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effects.

• Lattice QCD allows us to evaluate these effects for a large range of
phenomenologically important quantities, from first principles (with no
model assumptions or free parameters), by performing large scale
numerical simulations of a discrete formulation of QCD.

This is why the organizers have included lectures on lattice QCD at this
school.

• In practice, systematic uncertainties reduce the precision which can be
achieved.

With experience and improved computing facilities the systematic
uncertainties are being reduced (or at least the errors on the errors are
being reduced).
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• My aims instead are to give an introductory overview of the applications
of lattice QCD to phenomenology, so that you will have some feel for:
(i) which quantities can be calculated on the lattice and which cannot;
(ii) the precision which might be reached.

Of course my presentation will necessarily include some theoretical
background and many numerical results. (I will try to embed a discussion
of some of the theoretical ideas into the discussion of the phenomenology.)
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1. General Introduction to Lattice Phenomenology

• Lattice phenomenology starts with the evaluation of correlation functions
of the form:
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1
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gluon fields and Z is the partition function:
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• Lattice phenomenology starts with the evaluation of correlation functions
of the form:

〈0|O(x1, x2, · · · , xn) |0〉 =
1

Z

∫

[dAµ] [dψ] [dψ̄] eiS O(x1, x2, · · · , xn) ,

where O(x1, x2, · · · , xn) is a multilocal operator composed of quark and
gluon fields and Z is the partition function:

Z =

∫

[dAµ] [dψ] [dψ̄] eiS .

• These formulae are written in Minkowski space, whereas Lattice
calculations are performed in Euclidean space (exp(iS) → exp(−S)
etc.).

• The physics which can be studied depends on the choice of the
multilocal operator O.

• The functional integral is performed by discretising space-time and
using Monte-Carlo Integration.



Two-Point Correlation Functions

• Consider two-point correlation functions of the form:

C2(t) =

∫

d 3x ei~p·~x 〈0| J(~x, t) J†(~0, 0) |0〉 ,

where J and J† are any interpolating operators for the hadron H which we
wish to study and the time t is taken to be positive.

• We assume that H is the lightest hadron which can be created by J †.

• We take t > 0, but it should be remembered that lattice simulations
are frequently performed on periodic lattices, so that both
time-orderings contribute.
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mass) and the modulus of the matrix element
∣

∣〈0|J(~0, 0)|H(p)〉
∣

∣

can be evaluated.

• Example: if J = ūγµγ5d then the decay constant of the π-meson can
be evaluated,

∣

∣〈0| ūγµγ5d |π+(p)〉
∣

∣ = fπ p
µ ,

and the physical value is fπ ' 132MeV.
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• For sufficiently large times ty and tx − ty

C3(tx, ty) ' e−E1ty

2E1

e−E2(tx−ty)

2E2
〈0|J2(0)|H2(~p)〉

×〈H2(~p)|O(0)|H1(~p+ ~q)〉 〈H1(~p+ ~q)|J†
1 (0)|0〉 ,

where E2
1 = m2

1 + (~p+ ~q)2 and E2
2 = m2

1 + ~p 2.
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0 ty tx

• From the evaluation of two-point functions we have the masses and
the matrix elements of the form |〈0|J |H(~p)〉|. Thus, from the
evaluation of three-point functions we obtain matrix elements of the
form |〈H2|O|H1〉|.



H1 H2

0 ty tx

• From the evaluation of two-point functions we have the masses and
the matrix elements of the form |〈0|J |H(~p)〉|. Thus, from the
evaluation of three-point functions we obtain matrix elements of the
form |〈H2|O|H1〉|.

• Examples: Important examples are M̄0 –M0 mixing, the semileptonic
and rare radiative decays of hadrons of the form B → π, ρ+ leptons or
B → K∗γ. The operators O in this case are quark bilinears.
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• We want

L� 1 fm and a−1 � ΛQCD .
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• The different sources of systematic uncertainty are not independent of
each other, so the following discussion is oversimplified.



• Discretization Errors (Lattice Artefacts): Current simulations are
typically performed with
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leading to errors of O(aΛQCD) (with Wilson Fermions) or O(a2Λ2
QCD) for
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• Discretization Errors (Lattice Artefacts): Current simulations are
typically performed with

a ∼
(
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)

fm

leading to errors of O(aΛQCD) (with Wilson Fermions) or O(a2Λ2
QCD) for

improved fermion actions.

(0.1 fm ' 2 GeV.)

The errors can be reduced by:

• Performing simulations at several values of a and extrapolating to a = 0.

