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• In addition, lattice QCD is used to obtain the form factors for
B → D∗(D)`ν and B → ρ(π)`ν decays.
Knowledge of these form-factors allow for the determination of Vcb and Vub

CKM Matrix elements from experimental measurements of the differential
decay rates.
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• See also S.Aoki et al., JLQCD – hep-ph/0307039.

• It seems doubtful that χPT is applicable the larger masses (for other
quantities fits are poor in this region).

• The results are sensitive to the chiral behaviour in the region where there
is no data!
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• It is frequently said that the decay constants are larger (by
O(10 − 15%)) for Nf = 2 than for Nf = 0. This depends on which
quantities are being used to set the scale.

• The following compilations are taken from L.Lellouch’s lecture at ICHEP
2002, hep-ph/0211359.
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• As we try to approach “Precision Lattice Phenomenology”, the
uncertainty in the chiral extrapolation becomes a major source of
systematic error.

• Chiral perturbation theory (χPT) can help. If we can reach the chiral
regime in lattice simulations, so that the lattice data is seen to overlap
with χPT, then we have a theoretically motivated guide for the
extrapolation to the physical limit.

How good is χPT at the kaon? 25-40% (process-dependent)?

• It is difficult to see how quenched calculations can be used in this context.

Even if the quenched low-energy constants can be determined accurately,
what does this imply for physical quantities at the chiral limit.

The goal is therefore to determine the low-energy constants in
full QCD.

• A key point will be to demonstrate the validity of χPT in the region in
which we have data.

• Partially quenched QCD?
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• The quantity
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contains the non-perturbative QCD effects in a combination of
phenomenological parameters important in the unitarity-triangle
analysis.

ξ is a key quantity in lattice phenomenology.

• In the SU(3)flavour limit ξ = 1, and lattice calculations, assuming a
linear (polynomial) extrapolation in mq have been very stable,
typically giving:

ξ = 1.16(5) .

This result is a key input into the unitarity triangle analysis.
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• g is the B∗Bπ coupling. CLEO ⇒ g2
D ' 0.35. Together with

HQET this implies g2
B ' 0.35.

• f2(µ) is a low-energy constant which has to be determined.
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• 1 − 3g2 is small numerically, and hence the chiral logarithms play a
smaller role in the extrapolation of B than fB . Focus therefore on ξf .
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• Assume that there is a region in which the linear behaviour in r
observed in lattice simulations (with 0.5 < r < 1.0) overlaps with the
region in which one-loop χPT is valid.

This is the Big Assumption

• In the fit region we have ξf (r) − 1 = (1 − r)Sf and the slope Sf is
determined from the fit.

• In the χPT expression for ξf there is the single unknown, f2(µ)
which is determined by setting

χPT = Fit

at some value of r, r0.

• The “physical” value of ξf is then determined from the χPT
formula at r ' 1/25. The variation of the result with r0 is included
in the error.
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chiral logs in ΦBs

/ΦBd
and fK/fπ are almost the same. They then

study the ratio of these two ratios, finding ξ = 1.22(7).

Part of the difference is due to the different choice of g (-0.02), part

to the neglect of
√

mBS
/mBd

(-0.01) and part to the determination
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(-0.01) and part to the determination
of the low-energy constant f2 (-0.06).

The difference in the errors is largely due to the analysis procedure.

• Two recent reviews give:

N.Yamada (Lattice 2002) ξ = 1.16(6)+24
−0

L.Lellouch (ICHEP 2002) ξ = 1.18(4)+12
−0

These results are based largely on the JLQCD Nf = 2 data. In both
cases the central value is obtained from a polynomial fit, and the
second, asymmetric error is the estimated uncertainty due to the
chiral logarithms.
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−0

• Yamada quotes the 17% difference between a polynomial fit and
that using χPT. Note however, that this requires χPT to hold up to
about 1GeV. (The data for fπ vs m2

π is inconsistent with χPT.)

