

Search for Lepton Flavour Violation in the decay

 $\tau \rightarrow \mu \gamma$ & BaBar

INFN & UNIVERSITY OF PERUGIA **.**NF SUMMER SCHOOL ELISA MANONI MAY 19 2005

LNF SUMMER SCHOOL 2005 MAY 19 2005

Outline

Results and Statistical Interpretation Cut-Based Event Selection Neural Network Method »Likelihood Approach and Theoretical Motivations >The BaBar Detector >Data Sample Conclusions

LNF SUMMER SCHOOL 2005 MAY 19 2005

ations (1)	athmosferic and solar sector predicted nded to include finite m _v	strongly suppressed because of $m_{\nu_i} \sim eV$ $m_{\nu_i} \sim eV$ $(m_{\nu_i} \sim eV)$ $(m_{\nu_i} \sim eV)$ $(m_{\nu_i} \sim eV)$ $(m_{\nu_i} \sim eV)$ $(m_{\nu_i} \sim eV)$ $(m_{\nu_i} \sim eV)$ $(m_{\nu_i} \sim eV)$	MANONI 3 SITY OF PERUGIA
Theoretical Motiv	 Lepton Flavour Violation observed in neutrino oscillations LFV processes in the charged lepton within Standard Model scenario extermination 	P(t) = P(t) = P(t)	LNF SUMMER SCHOOL 2005 MAY 19 2005 INFN & UNIVER

Theoretical Motivations (2)

>LFV processes with higher BR evidence of physics beyond SM >Prediction of BR($\tau \rightarrow \mu\gamma$) ≈ $O(10^{-8} - 10^{-10})$ in many SUSY models

>Within SUSY SU(10) Right Handed v model:

$$\mathcal{BR}(l_1 \to l_2 \gamma) \propto \frac{\left(\left[m_{\tilde{L}}^2\right]_{ij}\right)^2}{\left(m_{SUSY}^8\right)} \cdot \tan^2(\beta)$$

(depending on <u>model parameters</u>

Predictions with

- $2 \le \tan \beta \le 4$
- 90 GeV $\leq m_0 \leq$ 900 GeV 90 GeV $\leq M_{1/2} \leq$ 700 GeV

 $\mathcal{BR}(\mu \to e\gamma) \approx O(10^{-14})$ $\mathcal{BR}(\tau \to \mu\gamma) \approx O(10^{-8})$

ENFN & UNIVERSITY OF PERUGIA ELISA MANONI

BaBar Detector

LNF SUMMER SCHOOL 2005 MAY 19 2005

5

INFN & UNIVERSITY OF PERUGIA

ELISA MANONI

Sample

>229.4 fb⁻¹ data collected by BaBar >center of mass energy $\approx 10.5 \text{ GeV}$ > $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \approx 0.89 \text{ nb, similar to }\sigma(e^+e^- \rightarrow b\bar{b})$ $> \sim 360M \tau$ -bairs

Signal events: e+e- → τ+τ ⁻ with τ →μγ	×EMC accounting μ	×cmucted for (converted γ)	Main background sources:	$\triangleright e^+e^- \rightarrow \tau^+\tau^-$ with $\tau \rightarrow anything else$	$\geq e^+e^- \rightarrow \mu^+\mu^-\gamma$	$\geq e^+e^- \rightarrow q\overline{q}$	≽e⁺e- → e⁺e⁻	≽e⁺e- →B+ <u>B</u> -	$\triangleright e^+e^- \rightarrow B^0B^0$