• Improvement (Symanzik), i.e. choosing a discretization of QCD so that
the errors are formally smaller.

f ′(x) =
f(x+ a) − f(x)

a
+ O(a) or f ′(x) =

f(x+ a) − f(x− a)

2a
+ O(a2) .

For example, in this way it is possible to reduce the errors from O(a) for
Wilson fermions to ones of O(a2) by the addition of irrelevant operators.√√



• Finite Volume Effects and Chiral Extrapolations:

The pion is light ⇒ it can propagate over large distances.

Simulations are performed with heavier pions (typically with
mu,d ≥ ms/2) and the results are then extrapolated to the chiral limit.

Typically we impose that mπL > 4.

The extrapolation to mu,d ' 0 is a major uncertainty for many processes.

Use χPT to guide this extrapolation? Chiral logarithms suggest that there
may be subtle effects at low masses.

This will be discussed in some detail later.

ρ→ ππ decays have not been achieved on the lattice up to now.
√
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Since it is much cheaper to vary the mass of the valence quarks than of the
sea quarks, it is not uncommon to perform computations with mS 6= mV

and maybe even nS 6= nV (partial quenching).

It is claimed that in this case, since QCD is in the space of partially
quenched theories, the low energy constants of chiral perturbation theory
can be determined.
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can be determined.

√

• Renormalization of Lattice Operators: Relating bare lattice
operators to standard renormalized ones (e.g. MS ones) introduces
uncertainties.

Non-perturbative renormalization is possible.
√√√
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Lattice QCD

• The quark fields are defined on the lattice sites, ψi
α(xi).

• In order to ensure gauge invariance the gauge fields are introduced
through link variables, defined on the links between two neighbouring
points.

Uµ(xi) is the link variable between the points xi and xi + µ̂.

• Under a gauge transformation:

ψ(xi) → g(x)ψ(xi) and Uµ(xi) → g(xi)Uµ(xi)g
†(xi + µ̂) .

• Thus we can think of Uµ(xi) as the path-ordered exponential of gauge
fields between xi and xi + µ̂.



• Writing

Uµ(xi) = exp

{

ig0Aµ(xi +
µ̂

2
)a

}

,

Wilson proposed the gauge action

S =
∑

Pµν

Pµν where Pµν = β

{

1 − 1

3
Re Tr

(

Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x)
)

}

where β = 6/g2
0 and P is called the plaquette.
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• Writing

Uµ(xi) = exp

{

ig0Aµ(xi +
µ̂

2
)a

}

,

Wilson proposed the gauge action

S =
∑

Pµν

Pµν where Pµν = β

{

1 − 1

3
Re Tr

(

Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x)
)

}

where β = 6/g2
0 and P is called the plaquette.

x x+ µ̂

x+ ν̂ x+ µ̂+ ν̂

µ̂

ν̂

• “A little suppressed algebra” [Creutz] ⇒

S =
1

2

∫

d4xTr(FµνFµν) + terms suppressed by a2 .



Fermion Actions

• Naive Fermions ⇒ Fermion Doubling Problem. The inverse free
propagator is

m+ ia−1
∑

µ

γµ sin(aqµ) ,

where q is the momentum.

At low momenta this is correct, but there are also similar contributions
from qµ ' π/a and we have 24 = 16 independent Fermion species.
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• Naive Fermions ⇒ Fermion Doubling Problem. The inverse free
propagator is

m+ ia−1
∑

µ

γµ sin(aqµ) ,

where q is the momentum.

At low momenta this is correct, but there are also similar contributions
from qµ ' π/a and we have 24 = 16 independent Fermion species.

• As a result there is a plethora of Lattice Fermion Actions which
overcome this problem:

1. Wilson Fermions (+ improved versions);

2. Staggered Fermions (and modified versions);

3. Twisted Mass QCD;

4. Actions satisfying the Ginsparg-Wilson relation (Domain Wall
Fermions, Overlap Fermions, Perfect Actions)

5. · · ·



• Wilson Fermions: Add an irrelevant term to the action (proportional to
aψ̄D2ψ, adding a term proportional to a−1 ∑

µ{1 − cos(aqµ) } in the

inverse propagator). This Wilson term breaks the chiral symmetry and
induces artefacts of O(aΛQCD).

The lattice aretefacts can be reduced to ones of O(a2ΛQCD
2) by adding

further irrelevant operators to the action (and by calculating matrix
elements of appropriate improved operators). Symanzik Improvement.
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The lattice aretefacts can be reduced to ones of O(a2ΛQCD
2) by adding

further irrelevant operators to the action (and by calculating matrix
elements of appropriate improved operators). Symanzik Improvement.