• If we assume that χPT is valid only up to lower scales, the
difference between polynomial and χPT fits is smaller.
Lellouch: “Given [· · · ] the exploratory nature of the investigations of
chiral-log effects, it seems reasonable [· · · ] to add a −10% systematic
error to fB to account for the uncertainty in the chiral extrapolation
and none to fBs

.

• Kronfeld in his Lattice 2003 review quotes

fBs
= 240 ± 35 MeV and ξ = 1.25 ± 0.10 .



Comments

• This is just one example which highlights the importance and the
difficulty of performing the chiral extrapolation.

In particular we would like to extend the lattice results to smaller
masses to match unambiguously onto NLO chiral behaviour.

• In the absence of this, it is a statement of faith that there is an
overlap region, in which both χPT and polynomial behaviour are
valid.

My reservations also apply to ratios in which chiral logs almost
cancel numerically. (Here I seem to disagree with some reviewers.)

• Caveat - For the quantities discussed in this talk, such a detailed
discussion has not been performed.
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BK

L.Lellouch – hep-ph/0211359

• Note that all but one of the simulations in this figure have been
performed in the quenched approximation and kaons are composed of mass
degenerate quarks (neglecting (ms − md)2 effects). At the lattice
conference results will be presented using dynamical fermions.



• The reference result is the one obtained in the 1997 quenched staggered
calculation of JLQCD.

• In the absence of chiral symmetry (e.g. when using Wilson-like quarks),
the ∆S = 2 operator s̄γµ(1− γ5)d s̄γµ(1− γ5)d mixes with other dimension
6 operators:
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O4 = S ⊗ S − P ⊗ P, O5 = T ⊗ T .
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the ∆S = 2 operator s̄γµ(1− γ5)d s̄γµ(1− γ5)d mixes with other dimension
6 operators:

O1 = V ⊗ V + A ⊗ A, O2 = V ⊗ V − A ⊗ A, O3 = S ⊗ S + P ⊗ P,

O4 = S ⊗ S − P ⊗ P, O5 = T ⊗ T .

〈K̄0 |O1(µ) |K0〉 = Z1(aµ)

{

1 +

5
∑

k=2

∆k(a)
〈K̄0 |Ok(a) |K0〉
〈K̄0 |O1(a) |K0〉

}

.

The corresponding subtractions can be performed perturbatively or
non-perturbatively.

By making a change of fermionic field variables and exploiting the d ↔ s
symmetry it is possible to avoid these subtractions. This is the Wilson
fermion manifestation of a similar feature noticed when using Twisted
Mass version of lattice QCD.
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• RBC have also performed a simulation with Nf = 2, at
a−1 = 1.81(6)GeV, finding

BNDR
K (2 GeV) = 0.503(20); B̂K = 0.697(33) .

T.Izubuchi – hep-lat/0310058

• T de Grand and the Milc collaborations have recently presented results
obtained using quenched overlap fermions at two lattice spacings (0.13 and
0.09 fm):

BNDR
K (2 GeV) = 0.55(7); B̂K = 0.79(9) .

T.de Grand – hep-lat/0309026
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β ' 2.0GeV and present 9 results, typically
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• Alpha Collaboration have used quenched Twisted Mass QCD at
β ' 2.0GeV and present 9 results, typically

BNDR
K (2 GeV) = 0.64(5); B̂K = 0.88(7) .

P.Dimopoulos et al. – hep-lat/0309134

Two recent reviews:

L.Lellouch (2002) BNDR
K (2 GeV) = 0.628(42)(99); B̂K = 0.88(7) ;

D.Becirevic (2003) BNDR
K (2 GeV) = 0.63(4)(±15%); B̂K = 0.87(6)(13) ,

where the second error is Steve Sharpe’s estimate of the quenching effects.
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B D(∗), π, ρ

leptons

b c, u

⇒ Vcb , Vub

Lorentz + Parity Invariance ⇒ it is convenient to express the amplitudes
in terms of invariant form-factors:
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B D(∗), π, ρ

leptons

b c, u

⇒ Vcb , Vub

Lorentz + Parity Invariance ⇒ it is convenient to express the amplitudes
in terms of invariant form-factors:

〈P (pP ) |Vµ(0) |B(pB) 〉 = f0(q2)
M2

B − M2
P

q2
qµ+f+(q2)

[

(pB + pP )µ − M2
B − M2

P

q2
qµ

]

• q ≡ pB − PP .

