

W
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Need to compute complicated graphs (which are

finite).

In the EFT, compute

A much simpler, UV divergent diagram that gives an

anomalous dimension to the Fermi interaction.
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Composite Operators

How do you renormalize composite operators?

Treat them as terms in the Lagrangian, by adding

them as ciOi. Then compute graphs and add

counterterms to subtract the 1/ǫ poles. One then

computes RG equations for the coefficients by

requiring that

µ
dc

(0)
i

dµ
= 0
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Operator Mixing

L = −c(µ)
4GF√

2
VcbV

∗
ud (c̄ γµ PL b)

(

d̄ γµ PL u
)

Introduce

O1 = (c̄α γµ PL bα)
(

d̄β γµ PL uβ

)

O2 = (c̄α γµ PL bβ)
(

d̄β γµ PL uα

)

We need O2 because

where the vertex is O1 gives a graph with the
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µ
dci
dµ

= γjicj

γ =
g2

8π2

(

−1 3

3 −1

)

µ
dOi

dµ
= −γijOj

µ
d

dµ

∑

i

ciOi = 0

e.g. µ
d

dµ
mψ̄ψ = 0
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Use

O± = O1 ±O2

Then

µ
dc±
dµ

= γ±c±

γ+ =
g2

4π2
, γ− = − g2

2π2

The operators are in different representations of

flavor.
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c± =
1

2

[

αs(MW )

αs(µ)

]a±

a+ =
6

33 − 2n
, a− = − 12

33 − 2n

No expansion parameter.

c+(mb) = 0.42, c−(mb) = 0.7
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c±O± = [c+ + c−]O1 + [c+ − c−]O2

Induce new local operators due to RG running.

Difficult to see this by doing the full theory

calculation.

In this particular case, the full theory computation

has no ln term in the total decay rate. Expanding c±
shows that the single log cancels, but the higher

order RG terms do not.
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Decoupling

Heavy particles decouple from low energy physics.

Not explicit in a mass independent scheme such as

MS.

p p

i
e2

2π2

(

pµpν − p2gµν

)

[

1

6ǫ
−
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

]

,
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Subtracts the value of the graph at a Euclidean

momentum point p2 = −M 2,

−i e
2

2π2

(

pµpν − p2gµν

)

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

m2 +M 2x(1 − x)

]

.

β (e) = − e
2
M d

dM
e2

2π2

[

∫ 1

0
dx x(1 − x) log m2−p2x(1−x)

m2+M2x(1−x)

]

= e3

2π2

∫ 1

0
dx x(1 − x) M2x(1−x)

m2+M2x(1−x)
.
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m≪M :

β (e) ≈ e3

2π2

∫ 1

0

dx x(1 − x) =
e3

12π2
.

M ≪ m:

β (e) ≈ e3

2π2

∫ 1

0

dx x(1 − x)
M 2x(1 − x)

m2
=

e3

60π2

M 2

m2
.
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−i e
2

2π2

(

pµpν − p2gµν

)

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

]

.

β (e) = −e
2
µ
d

dµ

e2

2π2

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

]

=
e3

2π2

∫ 1

0

dx x(1 − x) =
e3

12π2
,
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−i e
2

2π2

(

pµpν − p2gµν

)

[
∫ 1

0

dx x(1 − x) log
m2

µ2

]

,

Large logs cancel the wrong β-function contributions.

Explicitly integrate out heavy particles.
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p p

Present in theory above m, but not in theory below

m. Assume that p≪ m, so

∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

=

∫ 1

0

dx x(1 − x)

[

log
m2

µ2
+
p2x(1 − x)

m2
+ . . .

]

=
1

6
log

m2

µ2
+

p2

30m2
+ . . .
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So in theory above m:

i
e2

2π2

(

pµpν − p2gµν

)

[

1

6ǫ
− 1

6
log

m2

µ2
− p2

30m2
+ . . .

]

+ c.t.

Counterterm cancels 1/ǫ term (and also contributes

to the β function).

i
e2

2π2

(

pµpν − p2gµν

)

[

−1

6
log

m2

µ2
− p2

30m2
+ . . .

]
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The log term gives

Z = 1 − e2

12π2
log

m2

µ2

so that in the effective theory,

1

e2
L(µ)

=
1

e2
H(µ)

[

1 − e2
H(µ)

12π2
log

m2

µ2

]

One usually integrates out heavy fermions at µ = m,

so that (at one loop), the coupling constant has no

matching correction.
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The p2 term gives the dimension six operator

−1

4

e2

2π2

1

30m2
Fµν∂

2F µν

and so on.

Even if the structure of the graphs is the same in the

full and effective theories, one still needs to compute

the difference to compute possible matching

corrections, because the integrals need not have the

same value.

This difference is independent of IR physics, since

both theories have the same IR behavior.
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What have we gained?

A much simpler theory to use to discuss the IR

physics.

Calculations divided up into pieces, each of which

only involves a single scale.

Can sum large logarithms and use RG improved

perturbation theory.
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