• Staggered Fermions: By a “spin diagonalization” of the γ-matrices the 16
fermion doublers can be reduced to 4. The chiral Ward Identities are still
satisfied, the artefacts are of O(a2ΛQCD

2) but one has to worry about the
different tastes.

Perturbative Coefficients tend to be large (reduced in recent versions).
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µ{1 − cos(aqµ) } in the

inverse propagator). This Wilson term breaks the chiral symmetry and
induces artefacts of O(aΛQCD).

The lattice aretefacts can be reduced to ones of O(a2ΛQCD
2) by adding

further irrelevant operators to the action (and by calculating matrix
elements of appropriate improved operators). Symanzik Improvement.

• Staggered Fermions: By a “spin diagonalization” of the γ-matrices the 16
fermion doublers can be reduced to 4. The chiral Ward Identities are still
satisfied, the artefacts are of O(a2ΛQCD

2) but one has to worry about the
different tastes.

Perturbative Coefficients tend to be large (reduced in recent versions).

• Chiral Fermions: Much work is being devoted to developing algorithms
for lattice fermions which have a continuum-like chiral symmetry even at
finite lattice spacing.

This is ultimately likely to be the method of choice!



fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

High-Precision Lattice QCD Confronts Experiment
C.T.H.Davies + 25 authors (HPQCD, UKQCD, MILC and Fermilab Lattice

Collaborations),

hep-lat/0304004

• The authors claim that the use of a new improved staggered-quark
discretization allows light quark masses to be reached down to about
ms/8 and represents “a breakthrough for phenomenology and, in
particular, for heavy-quark physics”.

Very Intriguing!!
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• Quark Masses and αs are parameters of QCD.
We would like to know them at some standard renormalization scheme
(e.g. MS) at a perturbative scale (µ� ΛQCD).

• Lattice QCD is formulated in terms of bare fields and parameters and an
ultra-violet cut-off, a−1.

• If a−1 and µ are sufficiently large (much larger than ΛQCD) then
renormalized quantities can be obtained from bare ones using perturbation
theory.

Apart from the fact that the Feynman rules in lattice QCD are more
complicated than in continuum QCD and that therefore loop integrals have
generally to be evaluated numerically, such a procedure is standard.

• From our experience we know that perturbative coefficients in lattice
QCD are frequently large, leading to significant uncertainties.

The uncertainties depend on the quantities being studied and on the
lattice action. One loop effects of order 10-20% are typical, ones which are
several times larger are not unusual.

• It is for this reason that we have developed methods for non-perturbative
renormalization (described later).
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• Thus we can compare the lattice results for a number of physical
quantities (e.g. some hadronic masses) with the experimental data to
determine the bare quark masses and then use perturbation theory and/or
non-perturbative renormalization to determine the renormalized values.

• For the coupling constant we exploit dimensional transmutation to use a
fixed value of g0 and take a−1 as the parameter.

• There are a number of ways being used to determine the quark masses.
These should give identical results if the systematic errors (in particular,
lattice artefacts) are negligible.

• One standard method exploits the axial Ward identity

∂µA
µ = (m1 +m2)P

where A and P are the axial current and pseudoscalar density
corresponding to quarks with masses m1,2:

Aµ(x) = ψ̄1(x)γ
µγ5ψ2(x) and P (x) = ψ̄1(x)γ

5ψ2(x) .

For simplicity here let me take m1 = m2.



∂µA
µ = (m1 +m2)P

• Calculate the two-point correlation function

〈 0 |P l(t)P s †(0) | 0 〉 =
Zl

PZ
s
P

2mP

{exp(−mP t) + exp(−mP (Lt − t))} .

0 = Lt

t

0 = Lt

t

• mP is the mass of the pseudoscalar meson.

• The superscripts l and s stand for local and smeared respectively.
Optional

• The Zl,s
P ’s are the matrix elements 〈0|P l,s(0)|P 〉.
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∂µA
µ = 2mqP

〈 0 |P l(t)P s †(0) | 0 〉 =
Cl

PC
s
P

2mP

{exp(−mP t) + exp(−mP (Lt − t))} .

• Calculate also

〈 0 |Al
4(t)P

s †(0) | 0 〉 =
Cl

AC
s
P

2mP

{exp(−mP t) − exp(−mP (Lt − t))} .

• Thus we obtain

m(0) AWI
q ≡ mPC

l
A

2Cl
P

.

• Now we would like the mass in some standard renormalization scheme,
and the axial current and pseudoscalar density are both multiplicatively
renormalizable. The renormalization constants can be fixed and we obtain
the masses.

