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Introduction - Chiral perturbation theory
• low energy effective theory (energy compared to Λ ∼ 1 GeV)
• basic degrees of freedom : π, K and η = pseudo-Goldstone bosons of

the symmetry breaking

� �

(3)V × � �

(3)A × �

(1)V down to

� �

(3)V × �

(1)V .
Can be colected in the matrix (according to our convention):

φ(x) =











π0 + 1√
3
η −

√
2π+ −

√
2K+

√
2π− −π0 + 1√

3
η −

√
2K0

√
2K− −

√
2K0 − 2√

3
η











• Lagrangian - an infinite number of terms L = L2 + L4 + . . . ;
e.g. L2 contains 2 derivatives or one quark mass (in standard χPT)
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• Lagrangian - an infinite number of terms L = L2 + L4 + . . . ;
e.g. L2 contains 2 derivatives or one quark mass (in standard χPT)

• importance of a given diagram - Weinberg power-counting scheme -
given by the chiral dimension (written as O

(

pD
)

)

D = 2 +

∞
∑

n=2

(n − 2)Nn + 2NL

# of vertices from Ln

# of independent loops
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Problem - singlet scalar condensate

B0 = − 1

F 2
0

〈0|q̄q|0〉

• its nonzero value is a sufficient condition for the symmetry breaking
(But not necessary!)

• STANDARD power counting believe B0 ∼ Λ, i.e. B0 = O(p0) and so
χ = M = O(p2) (quark mass matrix)

The O(p2) Lagrangian of the standard χPT

L2 =
F 2

0

4

“
Tr

“
DµU (DµU)†

”
+ 2B0 Tr

“
χU† + Uχ†

””

U = exp

„
i

φ

F0

«
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• STANDARD power counting believe B0 ∼ Λ, i.e. B0 = O(p0) and so
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• its nonzero value is a sufficient condition for the symmetry breaking
(But not necessary!)

• STANDARD power counting believe B0 ∼ Λ, i.e. B0 = O(p0) and so
χ = M = O(p2) (quark mass matrix)

• GENERALISED power-counting allows smallness of the condensate,
B0 = O(p1) and thus χ = M = O(p1)

The O(p2) Lagrangian of the generalised χPT

eL2 =
F 2

0

4

“
Tr

“
DµU (DµU)†

”
+ 2B0 Tr

“
χU† + Uχ†

”

+A0 Tr

„“
χ†U

”2
+

“
χU†

”2
«

+ ZS
0

h
Tr

“
χ†U + χU†

”i2

+ ZP
0

h
Tr

“
χ†U − χU†

”i2
+ 2H0 Tr

“
χ†χ

”«

U = exp

„
i

φ

F0

«
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χ†U
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0

h
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“
χ†U + χU†

”i2

+ ZP
0

h
Tr

“
χ†U − χU†

”i2
+ 2H0 Tr

“
χ†χ

”«

+ odd orders of Lagrangian in GχPT
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Motivation
Which scheme should we use?

• the standard one, which could be possibly bad, if the singlet scalar
condensate were small; but with better predictive power

-or-
• the generalised one, which has no such prejudice; but has much

more free parameters
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Which scheme should we use?

• the standard one, which could be possibly bad, if the singlet scalar
condensate were small; but with better predictive power

-or-
• the generalised one, which has no such prejudice; but has much

more free parameters

In the 2 flavour case (

�

(2)):
• the determination of the pion scattering length from Kl4 ruled out the

possibility of small condensate
• but before that, Stern, Sazdjian and Fuchs [hep-ph/9301244] have

shown, how to use dispersive relations in study of the ππ scattering
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Motivation
Which scheme should we use?

• the standard one, which could be possibly bad, if the singlet scalar
condensate were small; but with better predictive power

-or-
• the generalised one, which has no such prejudice; but has much

more free parameters

In the 2 flavour case (

�

(2)):
• the determination of the pion scattering length from Kl4 ruled out the

possibility of small condensate
• but before that, Stern, Sazdjian and Fuchs [hep-ph/9301244] have

shown, how to use dispersive relations in study of the ππ scattering

In the 3 flavour case (
�

(3)):
• there is no similar (direct) experimental indication yet
• to extend this work to the

� �

(3) case is AIM OF OUR WORK
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Our weapons
A

U

C
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Our weapons
Analyticity

Unitarity

Crossing symmetry
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Our weapons
Analyticity of amplitude
At first, we will consider a toy example - with assumptions

• branch cut for real s > M 2

• real for real s < M 2

• analytic ∀s except the branch cut

The unsubtracted DRs

Λ

Re s

Im s

M

C

s0

2 2

lim
Λ2→∞

1

2πi

I

|s|=Λ2

F (s)

s − s0
ds = 0 ⇒ F (s0) =

1

π

Z ∞

M2

Im F (s)

s − s0 − iε
ds

m-times subtracted
(

g(s) =
F (s)−F (0)−···−

sm−1

(m−1)!F
(m−1)(0)

sm

)