• Parity invariance ⇒ only V (from V-A) contributes when the final-state
hadron is a pseudoscalar.

• We require PP to be small to avoid discretization errors. This implies
that we can only compute the form-factors at directly at large q2.



Exclusive Semi-Leptonic B-Decays – Cont.

〈V (pV ) |Aµ |B(pB) 〉 = i(MB + MV ) A1(q
2)ε∗µ

−i
A2(q

2)

MB + MV

ε∗ · pB (pB + pV )µ + i
A(q2)

q2
2MV ε∗ · pB qµ

• ε is the polarization vector of the vector meson.

• A0 = A + A3, where

A3 =
MB + MV

2MV

A1 −
MB − MV

2MV

A2.

• There are three independent vectors so that the vector current can
mediate these decays.

〈V (pV ) |Vµ |B(pB) 〉 =
2 V (q2)

MB + MV

εµγδβ ε∗β pB γ pV δ.



B → D∗ Semileptonic Decays

• For B → D∗ decays

dΓ

dω
=

G2
F

48π3
(mB−mD∗)2m3

D∗

√

ω2−1 (ω+1)2 ×
[

1 +
4ω

ω+1

m2
B − 2ωmBmD∗ + m2

D∗

(mB − mD∗)2

]

|Vcb|2 F2(ω) ,

where F(ω) is the IW-function combined with perturbative and power
corrections. (ω = vB · vD∗)
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• For B → D∗ decays

dΓ

dω
=

G2
F

48π3
(mB−mD∗)2m3

D∗

√

ω2−1 (ω+1)2 ×
[

1 +
4ω

ω+1

m2
B − 2ωmBmD∗ + m2

D∗

(mB − mD∗)2

]

|Vcb|2 F2(ω) ,

where F(ω) is the IW-function combined with perturbative and power
corrections. (ω = vB · vD∗)

• F(1) = 1 up to power corrections and calculable power corrections.

• It is therefore very convenient to consider the distribution near the
end-point ω = 1:

F(1) = ηQEDηA

(

1 + 0
ΛQCD

mQ

+ c2

Λ2
QCD

m2
Q

+ · · ·
)

,

where ηQED = 1.007 and ηA represents the QED and QCD perturbative
corrections

ηA = 0.960 ± 0.007 .



• The power corrections are much more difficult to estimate reliably. PDG
take

F(1) = 0.91 ± 0.04

⇒
|Vcb| = {42.1 ± 1.1(exp) ± 1.9(th)} × 10−3 .



• The power corrections are much more difficult to estimate reliably. PDG
take

F(1) = 0.91 ± 0.04

⇒
|Vcb| = {42.1 ± 1.1(exp) ± 1.9(th)} × 10−3 .

“The dominant error is theoretical, but there are good prospects that
lattice gauge calculations will improve significantly the accuracy of their
estimate.” PDG 2002



• In 2002, the Edinburgh node (UKQCD) presented a study of
B → D and B → D∗ form-factors from quenched simulations at
β = 6.0 and 6.2 using an O(a) improved action. They publish a value
for the slope ρ2:

ξ(ω) = 1 − ρ2(ω − 1) + O((ω − 1)2) ,

where ξ(ω) is the Isgur-Wise.
Bowler, Douglas, Kenway, Lacagnina& Maynard

• Knowledge of the slope can be helpful in extrapolating the
experimental data to ω = 1.

• They find
ρ2 = 0.83+15+24

−11−1 .