Vector Ward Identities can also be used.
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• For this paper the authors use an (Nf = 2) action for which the
renormalization constants are not known non-perturbatively ⇒ use
perturbation theory.

• They use the π and ρ masses to determine a (a ' 0.2 fm) and the
(single) quark mass.

• The primary aim was to simulate with light masses and to study the
chiral behaviour.
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• The authors claim that neither the quadratic fits that they had used
earlier, nor continuum χPT fit the data well, but that WχPT, which
includes a2 effects associated with explicit chiral symmetry breaking fits
the whole data.

• Reanalyzing their previous data with WχPT lowers mu,d by about 10%

(mMS
u,d = 3.11(17)MeV).



R.Gupta hep-ph/0311033

Action m̄ ms(MK) ms(Mφ) scale 1/a
Renorm. = (mu + md)/2

JLQCD Staggered 4.23(29) 106(7) 129(12) Mρ

(1999) RI/MOM
CPPACS Wilson 4.57(18) 116(3) 144(6) Mρ

(1999) 1-loop TI

CP-PACS Iwasaki+SW 4.37+13
−16

111+3
−4

132+4
−5

Mρ

(2000) 1-loop TI
ALPHA-UKQCD O(a) SW 97(4) fK

(1999) SF
QCDSF O(a) SW 4.4(2) 105(4) r0

(1999) SF
QCDSF Wilson 3.8(6) 87(15) r0

(1999) RI/MOM
SPQcdR O(a) SW 4.4(1)(4) 106(2)(8) r0

(2002) RI/MOM

State of the art quenched results for quark masses.



R.Gupta hep-ph/0311033

Action m̄ ms(MK) ms(Mφ) scale 1/a
Renorm (GeV)

JLQCD Wilson+SW 3.22(4) 84.5(1.1) 96.4(2.2) Mρ

(2002) 1-loop TI (2.22)

CP-PACS Iwasaki+SW 3.45+0.14
−0.20

89+3
−6

90+5
−11

Mρ

(2000) 1-loop TI (a → 0)

QCDSF-UKQCD O(a) SW 3.5(2) 90+5
−10

r0

(2003) 1-loop TI [1.9 − 2.2]
QCDSF-UKQCD O(a) SW 85(1) r0

(2003) RI-MOM [1.9 − 2.2]

Recent Nf = 2 results for quark masses.



R.Gupta hep-ph/0311033

Estimates of ms from the Nf = 2 simulations by the CP-PACS and
JLQCD (points on the finest lattice with a ≈ 0.09 fermi) collaborations.



• Of course we would like to simulate with dynamical strange quarks
(Nf = 3), and this still has major uncertainties.

Action m̄ ms(MK) scale 1/a

Renorm AWI (GeV)

JLQCD Iwasaki+SW 2.89(6) 75.6(3.4) Mρ

(2003) 1-loop TI (2.05(5))

MILC AsqTad 2.5(1) 66(1) Mρ

(2003) 1-loop TI (1.6)

MILC AsqTad 2.6(1) 68(1) Mρ

(2003) 1-loop TI (2.2)

Recent Nf = 3 results for quark masses from Gupta’s review.
AsqTad is a perturbatively improved version of Staggered fermions which
reduces “taste” symmetry breaking. The quoted errors in the MILC results
include both statistical and those due to varying q∗ in the 1-loop matching
between (1/a→ 2/a).
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• Lattice computations are of bare quantities with a−1 as the ultraviolet
cut-off.

• As an example consider a local operator, such as the pseudoscalar
density ψ̄1γ

5ψ2.

In lattice simulations we compute

〈f |OB(a)|i〉 ,
whereas we would like to know

〈f |OR(µ)|i〉 ,
in some standard renormalization scheme R.

The long distance physics is the same in both.

• For sufficiently large scale, a−1 and µ � ΛQCD, the relation between
these two matrix elements can be determined in perturbation theory, but
the coefficients in Lattice PT are frequently large.
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quark states, at some scale p2 = µ2 and in some gauge (the Landau gauge
say) is the tree-level one. We compute

p p

OB(a)

〈 p|OB(a)|p 〉 =

and determine the renormalization constant ZO(aµ) by requiring that

ZO(aµ) 〈 p|OB(a)|p 〉p2=µ2 = tree level value.



• It is possible to perform the renormalization non-pertubatively,
eliminating the need for lattice perturbation theory.

