Measurement of the hadronic cross section $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)$ with KLOE detector at DA ФNE

Paolo Beltrame
Institut für Exp. Kernphysik, Universität Karlsruhe
(for the KLOE collaboration)

Spring School
Frascati, 16-20 May 2005

$(\mathrm{g}-2)_{\mu} \&$ dispersion integral

$\mathbf{a}_{\mu}{ }^{\text {had }}$ can be expressed in terms of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons $)$ by the use of a dispersion integral:

$$
a_{\mu}^{\text {hadr }}=\frac{1}{4 \pi^{3}}\left(\int_{4 m_{\pi}^{2}}^{E_{\text {Cut }}^{2}} d s \sigma^{\text {hadr, } \exp }(s) K(s)+\int_{E_{\text {Cut }}^{2}}^{\infty} d s \sigma^{\text {hadr }, p Q C D}(s) K(s)\right.
$$

The region around the energy of the ρ-meson adds with $\mathrm{ca} .67 \%$ to the total value of $\mathrm{a}_{\mu}{ }^{\text {hadr }}$.
[Jegerlehner; hep-ph/0312372]
The ρ-meson decays to 100% in $\pi^{+} \pi^{-}$,
so in this energy region the analysis efforts concentrate on the determination of $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \longrightarrow \pi^{+} \pi^{-}\right)$

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right)$with ISR

Particle factories have the opportunity to measure the cross section $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \longrightarrow\right.$ hadrons $)$ as a function of the hadronic center of mass energy \mathbf{M}^{2} hadrons by using the

RADIATIVE RETURN

$$
\mathrm{M}_{\text {hadr }}^{2} \frac{d \sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }+\gamma\right)}{d \mathrm{M}_{\text {hadrons }}^{2}}=\sigma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \longrightarrow \text { hadrons }\right) H\left(\mathrm{M}_{\text {hadr }}^{2}\right)
$$

This method is a complementary approach to the standard energy scan It requires precise calculations of the radiator H.
\rightarrow EVA + PHOKHARA MC Generator
(S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999)
(H. Czyz, A. Grzelinska, J.H. Kühn, G. Rodrigo, hep-ph/0308312)

DAФNE: A Ф-Factory

(Double Annular Ф-Factory for Nice Experiments)
$\mathrm{e}^{+} \mathrm{e}^{-}-$collider with $\sqrt{\mathrm{S}}=\mathrm{m}_{\phi} \approx 1.0194 \mathrm{GeV}$

KLOE

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right) @ \mathrm{KLOE}$

I. Small photon angle analysis
II. Large photon angle analysis

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right) @ \mathrm{KLOE}(\mathrm{I})$

I. Small photon angle analysis
II. Large photon angle analysis

Small angle analysis

Pion tracks are measured at angles

$$
50^{\circ}<\theta_{\pi}<130^{\circ}
$$

Photons are required to be within

$$
\theta_{\gamma}<15^{\circ} \text { or } \theta_{\gamma}>165^{\circ}
$$

Untagged measurement in which we cut on the direction of the missing momentum

$$
\overrightarrow{\mathrm{p}}_{\gamma}=-\overrightarrow{\mathrm{p}}_{\text {miss }}=-\left(\overrightarrow{\mathrm{p}}_{+}+\overrightarrow{\mathrm{p}}_{-}\right)
$$

The choice of this kinematical region was motivated by:

- small relative contribution of FSR
- reduced background contamination:
- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \gamma$
- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mu^{+} \mu^{-} \gamma$

- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$

Background subtraction

Pion-Electron-Separation

Radiative Bhabhas $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \gamma$ are separated by means of a Likelihood-Method (Signature of EMC-Cluster and TOF of particle tracks)

Kinematic Separation

$$
\begin{aligned}
& \phi \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
& \mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mu^{+} \mu^{-} \gamma
\end{aligned}
$$

using ,,Trackmass"-variable
$\left(M_{\phi}-\sqrt{\vec{p}_{1}^{2}+M_{t r k}^{2}}-\sqrt{\vec{p}_{2}^{2}+M_{t r k}^{2}}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}=q_{\gamma}^{2}=0$
$\mathrm{M}_{\pi \pi}$ - dependent $\mathrm{M}_{\text {TRK }}-\mathrm{Cut}$

Residual Background

Fit Trackmass-Spectra for signal and
 background with free normalization parameters (shape from MC)

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \gamma\right) \Rightarrow \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right)$I

$$
\frac{\mathrm{d} \sigma_{\pi \pi \gamma}}{\mathrm{dM}_{\pi \pi}^{2}}=\frac{\mathrm{N}^{\mathrm{obs}}-\mathrm{N}^{\mathrm{bkg}}}{\Delta \mathrm{M}_{\pi \pi}^{2}} \times \frac{1}{\varepsilon_{\text {Select. }}} \times \frac{1}{\mathrm{~L}}
$$

