Quantum Loops in Resonance Theory : The Vector Form-Factor

J. J. Sanz Cillero, IN2P3, Orsay

A.Pich, I.Rosell & JJSC JHEP 0408 (2004) 042

Outline

I.) The $1/N_c$ counting and $R\chi T$ at LO

II.) R χ T lagrangian at NLO in 1/N_c

III.) Low/High energy:

→ From R χ T to χ PT → From R χ T to pQCD

QCD at $N_{\mathcal{C}} \rightarrow \infty$ (Minimal Hadronical Ansatz)

LO in 1/N_c RXT ~ [Ecker *et al* '89] Resonances (R=V,A,S,P) + Goldstones ($pNGB=\pi,K,\eta_8,\eta_1$) Chiral symmetry General lagrangian for R + pNGB: < R $O(p^2)$ > Minimal Hadronic Ansatz: Long/short distances

RχT Lagrangian at LO in 1/N_c

$$\mathcal{L}_{2\chi}[\pi] = \frac{F^2}{4} \langle u^{\mu} u_{\mu} + \chi_{+} \rangle$$

$$\mathcal{L}_{2\mathbf{V}}[\pi,\mathbf{V}] = -\frac{1}{2} \left\langle \nabla_{\lambda} \mathbf{V}^{\lambda\mu} \nabla^{\nu} \mathbf{V}_{\nu\mu} - \frac{1}{2} \mathbf{M}_{\mathbf{V}}^{2} \mathbf{V}_{\mu\nu} \mathbf{V}^{\mu\nu} \right\rangle \\ + \frac{\mathbf{F}_{\mathbf{V}}}{2\sqrt{2}} \left\langle \mathbf{V}_{\mu\nu} \mathbf{f}_{+}^{\mu\nu} \right\rangle + \frac{\mathbf{i} \mathbf{G}_{\mathbf{V}}}{2\sqrt{2}} \left\langle \mathbf{V}_{\mu\nu} \left[\mathbf{u}^{\mu}, \mathbf{u}^{\nu} \right] \right\rangle$$

$$\mathcal{L}_{2S}[\pi, S] = c_d \left\langle S u^{\mu} u_{\mu} \right\rangle + ..$$

 $\mathcal{L}_{2A}[\pi, A], \quad \mathcal{L}_{2P}[\pi, P]$

OCD - Long/Short Distance -Vector FF -Axial FF -Scalar FF -2 point Green-Funcs. -Scattering Ampls.

$$\langle \pi^{+}\pi^{-}|\left(\frac{1}{2}\overline{u}\gamma^{\mu}u-\frac{1}{2}\overline{d}\gamma^{\mu}d\right)|0\rangle = \mathcal{F}(q^{2}) (p_{\pi^{+}}-p_{\pi^{-}})^{\mu}$$

QCD at NLO in 1/N_c: Quantum loops

$\mathcal{L}_{R\chi T}$ at LO in 1/N_C + QCD short distance

* Couplings fixed by QCD-short distances:

$$\frac{F_{v}}{\sqrt{2}} = \sqrt{2} G_{v} = 2 c_{d} = F \sim \mathcal{O}(\sqrt{N_{c}})$$

$$* \text{ There are also mass relations}$$

$$M_{A}^{2} = 2 M_{v}^{2}, M_{P}^{2} = 2 M_{S}^{2} (1 - \delta) \sim \mathcal{O}(1)$$

$$\delta \approx 3\pi\alpha_{s}F^{2}/M_{s}^{2} \sim 0.08\alpha_{s}$$

$$WELL DEFINED$$

$$N_{e}^{1} counting$$

$$With LO vertices$$

$$\sum_{n_{loops}} \left(\frac{1}{(4\pi)^{2}} \frac{p^{2}}{F^{2}}\right)^{n_{loops}}$$

Perturbative calculation:

Next-to-leading order in 1/N_C

Simplifications: •m_q=0 •U(2)_L× U(2)_R

One loop → LO vertices
Tree-level → LO vertices and <u>one</u> NLO vertex

Renormalization procedure:

Only External Pions

Other processes \longrightarrow Remaining operators and $\tilde{\ell}_i$ and \tilde{c}_j couplings