For example (there are more sophisticated schemes), let us define the
renormalized operator OR as being the one whose matrix element between
quark states, at some scale p2 = µ2 and in some gauge (the Landau gauge
say) is the tree-level one. We compute

p p

OB(a)

〈 p|OB(a)|p 〉 =

and determine the renormalization constant ZO(aµ) by requiring that

ZO(aµ) 〈 p|OB(a)|p 〉p2=µ2 = tree level value.

• The renormalized operator

ORI Mom
R (µ) ≡ ZO(aµ)OB(a)

is independent of the regularization (RI) and can be used in hadronic
matrix elements.
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• To go from RI Mom scheme to any other standard scheme (such as the

MS scheme) only requires continuum perturbation theory.

• In lattice simulations we necessarily work on a finite volume ⇒
momentum is quantized:

~p =
2π

L
~n .

We require

Λ2
QCD � p2 � a−2

and this window is small, in practice.

By calculating the matrix element between quark states on a sequence of
lattices with decreasing a (and hence smaller volumes) and matching, it is
possible to eliminate the constraint p2 � Λ2

QCD. This procedure is called
step scaling.
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• For the mass of the charm quark, the most detailed study has been
performed by Rolf and Sint (hep-ph/0209255) who study all systematic
errors in detail, except for quenching.

• O(a) improved action ⇒ discretization errors of O(a2).

• Non-perturbative renormalization a la Alpha Collaboration ⇒ only
need to use continuum perturbation theory at large scales (∼ 30Gev)
to get mRGI

c and N3LO perturbation theory to get m̄c.

• 5 different definitions of mc based on Ward Identities.

They find
m̄c = 1.301(34)GeV ,

where the scale has been set from fK .

• Setting the scale by mp increases m̄c by about 3%.



L.Lellouch – hep-ph/0211359

Continuum extrapolation of the RGI charm mass by ALPHA (Rolf and
Sint).
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The Mass of the b-quark

mb � a−1 � ΛQCD ⇒ Effective Theories (HQET or NRQCD)

Consider the correlation function

C(t) =
∑

~x

〈 0|A0(~x, t)A0(~0, 0) | 0 〉

in the HQET. Aµ is the axial current,

Aµ = h̄ γµγ
5 q .

h and q are heavy- and light-quark fields.

• At large t:

C(t) ' Z2 exp(−ξt)
where from Z we obtain the value of the decay constant, fB , in the static
approximation. (E.Eichten - 1987)

• From the measured value of ξ one can obtain mb (up to Λ2
QCD/mb

corrections.) (M.Crisafulli, V,Giménez, G.Martinelli, CTS - 1995)
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Each term in the series for δm also diverges linearly as a→ 0. This
(partially) cancels the divergence in ξ (⇒ a cannot be too small).
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• The pole mass is also not a physical quantity containing a renormalon
ambiguity.
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• The renormalons in the pole mass and δm cancel.
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• Relation between the Bare Lattice Coupling and the MS Coupling:

αs(µ) =

[

1 +
∑

n

dn(aµ)αn
0

]

α0.

– d2 – M.Lüscher and P.Weisz (1995)

C.Christou, A.Feo, H.Panagopoulos and E.Vicari (1998)
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• Stochastic Perturbation Theory (Numerical):
C1=2.09(4), C2=10.7(7) and C3=86.2(5),
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• Large β Monte-Carlo: C3=80(2)+5.6(1.8)
G.P.Lepage, P.B.Mackenzie, N.H.Shakespeare and H.D.Trottier (1999)

For NRQCD only the first coefficient (C1) is known.



Quenched Results

• mb = 4.15 ± 0.05 ± 0.20GeV
Quenched NLO; Second error estimate of uncertainty due to higher
order perturbation theory. V.Giménez, G.Martinelli and CTS (1996)

• mb = 4.30 ± 0.05 ± 0.10GeV
Quenched N2LO G.Martinelli and CTS (1998)

• mb = 4.30 ± 0.05 ± 0.05GeV
Quenched N3LO V.Giménez at al. (2000) private comm.

• mb = 4.34 ± 0.03 ± 0.06GeV
Quenched N3LO from NRQCD in the static limit. C.Davies et al. (2000)

Unquenched Results

• mb = 4.26 ± 0.06 ± 0.07GeV
nf = 2, N2LO. V.Giménez, L.Giusti, G.Martinelli and F.Rapuano (2000)

Results using NRQCD are in good agreement, but we need to understand
the errors due to higher orders of perturbation theory in that case.



• A strategy to renormalize the HQET non-perturbatively is being
successfully developed by the DESY-Zeuthen group.

J.Heitger& R.Sommer; M.Kurth& R.Sommer; Heitger, Kurth& Sommer, · · ·


