Dispersive approach to $\chi \mathbf{P T}$
 LNF Spring school - Bruno Touschek Frascati, 16-20 May 2005

Martin Zdráhal

```
zdrahal@ipnp.troja.mff.cuni.cz
```

Institute of Partical and Nuclear Physics
Faculty of Mathematics and Physics
Charles University, Prague

Introduction - Chiral perturbation theory

- low energy effective theory (energy compared to $\Lambda \sim 1 \mathrm{GeV}$)
- basic degrees of freedom : π, K and $\eta=$ pseudo-Goldstone bosons of the symmetry breaking $\mathbb{S U}(3)_{V} \times \mathbb{S U}(3)_{A} \times \mathbb{U}(1)_{V}$ down to $\mathbb{S U}(3)_{V} \times \mathbb{U}(1)_{V}$.
Can be colected in the matrix (according to our convention):

$$
\phi(x)=\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & -\sqrt{2} \pi^{+} & -\sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{\sqrt{3}} \eta & -\sqrt{2} K^{0} \\
\sqrt{2} K^{-} & -\sqrt{2} \frac{K^{0}}{\sqrt{3}} & -\frac{2}{\sqrt{3}} \eta
\end{array}\right)
$$

- Lagrangian - an infinite number of terms $\mathcal{L}=\mathcal{L}_{2}+\mathcal{L}_{4}+\ldots$; e.g. \mathcal{L}_{2} contains 2 derivatives or one quark mass (in standard $\chi \mathrm{PT}$)

Introduction - Chiral perturbation theory

- low energy effective theory (energy compared to $\Lambda \sim 1 \mathrm{GeV}$)
- basic degrees of freedom : π, K and $\eta=$ pseudo-Goldstone bosons of the symmetry breaking $\mathbb{S U}(3)_{V} \times \mathbb{S U}(3)_{A} \times \mathbb{U}(1)_{V}$ down to $\mathbb{S U}(3)_{V} \times \mathbb{U}(1)_{V}$.
Can be colected in the matrix (according to our convention):

$$
\phi(x)=\left(\begin{array}{ccc}
\pi^{0}+\frac{1}{\sqrt{3}} \eta & -\sqrt{2} \pi^{+} & -\sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{\sqrt{3}} \eta & -\sqrt{2} K^{0} \\
\sqrt{2} K^{-} & -\sqrt{2} \frac{K^{0}}{\sqrt{3}} & -\frac{2}{\sqrt{3}} \eta
\end{array}\right)
$$

- Lagrangian - an infinite number of terms $\mathcal{L}=\mathcal{L}_{2}+\mathcal{L}_{4}+\ldots$; e.g. \mathcal{L}_{2} contains 2 derivatives or one quark mass (in standard $\chi \mathrm{PT}$)
- importance of a given diagram - Weinberg power-counting scheme given by the chiral dimension (written as $O\left(p^{D}\right)$)

$$
D=2+\sum_{n=2}^{\infty}(n-2) N_{n}+2 N_{L} \xrightarrow{\rightarrow \# \text { of vertices from } \mathcal{L}_{n}} \underset{\substack{\text { independent loops } \\ \text { Dispersive approach to } \\ \text { PT }-\mathrm{p} .2 / 14}}{ }
$$

Problem - singlet scalar condensate

$$
B_{0}=-\frac{1}{F_{0}^{2}}\langle 0| \bar{q} q|0\rangle
$$

- its nonzero value is a sufficient condition for the symmetry breaking (But not necessary!)
- STANDARD power counting believe $B_{0} \sim \Lambda$, i.e. $B_{0}=O\left(p^{0}\right)$ and so $\chi=M=O\left(p^{2}\right)$ (quark mass matrix)

The $O\left(p^{2}\right)$ Lagrangian of the standard $\chi \mathrm{PT}$

$$
\mathcal{L}_{2}=\frac{F_{0}^{2}}{4}\left(\operatorname{Tr}\left(D_{\mu} U\left(D^{\mu} U\right)^{\dagger}\right)+2 B_{0} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right)
$$

$$
U=\exp \left(i \frac{\phi}{F_{0}}\right)
$$

Problem - singlet scalar condensate

$$
B_{0}=-\frac{1}{F_{0}^{2}}\langle 0| \bar{q} q|0\rangle
$$

- its nonzero value is a sufficient condition for the symmetry breaking (But not necessary!)
- STANDARD power counting believe $B_{0} \sim \Lambda$, i.e. $B_{0}=O\left(p^{0}\right)$ and so $\chi=M=O\left(p^{2}\right)$ (quark mass matrix)
- GENERALISED power-counting allows smallness of the condensate, $B_{0}=O\left(p^{1}\right)$ and thus $\chi=M=O\left(p^{1}\right)$
The $O\left(p^{2}\right)$ Lagrangian of the standard $\chi \mathrm{PT}$