External Pions and Vectors

Equations of Motion

$$\ell_{6}^{eff} = \ell_{6} + 2X_{Z}F_{V}G_{V} - 2\sqrt{2}X_{F}G_{V} - 4\sqrt{2}X_{G}F_{V}$$

$$r_{V_{1}}^{eff} = r_{V_{1}} = 4F^{2}(c_{51} - c_{53})$$

$$F_{V}^{eff} = F_{V} + 2X_{Z}F_{V}M_{V}^{2} - 2\sqrt{2}X_{F}M_{V}^{2}$$

$$G_{V}^{eff} = G_{V} + 2X_{Z}G_{V}M_{V}^{2} - 4\sqrt{2}X_{G}M_{V}^{2}$$

$$M_{V}^{eff2} = M_{V}^{2} + 2X_{Z}M_{V}^{4}$$

• EOM from the LO lagrangian

• Full reduction of \mathcal{L}_{4V} to $(\mathcal{L}_{\chi} + \mathcal{L}_{2V})^{\text{eff}}$

$$\mathcal{F}(q^2) = \mathcal{F}(\ell_6^{\text{eff}}, \mathbf{r}_{V_1}^{\text{eff}}, F_V^{\text{eff}}, G_V^{\text{eff}}, M_V^{\text{eff}})$$

Experimental Results and

High/Low Energy Limits

Space-like form-factor

Radiative corrections: UNDER CONTROL ! $M_A^2 = 2M_V^2$ $2c_d = F$ $M_S = 1 \text{ GeV}$ $M_P^2 = 2 M_S^2$ $\ell_6^{\text{eff}} = 0, \quad r_{V_1}^{\text{eff}} = 0$

From R
$$\chi$$
T to χ PT
 $R\chi$ T $(q^2 \ll M_R^2, \Lambda_\chi^2)$
 $\mathcal{F}(q^2) = 1 + \left[\frac{F_V^{eff}(\mu) G_V^{eff}(\mu)}{M_V^{eff^2}(\mu)} - \frac{c_V^{eff}(\mu)}{F^2} - \frac{1}{12\pi^2} \ln\left(\frac{M_V^2}{\mu^2}\right) + ...\right] q^2 + ... - \frac{1}{96\pi^2 F^2} q^2 \ln\left(-\frac{q^2}{\mu^2}\right) + ... - \frac{1}{96\pi^2 F^2} q^2 \ln\left(-\frac{q^2}{\mu^2}\right) + ... - \frac{1}{96\pi^2 F^2} q^2 \ln\left(-\frac{q^2}{\mu^2}\right) + ...$

 $\begin{pmatrix} \ell_6 \text{ in } n_f = 2 \\ L_9 \text{ in } n_f = 3 \end{pmatrix}$

 μ^2 $96\pi^2 F^2$ \mathbf{F}^2

* Phenomenological suppression $\tilde{\ell}_{6}^{\text{eff}}(\mu) \ll \ell_{6}^{\chi \text{PT}}(\mu)$ $\mathcal{O}(N_{C})$ $\mathcal{O}(1)$

* Similar with
$$\, {\cal O}(p^6) \, \, \chi PT \,$$

From RxT to pQCD

pQCD
$$Q^2 \rightarrow \infty$$
 :

$$\mathcal{F}(\mathrm{Q}^2) \xrightarrow{\mathrm{Q}^2 \to \infty} 0$$

RxT
$$Q^2 \rightarrow \infty$$
:
Intermediate Resonance states:
Constant Resonance form-factors I
 $\mathcal{F}(Q^2) = a_{(4)} \frac{Q^4}{F^2} + a_{(2)} \frac{Q^2}{F^2} + a_{(0)} \frac{M_R^2}{F^2} + \mathcal{O}\left(\frac{M_R^4}{Q^2F^2}\right)$
If $a_{(j)}=0$ then
RENORMALIZATION
through LO lagrangian

- QCD at large N_c : Minimal Hadronical Ansatz
- $R\chi T$ at NLO in $1/N_c$:

Quantum loops: Well defined counting and renormalization

Notative corrections: Small within the range $|q^2| \le 1$ GeV²

🚺 Low energy limit:

$$\mathbf{R}\chi\mathbf{T} \xrightarrow{q^2 \ll \Lambda_{\chi}^2} \chi \mathbf{P}\mathbf{T}$$

? High energy limit:

Wrong behaviour (wrong resonance FF)
Need for extra operators

with 2, 3... Resonance fields, e.g. $\langle V A O(p^2) \rangle$