• This is consistent with previous quenched lattice calculations but
lower than the experimentally determined slopes:

ρ2 = 1.67(11)(22) CLEO

ρ2 = 1.35(17)(19) Belle
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factors directly with sufficiently small errors.
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• Hashimoto et al. propose to use ratios of form-factors and the HQS
to extract the form factors. For example, at zero recoil
F(1) = hA1

(1), where hA1
is one of the HQET form-factors.

Hashimoto, Kronfeld, Mackenzie, Ryan& Simone

• HQS ⇒

hA1
(1) = ηA

{

1 − `V

(2mc)2
+

2`A

2mc2mb

− `P

(2mb)2

}

,

where the `’s are matrix elements of higher dimensional operators.

• The proposal is to determine the `’s from calculations of ratios of
form-factors.



• For example
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• For example

R+ =
〈D|c̄γ4b|B̄〉 〈B̄|b̄γ4c|D〉
〈D|c̄γ4c|D〉 〈B̄|b̄γ4b|B̄〉 = |h+(1)|2

with

h+(1) = ηV

{

1 − `P

(

1

2mc

− 1

2mb

)2
}

.

• By calculating R+ and similar ratios of V ↔ P and V ↔ V matrix
elements all three `’s can be determined.

• In order to carry out this program, the mass dependence in the
simulations has to be the physical one (any artefacts have to be very
small).

• Hashimoto et al., using the Fermilab formulation of heavy quarks
in the quenched approximation, find:

FB→D∗(1) = 0.913+0.024
−0.017 ± 0.016+0.003+0.000+0.006

−0.014−0.016−0.014 .
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• In such decays the π or ρ mesons can have a momentum of O(MB/2).
On present-day lattices this would lead to uncomfortably large
discretization errors which are proportional to powers of a~p. Therefore, at
present, only a limited kinematic range below the zero-recoil point can be
reached without extrapolation.



B → π (ρ)`ν decays and |Vub|.
• In such decays the π or ρ mesons can have a momentum of O(MB/2).
On present-day lattices this would lead to uncomfortably large
discretization errors which are proportional to powers of a~p. Therefore, at
present, only a limited kinematic range below the zero-recoil point can be
reached without extrapolation.

• As the experimental statistics improves, we are becoming able to
combine lattice results for the form factors, with experimental data at
large q2 to extract Vub.



B → π (ρ)`ν decays and |Vub|.
• In such decays the π or ρ mesons can have a momentum of O(MB/2).
On present-day lattices this would lead to uncomfortably large
discretization errors which are proportional to powers of a~p. Therefore, at
present, only a limited kinematic range below the zero-recoil point can be
reached without extrapolation.

• As the experimental statistics improves, we are becoming able to
combine lattice results for the form factors, with experimental data at
large q2 to extract Vub.

UKQCD have recently performed a quenched simulation of B → ρ`ν
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• In such decays the π or ρ mesons can have a momentum of O(MB/2).
On present-day lattices this would lead to uncomfortably large
discretization errors which are proportional to powers of a~p. Therefore, at
present, only a limited kinematic range below the zero-recoil point can be
reached without extrapolation.

• As the experimental statistics improves, we are becoming able to
combine lattice results for the form factors, with experimental data at
large q2 to extract Vub.

UKQCD have recently performed a quenched simulation of B → ρ`ν
decays, using an O(a) improved action and operators at two values of the
lattice spacing obtaining:

Γ(12.7 GeV2 < q2 < 18.2GeV2) = 4.9+12
−10

+0
−14 1012 s−1 |Vub|2 .

K.C.Bowler et al., hep-lat/0402023

• Extrapolations to lower values of q2 can be performed using known
constraints on the form-factors and give excellent agreement with
light-cone sum rules. However, such extrapolations unavoidable have some
model dependence.