$$
\mathcal{L}_{2}=\frac{F_{0}^{2}}{4}\left(\operatorname{Tr}\left(D_{\mu} U\left(D^{\mu} U\right)^{\dagger}\right)+2 B_{0} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right)
$$

$$
U=\exp \left(i \frac{\phi}{F_{0}}\right)
$$

Problem - singlet scalar condensate

$$
B_{0}=-\frac{1}{F_{0}^{2}}\langle 0| \bar{q} q|0\rangle
$$

- its nonzero value is a sufficient condition for the symmetry breaking (But not necessary!)
- STANDARD power counting believe $B_{0} \sim \Lambda$, i.e. $B_{0}=O\left(p^{0}\right)$ and so $\chi=M=O\left(p^{2}\right)$ (quark mass matrix)
- GENERALISED power-counting allows smallness of the condensate, $B_{0}=O\left(p^{1}\right)$ and thus $\chi=M=O\left(p^{1}\right)$
The $O\left(p^{2}\right)$ Lagrangian of the generalised $\chi \mathrm{PT}$

$$
\begin{aligned}
& \tilde{\mathcal{L}}_{2}=\frac{F_{0}^{2}}{4}\left(\operatorname{Tr}\left(D_{\mu} U\left(D^{\mu} U\right)^{\dagger}\right)+2 B_{0} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right. \\
& +A_{0} \operatorname{Tr}\left(\left(\chi^{\dagger} U\right)^{2}+\left(\chi U^{\dagger}\right)^{2}\right)+Z_{0}^{S}\left[\operatorname{Tr}\left(\chi^{\dagger} U+\chi U^{\dagger}\right)\right]^{2} \\
& \left.+Z_{0}^{P}\left[\operatorname{Tr}\left(\chi^{\dagger} U-\chi U^{\dagger}\right)\right]^{2}+2 H_{0} \operatorname{Tr}\left(\chi^{\dagger} \chi\right)\right) \\
& \\
& U=\exp \left(i \frac{\phi}{F_{0}}\right)
\end{aligned}
$$

Problem - singlet scalar condensate

$$
B_{0}=-\frac{1}{F_{0}^{2}}\langle 0| \bar{q} q|0\rangle
$$

- its nonzero value is a sufficient condition for the symmetry breaking (But not necessary!)
- STANDARD power counting believe $B_{0} \sim \Lambda$, i.e. $B_{0}=O\left(p^{0}\right)$ and so $\chi=M=O\left(p^{2}\right)$ (quark mass matrix)
- GENERALISED power-counting allows smallness of the condensate, $B_{0}=O\left(p^{1}\right)$ and thus $\chi=M=O\left(p^{1}\right)$
The $O\left(p^{2}\right)$ Lagrangian of the generalised $\chi \mathrm{PT}$

$$
\begin{aligned}
\tilde{\mathcal{L}}_{2}=\frac{F_{0}^{2}}{4} & \left(\operatorname{Tr}\left(D_{\mu} U\left(D^{\mu} U\right)^{\dagger}\right)+2 B_{0} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right. \\
& +A_{0} \operatorname{Tr}\left(\left(\chi^{\dagger} U\right)^{2}+\left(\chi U^{\dagger}\right)^{2}\right)+Z_{0}^{S}\left[\operatorname{Tr}\left(\chi^{\dagger} U+\chi U^{\dagger}\right)\right]^{2} \\
& \left.+Z_{0}^{P}\left[\operatorname{Tr}\left(\chi^{\dagger} U-\chi U^{\dagger}\right)\right]^{2}+2 H_{0} \operatorname{Tr}\left(\chi^{\dagger} \chi\right)\right)
\end{aligned}
$$

+ odd orders of Lagrangian in G χ PT

Motivation

Which scheme should we use?

- the standard one, which could be possibly bad, if the singlet scalar condensate were small; but with better predictive power -Or-
- the generalised one, which has no such prejudice; but has much more free parameters

Motivation

Which scheme should we use?

- the standard one, which could be possibly bad, if the singlet scalar condensate were small; but with better predictive power
- the generalised one, which has no such prejudice; but has much more free parameters

In the 2 flavour case $(\mathbb{S U}(2))$:

- the determination of the pion scattering length from $K_{l 4}$ ruled out the possibility of small condensate
- but before that, Stern, Sazdjian and Fuchs [hep-ph/9301244] have shown, how to use dispersive relations in study of the $\pi \pi$ scattering

Motivation

Which scheme should we use?