LNF SUMMER SCHOOL 2005 MAY 19 2005

Cut-Based Events Selection

LNF SUMMER SCHOOL 2005 MAY 19 2005

Kinematic Fit and Final Selection

00'69

0.5353E-01

Mean

 $\sigma(M_{\mu\nu}^{fit}) = 9.81 \text{ MeV/c}^2$

350

200 250

941.0

/ 21 331.1 1.778

Z/ndf 33.37 Constant 0.9098E-D2

COB

Sau

MMG

TTG

side bands

40 30

80

3

10

20

Mean

ĝ 33 22

8

d and				
Junoul				
backg				
move				
to rel	Ч			
der	olutio			
in or	s res	nts:	×	ergy
ic Fit	mas	istrai	verte	im en
emat	prove	o con	· μγ ·	· bed
Kin	.ш	¥ ¥		

scut on distribution of χ^2 variable

	1-1 topology	3-1 topology
CM µ momentunm	0.9 - 4.5 GeV/c	1.1-4.5 GeV/c
Minimum CM γ energy	0.9 GeV	0.9 GeV
minimum p _{T CM} ^{miss}	1.2 GeV/c	0.6 GeV/c
cos0 _{CM} ^{miss}	-0.85 - 0.75	-0.90 - 0.80
maximum M _{recoil}	1.65 GeV/c ²	1.75 GeV/c ²
ΔE	-0.06 - 0.10 GeV	-0.09 - 0.08 GeV
M _{µY} ^{fit} window	±2.0 σ ($M_{\mu\gamma}^{fi+}$)	±2.0 σ ($M_{\mu\gamma}^{fi+}$)

LNF SUMMER SCHOOL 2005 MAY 19 2005

INFN & UNIVERSITY OF PERUGIA

ELISA MANON

0.1 0.2 0.3 0.4 0.5 M_{ft}-M₅ >Efficiency = (8.46 ± 0.85)%

-0.4 -0.3 -0.2 -0.1 0

-0.5

04 0 0 4 4

Likelihood method

Four variables chosen:

- ^{μγ-φ_{tag}-π cM≡|p_μcM|-|p_γcM|} • **D**T miss • ¤ ∎ $\cdot \Delta p_{\mu\gamma}$. P
- to set up a likelihood ratio variable (\Re) defined as :

$$C = \frac{\prod_{i} P_{i}^{sig}(x_{i})}{\prod_{i} P_{i}^{sig}(x_{i}) + \prod_{i} P_{i}^{bkgd}(x_{i})}$$

2

$$-\overline{\prod_{i} P_{i}^{sig}(x_{i}) + \prod_{i} P_{i}^{bkgd}(x_{i})}$$

Number of events determined from an Unbinned Maximum

signal

1

Neural Network approach

LNF SUMMER SCHOOL 2005 MAY 19 2005

ELISA MANONI UNIVFRSITY OF PFRUGIA

10

Statistical Interpretation

Neural Network Method >Generation of 10k toy MC with Poisson-distributed number of background (fixed)	and segnal events (s,floating) Iterating by varying s till fitted number of signal events greater than that observed	# of signal Sensitivity Upper Limit events	-2.2 ^{+3.2} _{-2.4} 13×10⁻⁸ 6.8×10⁻⁸		
elihood Method efinition of a test-statistic variable: $Q = \frac{\mathcal{L}(S+B)}{\mathcal{L}(B)}$	valuation of Q in binned 2-dimension $\Lambda_{\mu\gamma}^{fit}$ vs R plane leasurement of Q_{obs} on the data sample neration of toy MC experiments with an rbitrary value, N' _{signal} , of signal events valuation of: ·CL _{5+B} =P _{5+B} (Q <q<sub>obs) (pure frequentist method)</q<sub>	•CL _B =P _B (Q <q<sub>obs) •CL_S=CL_{S+B}/CL_B (modified frequentist method) terating by varying N'_{sional} till 1-CL_S is 90%</q<sub>	Sensitivity Upper Limit	L _{S+B} 11.9×10 ⁻⁸ 9.4×10 ⁻⁸	L _s 16.1×10 ⁻⁸ 14.6×10 ⁻⁸

LNF SUMMER SCHOOL 2005 MAY 19 2005

Conclusions

 Neural Network approach Likelihood method > 229.4 fb⁻¹ data analyzed >Upper Limit @ 90% CL: >Cut Based Selection +

 $\mathcal{BR}(\tau \to \mu\gamma) < 6.8 \times 10^{-8}$

- Improvement with respect to previous measurements
- Some SUSY scenarios excluded by this measurement