D.Becirevic - ICHEP 2002
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4. K → ππ Decays

• A quantitative understanding of the non-perturbative QCD effects in
K → ππ decays is an important future milestone for lattice QCD:

• the empirical ∆I = 1/2 rule, which states that amplitudes for decays
with an I = 0 final state are enhanced by a factor of about 22 w.r.t.
amplitudes for decays with an I = 2 final state.

• the quantity ε′/ε, whose measurement with a non-zero value,
(17.2 ± 1.8) × 10−4, was the first observation of direct CP-violation.

In 2001, two collaborations published some very interesting results on these
quantities:

Collaboration(s) Re A0/Re A2 ε′/ε

RBC∗ 25.3 ± 1.8 −(4.0 ± 2.3) × 10−4

CP-PACS 9÷12 (-7÷-2)×10−4

Experiments 22.2 (17.2 ± 1.8) × 10−4

∗
updated results from July 2002 version of the paper.



ReA0/ReA2 as a function of the meson mass.
CP-PACS
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ε′/ε as a function of the meson mass.
CP-PACS
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Physics of ε′/ε

• Consider the following contributions to K → ππ decays:

s

d̄

d

d̄

I = 0, Complex

(a)

s

d̄

u

ū

I = 0, Real

(b)

s

d̄

u

ū

d

I = 0 or 2, Real

(c)

d̄

– Thus direct CP -violation in kaon decays manifests itself as a non-zero
relative phase between the I = 0 and I = 2 amplitudes.

• We also have strong phases, δ0 and δ2 which are independent of the form
of the weak Hamiltonian.



The ∆S = 1 Weak Hamiltonian

Heff (∆S = 1) =
GF√

2
VudV ∗

us

10
∑

i=1

Ci(µ) Oi(µ)

• Non-perturbative QCD effects are contained in the matrix elements of
the operators Oi(µ).

• O1, O2 – Current-Current Operators
e.g. O2 = (s̄LγµuL) (ūLγµdL) - charm

• O3 – O6 – QCD Penguin Operators
e.g. O6 = (s̄ i

Lγµdj
L)
∑

q(q̄
j
Rγµqi

R)

• O7 – O10 – Electroweak Penguin Operators
e.g. O8 = 3

2
(s̄ i

Lγµdj
L)
∑

q eq (q̄ j
Rγµqi

R)

• We would like to know the K → π π matrix elements of these
operators in one of the standard continuum renormalization schemes.



Ultra-Violet Issues

• We need to obtain finite matrix elements of renormalized operators
from those of the bare lattice operators. The lattice spacing provides a
hard UV cut-off.

• Mixing of operators for ∆I = 1/2 decays ⇒ power divergences.

u

s

u

d

⇒
s d

u

Dimension 6 operator ⇒ (d̄ · · · s).
• The degree of divergence and which bilinear operators contribute

depends on the lattice formulation of QCD being used and its
symmetries (in particular its chiral structure).

• The problem of the subtraction of power divergences is simplified very
significantly, but not eliminated, in formulations of lattice QCD with
an explicit chiral symmetry.
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• Even with O(a) improved Wilson fermions, it is possible in principle
to subtract the power divergences non-perturbatively, exploiting,

– CPS-symmetry (CP + s ↔ d) (Bernard et al, 1985);

– GIM (⇒ c quark is active in the simulations);

– O(a) Improvement;

– Appropriate choice of matrix elements, (K → ππ).

• RBC & CP-PACS use domain wall fermions, in which chiral
symmetry is approached exponentially as N5 → ∞.
They compute K → π and K → 0 matrix elements and determine the
corresponding K → ππ matrix elements using lowest order χPT:
for example there are two operators in the ∆S = 1 weak chiral
Lagrangian which transform as (8,1),

O(8,1) = α
(8,1)
1 O

(8,1)
1 +α

(8,1)
2 O

(8,1)
2 with 〈0|O(8,1)|K0〉 = c0 α

(8,1)
2 ;

〈π+|O(8,1)|K+〉 = c1(α
(8,1)
1 −α

(8,1)
2 ) ; 〈π+π−|O(8,1)|K0〉 = c2 α

(8,1)
1 ,

where the ci’s are known kinematical constants.