- the standard one, which could be possibly bad, if the singlet scalar condensate were small; but with better predictive power
- the generalised one, which has no such prejudice; but has much more free parameters

In the 2 flavour case $(\mathbb{S U}(2))$:

- the determination of the pion scattering length from $K_{l 4}$ ruled out the possibility of small condensate
- but before that, Stern, Sazdjian and Fuchs [hep-ph/9301244] have shown, how to use dispersive relations in study of the $\pi \pi$ scattering
In the 3 flavour case $(\mathbb{S U}(3))$:
- there is no similar (direct) experimental indication yet
- to extend this work to the $\mathbb{S U}(3)$ case is AIM OF OUR WORK

Our weapons
 A

U
C

Our weapons
 Analyticity

U
C

Our weapons
 Analyticity

Unitarity

C

Our weapons
 Analyticity

Unitarity

Crossing symmetry

Our weapons

Analyticity of amplitude

At first, we will consider a toy example - with assumptions

- branch cut for real $s>M^{2}$
- real for real $s<M^{2}$
- analytic $\forall s$ except the branch cut

The unsubtracted DRs

$$
\lim _{\Lambda^{2} \rightarrow \infty} \frac{1}{2 \pi i} \oint_{|s|=\Lambda^{2}} \frac{F(s)}{s-s_{0}} d s=0 \quad \Rightarrow \quad F\left(s_{0}\right)=\frac{1}{\pi} \int_{M^{2}}^{\infty} \frac{\operatorname{Im} F(s)}{s-s_{0}-i \varepsilon} d s
$$

m-times subtracted $\left(g(s)=\frac{F(s)-F(0)-\cdots-\frac{s^{m-1}}{(m-1)!} F^{(m-1)}(0)}{s^{m}}\right)$

$$
F\left(s_{0}\right)=P_{m}\left(s_{0}\right)+\frac{s_{0}^{m}}{\pi} \int_{M^{2}}^{\infty} \frac{d s}{s^{m}} \frac{\operatorname{Im} F(s)}{\left(s-s_{0}-i \varepsilon\right)}
$$

Physical amplitudes have more complicated analytical structure - other branch cuts and poles on the real axis. But the main thought is the same (poles \rightarrow contributions to the polynomial).

Unitarity of scattering matrix

- $S_{i f}=\delta_{i f}+i(2 \pi)^{4} \delta^{(4)}\left(P_{f}-P_{i}\right) \mathcal{T}_{i f}$
- the partial wave decomposition (PWD)

$$
\mathcal{I}_{i f}(s, \cos \theta)=32 \pi N \sum_{l} A_{l}^{i \rightarrow f}(s)(2 l+1) P_{l}(\cos \theta)
$$

- for two-particle scattering process (assuming time invariance and that the only relevant contributions are from two-particle intermediate states)

$$
\begin{aligned}
& \operatorname{Im} A_{l}^{i \rightarrow f}(s)=\sum_{(1,2)} 2 \frac{N^{\prime} N^{\prime \prime}}{N S} \frac{\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}{s} A_{l}^{i \rightarrow\left(k_{1}, k_{2}\right)}(s)\left[A_{l}^{f \rightarrow\left(k_{1}, k_{2}\right)}(s)\right]^{*} \\
S= & 1(2) \text { for (un)distinguishable states } k_{1}, k_{2}
\end{aligned}
$$

Crossing symmetry

$$
\begin{aligned}
& A B \rightarrow C D \\
& S(s, t, u) \xrightarrow{\text { T-channel }} A \bar{C} \rightarrow \bar{B} D \\
& \text { T-channel } \\
&\text { Our choice of the phase factors } f: t, u)
\end{aligned} \quad S(s, t, u)=T(t, s, u)=U(u, t, s) \text { : }
$$