F (s0) = Pm(s0) +
sm
0

π

Z ∞

M2

ds

sm

Im F (s)

(s − s0 − iε)

Physical amplitudes have more complicated analytical structure - other branch
cuts and poles on the real axis. But the main thought is the same (poles →
contributions to the polynomial).
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Unitarity of scattering matrix
• Sif = δif + i(2π)4δ(4)(Pf − Pi)Tif

• the partial wave decomposition (PWD)

Tif (s, cos θ) = 32πN
X

l

A
i→f
l (s)(2l + 1)Pl(cos θ)

• for two-particle scattering process (assuming time invariance and that
the only relevant contributions are from two-particle intermediate
states)

Im A
i→f
l (s) =

X

(1,2)

2
N ′N ′′

NS

λ1/2(s, m2
1, m2

2)

s
A

i→(k1,k2)
l (s)

h
A

f→(k1,k2)
l (s)

i∗

S = 1(2) for (un)distinguishable states k1, k2

Crossing symmetry

AB → CD
T-channel−−−−−→ AC → BD

S(s, t, u)
T-channel−−−−−→ fT (s, t, u)

Our choice of the phase factors f :
S(s, t, u) = T (t, s, u) = U(u, t, s)
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"Our" reconstruction theorem
Using A and C and the Goldstone character of the interacting particles, we have
derived theorem for reconstruction of amplitudes (up to O

(

p8
)

) for given
processes if we know the imaginary parts of all crossed amplitudes only:

S(s, t;u) = R4(s, t;u) + Φ0(s) + [s(t − u) + ∆AB∆CD]Φ1(s)

+ Ψ0(t) + [t(s − u) + ∆AC∆BD]Ψ1(t)

+ Ω0(u) + [u(t − s) + ∆AD∆BC ]Ω1(u) + O
(

p8
)

,

where ∆ij = m2
i − m2

j , R4(s, t;u) is third order polynomial in Mandelstam

variables obeying the same symmetry as S and

Φ0(s) = 32s3

Z Λ2

Σ

dx

x3

Im S0(x)

x − s
,

Φ1(s) = 96s3

Z Λ2

Σ

dx

x3

Im S1(x)

(x − s)λ
1/2
AB(x)λ

1/2
CD(x)

,

λXY (x) =
`
x − (mX + mY )2

´ `
x − (mX − mY )2

´

The other by cyclic permutation
(Φ 7→ Ψ 7→ Ω) (s 7→ t 7→ u) (S 7→ T 7→ U) (ABCD 7→ ACBD 7→ ADCB) (Σ 7→ τ 7→ Υ)

min of squared invar. mass

of ∀ intermediate states
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Main steps of its proof
• three times subtracted DRs for the amplitude with fixed u variable -

contains polynomial P3(s, t;u)
• using crossing symmetry and including the high-energy part of the

integrals (up to O(p8)) into the polynomial

S(s, t; u) = P4(s, t; u) +
s3

π

Z Λ2

Σ

dx

x3

Im S(x,M− x − u; u)

x − s

+
t3

π

Z Λ2

τ

dx

x3

Im T (x,M− x − u; u)

x − t
+ O

`
p8

´
.

• decomposition into the partial waves; the higher partial waves (l ≥ 2)
suppressed to O(p8)

• full symmetry properties, kinematics and including some other terms
into the polynomial leads to the theorem

• many of this simplifications are because the lowest order of
Lagrangian is O(p2)
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Application of the theorem

TheoremPolynomial -

for every channel

?

Im of the channel
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?
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?
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Application of the theorem
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O
(
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)
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?

6
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The 4-mesons processes to O(p4)
We will apply the theorem according to the previous scheme to the
2-lightest-mesons scattering processes 2 → 2:

• symmetry - we work in the strong isospin conservation limit
In this limit - only 7 independent processes (from the Ward identities)

ηη → ηη π0η → π0η π+π0 → π+π0 K0K0 → ηη

K0K0 → π0η π−π+ → K−K+ K−K+ → K0K0

• the O(p2) amplitudes - can be constructed as the most general
invariant amplitudes satysfying the given symmetries and using that
the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to O(p2)
•
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the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to O(p2)

• Which intermediate states are needed? States containing
• non-Goldstone particles
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The 4-mesons processes to O(p4)
We will apply the theorem according to the previous scheme to the
2-lightest-mesons scattering processes 2 → 2:

• symmetry - we work in the strong isospin conservation limit
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the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to O(p2)

• Which intermediate states are needed? States containing
• non-Goldstone particles - excluded at the low energy region
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The 4-mesons processes to O(p4)
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the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
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• Which intermediate states are needed? States containing
• non-Goldstone particles - excluded at the low energy region
• odd number of G. b. - forbidden by even intrinsic parity of L
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The 4-mesons processes to O(p4)
We will apply the theorem according to the previous scheme to the
2-lightest-mesons scattering processes 2 → 2:

• symmetry - we work in the strong isospin conservation limit
In this limit - only 7 independent processes (from the Ward identities)

ηη → ηη π0η → π0η π+π0 → π+π0 K0K0 → ηη

K0K0 → π0η π−π+ → K−K+ K−K+ → K0K0

• the O(p2) amplitudes - can be constructed as the most general
invariant amplitudes satysfying the given symmetries and using that
the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to O(p2)

• Which intermediate states are needed? States containing
• non-Goldstone particles - excluded at the low energy region
• odd number of G. b. - forbidden by even intrinsic parity of L
• the number of G. b. > 2
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The 4-mesons processes to O(p4)
We will apply the theorem according to the previous scheme to the
2-lightest-mesons scattering processes 2 → 2:

• symmetry - we work in the strong isospin conservation limit
In this limit - only 7 independent processes (from the Ward identities)

ηη → ηη π0η → π0η π+π0 → π+π0 K0K0 → ηη

K0K0 → π0η π−π+ → K−K+ K−K+ → K0K0

• the O(p2) amplitudes - can be constructed as the most general
invariant amplitudes satysfying the given symmetries and using that
the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to O(p2)

• Which intermediate states are needed? States containing
• non-Goldstone particles - excluded at the low energy region
• odd number of G. b. - forbidden by even intrinsic parity of L
• the number of G. b. > 2 - suppressed to the order O(p8)
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The 4-mesons processes to O(p4)
We will apply the theorem according to the previous scheme to the
2-lightest-mesons scattering processes 2 → 2:

• symmetry - we work in the strong isospin conservation limit
In this limit - only 7 independent processes (from the Ward identities)

ηη → ηη π0η → π0η π+π0 → π+π0 K0K0 → ηη

K0K0 → π0η π−π+ → K−K+ K−K+ → K0K0

• the O(p2) amplitudes - can be constructed as the most general
invariant amplitudes satysfying the given symmetries and using that
the O(p2) order of the amplitudes should be polynomial in
Mandelstam variables (simple proof).
With this general method - 13 independent LE constants to O(p2)

• Which intermediate states are needed? States containing
• non-Goldstone particles - excluded at the low energy region
• odd number of G. b. - forbidden by even intrinsic parity of L
• the number of G. b. > 2 - suppressed to the order O(p8)
• the number of G. b. equal to 2
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Results for the amplitudes to O(p4)
• all the amplitudes expressed in terms of only 30 independent constants

(the ’subtraction’ polynomial of the second order)
• besides, there appears Mandelstam variables, pseudoscalar meson

masses and the decay constant F 2
π

• the perturbative unitarity is encoded in the dispersion integrals

- once subtracted JPQ(s) = s
16π2

R ∞
Σ

dx
x

1
x−s

λ
1/2
P Q

(x)

x
and twice subtracted

JPQ(s) = s2

16π2

R ∞
Σ

dx
x2

1
x−s

λ
1/2
P Q(x)

x

• the standard power counting limit of our results corresponds to the
ones given in the literature

• the results very voluminous ⇒ for illustration amplitude of πη → πη:
Aπη→πη =

1

3F2
π

“

βπη(3t − 2M
2
η − 2M

2
π) + M

2
παπη

”

+
1

3F4
π

“

δπη(s
2

+ u
2
) + επηt

2
”

+
1

72F4
π

n

JKK(t)
h

9βηK t − 2(3βηK + αηK )M
2
K + 6(αηK − βηK )M

2
η

i h

3βπKt + 2(1 − βπK)(M
2
K + M

2
π) + 4(απK − 1)MπMK

i

− 4 Jηη(t)απηαηηM
2
π

“

M
2
π − 4M

2
η

”

+ 4Jππ(t)απηM
2
π

“

6βππt + (5αππ − 8βππ)M
2
π

”o

+

"

1

9F4
π



Jπη(s)α
2
πηM

4
π +

3

8
JKK(s)

h

3βηπKs − 2(1 + βηπK)M
2
K + (1 − αηπK − βηπK )M

2
π + (1 − βηπK )M

2
η

i2
ff

#

+ [s ↔ u] + O
“

p
5

”

.

Dispersive approach to χPT – p. 12/14



Advantages and disadvantages
Advantages

• this approach is general and methodologically contributive
• we have bindings between the higher order of some amplitude and the

lower orders of another ones
If we had experimental data of all 2 → 2 mesons scattering, we could
proceed order by order fitting only the polynomial.
If we had some process so exactly that we can fit its amplitude, we
could forecasts amplitudes of other processes.

Disadvantages
• there is no simple linkage of the LEC to QCD
• the only properties simplifying LEC are symmetries

Number of LEC to a given order
approach O

(

p2
)

O
(

p3
)

O
(

p4
)

O
(

p6
)

SχPT 2 2 10 ∼40

DAχPT 13 15 30 47

GχPT 5 14 43 >100
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THE END
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