• Thus from the evaluation of K → 0 and K → π matrix elements
α

(8,1)
1 , and hence 〈π+π−|O(8,1)|K0〉 can be determined. α

(8,1)
2 contains

the power divergences (1/a2 in this case).



Example of the Subtraction of Power Divergences
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Operator O6 from RBC:

• Squares - Lattice K → π Matrix Element

• Circles - Term to be Subtracted

• Diamonds - Difference

Highly correlated data ⇒ make the subtractions possible.



Example of the Subtraction of Power Divergences - cont.
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• Circles - Matrix element of O6 after subtraction.

• Line should pass through zero if chiral symmetry were exact.

• K → ππ matrix element obtained from the slope.

• Diamonds - Attempt to subtract residual chiral symmetry breaking
effects.

Such studies highlight the necessity of having control of chiral symmetry.
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Summary

• Results from RBC and CP-PACS are very interesting and will provide
valuable benchmarks for future calculations.

• The reliability of χPT in the accessible region (400-800MeV)?
Our suggestion for the next stage is to improve the precision to NLO
in the chiral expansion. This requires the evaluation of K → ππ
decay amplitudes directly.
In the region of masses where (quenched) simulations have been
performed, the data seems to be well represented by low-order
polynomials in quark masses and momenta, without chiral logs. Why?

• Chiral logs are generally of the form 1 + δm2 log. In quenched χPT
they may take the form 1 + δ log, with no suppression.
Can Chiral Perturbation theory be used meaningfully to extrapolate
quenched results?

For ε′/ε there is a significant partial cancellation from the ∆I = 1/2
and ∆I = 3/2 contributions. Does this amplify the relative errors in
general, and from the use of LO χPT in particular?



Diagrams Contributing to ππ Scattering

(a) (b) (c) (d)

= Pion Source or Sink

• Only diagrams (a) and (b) contribute to I = 2 ππ - scattering. For I = 0
scattering all four diagrams contribute.

• Diagrams (a) and (b) are relatively straightforward and cheap to evaluate.
The most efficient way of evaluating diagram (c) in particular, requires
some more investigation.



Infrared Issues

• Finite-Volume Effects

• χPT at NLO.

For the remainder of the talk I envisage evaluating K → ππ decays directly.

Quantization Condition for Two-Pion States in a Finite Volume
M.Lüscher (1986-91)

Finite-Volume Corrections to K → ππ Matrix Elements
L.Lellouch & M.Lüscher (2000)

C.-J.D.Lin, G.Martinelli, CTS, M.Testa (2002)



Finite-Volume Effects

0

t2

t1

tK

~p = 0

~p = 0

~q

L.Maiani & M.Testa (1990) made the following two points about the
computation of K → ππ decays in Euclidean Space:

• At large times the correlator is dominated by the unphysical matrix
element with the two-pions at threshold;

• In Euclidean space one obtains real quantities, such as

1

2

{

out〈ππ |HW |K 〉 + in〈ππ |HW |K 〉
}

.

Following the Maiani-Testa paper there was a halt in the calculation of
matrix elements between multi-hadron states.



Renewed interest was stimulated by L.Lellouch and M.Lüscher (2000) who:

• argued that by tuning the volume, one is in principle able to extract
the matrix element corresponding to the physical kinematics for
K → ππ decays.

– The correlation function will still be dominated by the matrix
element with the two pions in the ground state (unphysical
kinematics), so one has to determine the coefficient of a non-leading
exponential.

– For a physical K → ππ decay with the kaon at rest and the energy
of the two-pions corresponding to n = 1, the first excited state, one
needs a lattice of about 6 fm.

– (Christ & Kim (2002) propose to use Wiese Boundary conditions so
that the lowest energy state can correspond to mK .)