"Our" reconstruction theorem

Using \mathbf{A} and \mathbf{C} and the Goldstone character of the interacting particles, we have derived theorem for reconstruction of amplitudes (up to $O\left(p^{8}\right)$) for given processes if we know the imaginary parts of all crossed amplitudes only:

$$
\begin{aligned}
S(s, t ; u) & =R_{4}(s, t ; u)+\Phi_{0}(s)+\left[s(t-u)+\Delta_{A B} \Delta_{C D}\right] \Phi_{1}(s) \\
& +\Psi_{0}(t)+\left[t(s-u)+\Delta_{A C} \Delta_{B D}\right] \Psi_{1}(t) \\
& +\Omega_{0}(u)+\left[u(t-s)+\Delta_{A D} \Delta_{B C}\right] \Omega_{1}(u)+O\left(p^{8}\right)
\end{aligned}
$$

where $\Delta_{i j}=m_{i}^{2}-m_{j}^{2}, R_{4}(s, t ; u)$ is third order polynomial in Mandelstam variables obeying the same symmetry as S and

$$
\begin{aligned}
\Phi_{0}(s) & =32 s^{3} \int_{\Sigma}^{\Lambda^{2}} \frac{d x}{x^{3}} \frac{\operatorname{Im} S_{0}(x)}{x-s}, \\
\Phi_{1}(s) & =96 s^{3} \int_{\Sigma}^{\Lambda^{2}} \frac{d x}{x^{3}} \frac{\operatorname{Im} S_{1}(x)}{(x-s) \lambda_{A B}^{1 / 2}(x) \lambda_{C D}^{1 / 2}(x)}, \\
\lambda_{X Y}(x) & =\left(x-\left(m_{X}+m_{Y}\right)^{2}\right)\left(x-\left(m_{X}-m_{Y}\right)^{2}\right)
\end{aligned}
$$

min of squared invar. mass
The other by cyclic permutation
of \forall intermediate states
$(\Phi \mapsto \Psi \mapsto \Omega) \quad(s \mapsto t \mapsto u) \quad(S \mapsto T \mapsto U) \quad(A B C D \mapsto A C B D \mapsto \mathrm{ADCB}) \quad(\Sigma \mapsto \tau \mapsto \Upsilon)$

Main steps of its proof

- three times subtracted DRs for the amplitude with fixed u variable contains polynomial $P_{3}(s, t ; \underline{u})$
- using crossing symmetry and including the high-energy part of the integrals (up to $O\left(p^{8}\right)$) into the polynomial

$$
\begin{aligned}
S(s, t ; u) & =P_{4}(s, t ; \underline{u})+\frac{s^{3}}{\pi} \int_{\Sigma}^{\Lambda^{2}} \frac{d x}{x^{3}} \frac{\operatorname{Im} S(x, \mathcal{M}-x-u ; u)}{x-s} \\
& +\frac{t^{3}}{\pi} \int_{\tau}^{\Lambda^{2}} \frac{d x}{x^{3}} \frac{\operatorname{Im} T(x, \mathcal{M}-x-u ; u)}{x-t}+O\left(p^{8}\right) .
\end{aligned}
$$

- decomposition into the partial waves; the higher partial waves $(l \geq 2)$ suppressed to $O\left(p^{8}\right)$
- full symmetry properties, kinematics and including some other terms into the polynomial leads to the theorem
- many of this simplifications are because the lowest order of Lagrangian is $O\left(p^{2}\right)$

Application of the theorem

The 4-mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof). With this general method - 13 independent LE constants to $O\left(p^{2}\right)$

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof). With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof). With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof). With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles - excluded at the low energy region

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof). With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles - excluded at the low energy region
- odd number of G. b.

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles - excluded at the low energy region
- odd number of G. b. - forbidden by even intrinsic parity of \mathcal{L}

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles - excluded at the low energy region
- odd number of G. b. - forbidden by even intrinsic parity of \mathcal{L}
- the number of G. b. > 2

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles - excluded at the low energy region
- odd number of G. b. - forbidden by even intrinsic parity of \mathcal{L}
- the number of G. b. >2 - suppressed to the order $O\left(p^{8}\right)$

The 4 -mesons processes to $O\left(p^{4}\right)$

We will apply the theorem according to the previous scheme to the 2-lightest-mesons scattering processes $2 \rightarrow 2$:

- symmetry - we work in the strong isospin conservation limit In this limit - only 7 independent processes (from the Ward identities)

$$
\begin{gathered}
\eta \eta \rightarrow \eta \eta \quad \pi^{0} \eta \rightarrow \pi^{0} \eta \quad \pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0} \quad \overline{K^{0}} K^{0} \rightarrow \eta \eta \\
\overline{K^{0}} K^{0} \rightarrow \pi^{0} \eta \quad \pi^{-} \pi^{+} \rightarrow K^{-} K^{+} \quad K^{-} K^{+} \rightarrow \overline{K^{0}} K^{0}
\end{gathered}
$$