• derived a formula relating the matrix elements in a finite volume to
the modulus of the physical decay amplitudes, up to exponential
corrections in the volume.



Two-Pion States in a Finite Cubic Volume - Status

• Finite Volume effects in the spectrum and matrix elements are well
understood in the center of mass frame. They depend on the strong
interaction phase shift.
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p2(GeV2)

δ ( deg. )  at  mπ=0.140 GeV

Comparison of the lattice results for the I=2 Scattering Phase Shift
δ(p) with experiments.

CP-PACS Collaboration, S.Aoki et al. hep-lat/0209124



Two-Pion States in a Finite Cubic Volume - Status (Cont.)

• LMST present a different derivation of the Lellouch-Lüscher formula
which makes clear that it is also valid:

• for states with n > 8 (so that the infinite-volume limit can be taken at
fixed physics);

• for non-zero momentum transfers at the weak operator. This is useful
for studies of K → ππ decays using chiral perturbation theory.

• At present we do not have a generalization of these results to a moving
frame (~pK 6= 0).

see however, Gottlieb & Rummukainen, hep-lat/9503028.



K → ππ Decays at NLO in the Chiral Expansion

• The evaluation of K → ππ decay amplitudes at physical kinematics
will not be possible for some years yet. We will therefore continue to
rely on χPT to estimate physical decay amplitudes from simulations
at unphysical kinematics for some time.

• We have embarked on a major project to exploit χPT at NLO. The
generic structure is of the form:

〈ππ|OW |K〉 = LO ∗ (1 + Logs) + NLO counterterms.

The Logs are calculable in one-loop χPT. The idea is to use lattice
computations of K → ππ matrix elements, for a range of masses and
momenta, in order to

– determine the LO and NLO low-energy constants;

– use these to determine the physical decay amplitudes.

• It appears that it is possible to determine all the required NLO
low-energy constants with a simple set of masses and momenta.



Example – 〈π+π0 |O4 |K+〉

1) For “physical” kinematics, i.e. for pK+ = pπ+ + pπ0 ,
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Subscripts correspond to classification by Kambor, Missimer & Wyler.



2) For “SPQR” kinematics, i.e. with the kaon and one of the pions at rest
and the other with energy Eπ,
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By fitting the computed values of the matrix elements with the
SPQR kinematics all the necessary low energy constants can be
determined.



Lack of Unitarity in Quenched QCD

In full QCD we have the following contribution to the ∆I = 1/2 decay
K̄0 → π+π−:
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• In the quenched theory this contribution is absent. This is achieved, e.g.
by introducing ghost-quarks (with the opposite statistics) to cancel the
effect.
Internal particles are not the same as the external ones ⇒ FSI depend on
the operator.
Is there some meaningful way of overcoming this?

• At one-loop χPT this effect is not present for ∆I=3/2 decays.

• This effect is also present for partially quenched QCD, when mK > 2mπ.



Hairpin Diagrams and Double Poles

As an example consider the following ∆I = 1/2 contribution to decay
K̄0 → π+π− in quenched QCD:
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• Qualitatively the η′ propagator is rewritten as the first two terms of the
pion propagator.
Double Pole ⇒ more singular long-distance behaviour.

• At one-loop order in the chiral expansion there are no such contributions
to ∆I = 3/2 transitions.



K → ππ Decays –Summary and Conclusions

• There has been a lot of theoretical progress in understanding the
ingredients necessary to compute K → ππ decay amplitudes in lattice
computations.

• The non-perturbative subtraction of power divergences.

• Finite-Volume Effects. (But not for ~p 6= 0?)

• Chiral Perturbation Theory at NLO ⇒ determine all the LEC.
– Calculation for ∆I = 3/2 is complete for general kinematics is
complete, and for ∆I = 1/2 is in progress.
– Significant difficulties for ∆I = 1/2 decays in quenched and partially
quenched QCD.

• We now need to reap the harvest of this theoretical investment
in numerical simulations of K → ππ decays.