- the $O\left(p^{2}\right)$ amplitudes - can be constructed as the most general invariant amplitudes satysfying the given symmetries and using that the $O\left(p^{2}\right)$ order of the amplitudes should be polynomial in Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to $O\left(p^{2}\right)$
- Which intermediate states are needed? States containing
- non-Goldstone particles - excluded at the low energy region
- odd number of G. b. - forbidden by even intrinsic parity of \mathcal{L}
- the number of G. b. >2 - suppressed to the order $O\left(p^{8}\right)$
- the number of G. b. equal to 2

Results for the amplitudes to $O\left(p^{4}\right)$

- all the amplitudes expressed in terms of only 30 independent constants (the 'subtraction' polynomial of the second order)
- besides, there appears Mandelstam variables, pseudoscalar meson masses and the decay constant F_{π}^{2}
- the perturbative unitarity is encoded in the dispersion integrals - once subtracted $\bar{J}_{P Q}(s)=\frac{s}{16 \pi^{2}} \int_{\Sigma}^{\infty} \frac{d x}{x} \frac{1}{x-s} \frac{\lambda_{P Q}^{1 / 2}(x)}{x}$ and twice subtracted $\bar{J}_{P Q}(s)=\frac{s^{2}}{1 \pi^{2}} \int_{\Sigma}^{\infty} \frac{d x}{x^{2}} \frac{1}{x-s} \frac{\lambda_{P Q}^{1 / 2}(x)}{x}$
- the standard power counting limit of our results corresponds to the ones given in the literature
- the results very voluminous \Rightarrow for illustration amplitude of $\pi \eta \rightarrow \pi \eta$:

$$
\begin{aligned}
& A_{\pi \eta \rightarrow \pi \eta}=\frac{1}{3 F_{\pi}^{2}}\left(\beta_{\pi \eta}\left(3 t-2 M_{\eta}^{2}-2 M_{\pi}^{2}\right)+M_{\pi}^{2} \alpha_{\pi \eta}\right)+\frac{1}{3 F_{\pi}^{4}}\left(\delta_{\pi \eta}\left(s^{2}+u^{2}\right)+\varepsilon_{\pi \eta} t^{2}\right) \\
& +\frac{1}{72 F_{\pi}^{4}}\left\{\overline { J } _ { K K } (t) [9 \beta _ { \eta K } t - 2 (3 \beta _ { \eta K } + \alpha _ { \eta K }) M _ { K } ^ { 2 } + 6 (\alpha _ { \eta K } - \beta _ { \eta K }) M _ { \eta } ^ { 2 }] \left[3 \beta_{\pi K} t+2\left(1-\beta_{\pi K}\right)\left(M_{K}^{2}+M_{\pi}^{2}\right)+4\left(\alpha_{\pi}\right.\right.\right. \\
& \left.-4 J_{\eta \eta}(t) \alpha_{\pi \eta} \alpha_{\eta \eta} M_{\pi}^{2}\left(M_{\pi}^{2}-4 M_{\eta}^{2}\right)+4 \bar{J}_{\pi \pi}(t) \alpha_{\pi \eta} M_{\pi}^{2}\left(6 \beta_{\pi \pi} t+\left(5 \alpha_{\pi \pi}-8 \beta_{\pi \pi}\right) M_{\pi}^{2}\right)\right\} \\
& +\left[\frac { 1 } { 9 F _ { \pi } ^ { 4 } } \left\{\bar{J}_{\pi \eta}(s) \alpha_{\pi \eta}^{2} M_{\pi}^{4}+\frac{3}{8} \bar{J}_{K K}(s)\left[3 \beta_{\eta \pi K} s-2\left(1+\beta_{\eta \pi K}\right) M_{K}^{2}+\left(1-\alpha_{\eta \pi K}-\beta_{\eta \pi K}\right) M_{\pi}^{2}+\left(1-\beta_{\eta \pi K}\right) M_{\eta}^{2}\right]\right.\right. \\
& +[s \leftrightarrow u]+O\left(p^{5}\right) .
\end{aligned}
$$

Advantages and disadvantages

Advantages

- this approach is general and methodologically contributive
- we have bindings between the higher order of some amplitude and the lower orders of another ones
If we had experimental data of all $2 \rightarrow 2$ mesons scattering, we could proceed order by order fitting only the polynomial.
If we had some process so exactly that we can fit its amplitude, we could forecasts amplitudes of other processes.

Disadvantages

- there is no simple linkage of the LEC to QCD
- the only properties simplifying LEC are symmetries

Number of LEC to a given order

approach	$O\left(p^{2}\right)$	$O\left(p^{3}\right)$	$O\left(p^{4}\right)$	$O\left(p^{6}\right)$
S χ PT	2	2	10	~ 40
DA χ PT	13	15	30	47
G χ PT	5	14	43	>100

THE END