$>$ Luminosity from Bhabha events $\left(55^{\circ}<\theta_{+,-}<125^{\circ}\right)$ 0.6% of systematic error
$>$ All the efficiencies from DATA but Trackmass and geometrical acceptance

Radiator-Function H(s) (ISR):
ISR-Process calculated at NLO-level
Generator PHOKHARA (Kühn et.al)

$$
M_{\pi \pi}^{2} \frac{d \sigma_{\pi \pi \gamma}}{d M_{\pi \pi}^{2}}=\sigma_{\pi \pi}(s) \times \mathbf{H}(\mathbf{s})
$$

Cross Section $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$

$\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi^{+} \pi^{-}\right)$

Result: Cross Section $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \longrightarrow \pi^{+} \pi^{-}\right)$

TOTAL syst. ERROR 1.3\%

Muon anomaly@ICHEP04:

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right) @$ KLOE (II)

I. Small photon angle analysis
II. Large photon angle analysis

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right) @$ KLOE (II)

II. Large photon angle analysis

Motivation:

$>$ Only at large photon angles can the threshold mass region be reached
But...
$>$ STATISTICS become an issue (different from small angle analysis)
$>$ Relative amount of FSR is very large, also $\pi^{+} \pi^{-} \pi^{0}$-BACKGROUND.

Large angle analysis

Pion tracks are measured at angles

$$
50^{\circ}<\theta_{\pi}<130^{\circ}
$$

> Photon direction is required to be within $50^{\circ}<\theta_{\gamma}<130^{\circ}$

In this region, the photons can be detected \Rightarrow tagqed measurement!

Event gets selected if at least one photon is detected with

$$
\begin{array}{|l|}
\mathrm{E}_{\gamma}>50 \mathrm{MeV} \\
50^{\circ}<\theta_{\gamma}<130^{\circ} \\
\hline
\end{array}
$$

In case of more than 1 photon, choose the one with smallest angle Ω between the directions of $\theta_{\text {miss }}$ and θ_{γ}

$\pi^{+} \pi^{-} \pi^{0}$ background

$\pi^{+} \pi^{-} \pi^{0}$ background

Kinematic fit

 (in $\pi^{+} \pi^{-} \pi^{0}$ hypothesis)
Trackmass cut

Ω cut

$$
\Omega=a \cos \left(\frac{\vec{p}_{\gamma} \cdot \vec{p}_{\text {miss }}}{\left|\vec{p}_{\gamma} \| \vec{p}_{m i s s}\right|}\right)
$$

$\pi^{+} \pi^{-} \pi^{0}$ background

Kinematic fit (in $\pi^{+} \pi^{-} \pi^{0}$ hypothesis)

Kinematic fit in the hypothesis of background channel $\pi^{+} \pi^{-} \pi^{0}$
Idea: reject events with low values of χ^{2}

Selection:

- 2 tracks in $40^{\circ}<\theta_{\pi}<140^{\circ}$
$\cdot \geq 2$,,prompt" photons
- at least one photon with

$$
\mathrm{E}_{\gamma}>40 \mathrm{MeV} \text { and } 40^{\circ}<\theta_{\gamma}<140^{\circ}
$$

Constraints:

4-momenta conservation +
$\mathbf{M}_{\text {inv }}(\gamma \gamma)=\mathbf{m}_{\pi 0}$
Cut has a negligible inefficiency for the $\pi \pi \gamma$ signal and rejects ca. 40% of $\pi^{+} \pi^{-} \pi^{0}$ events

$\pi^{+} \pi^{-} \pi^{0}$ background

Trackmass cut

$$
\left(M_{\phi}-\sqrt{\vec{p}_{1}^{2}+M_{t r k}^{2}}-\sqrt{\vec{p}_{2}^{2}+M_{t r k}^{2}}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}=q_{\gamma}^{2}=0
$$

$$
\begin{gathered}
\Omega \text { cut } \\
\Omega=a \cos \left(\frac{\vec{p}_{\gamma} \cdot \vec{p}_{\text {miss }}}{\left|\vec{p}_{\gamma}\right|\left|\vec{p}_{\text {miss }}\right|}\right)
\end{gathered}
$$

Inclusive in $\mathrm{M}_{\pi \pi}{ }^{2}$:
The cut applied is $\mathrm{M}_{\pi \pi}{ }^{2}$-dependent below $0.5 \mathrm{GeV}^{2}$: $\Omega<\approx 1^{\circ}$

$M_{\pi \pi}{ }^{2}\left[\mathbf{G e V}^{2}\right]$

Effect of cuts on MC

After L.A. acceptance

Effect of cuts on DATA

After L.A.acceptance After fit
After trackmass After Omega cut

We have studied:
\checkmark Selection Cuts
\checkmark Background

Missing:
$>$ FSR corrections
$>$ Measurement of absolute background contamination
$>$ Efficiency evaluation from Data

Spectrum (preliminary)

Conclusions

\times KLOE has published the first measurement of the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$cross section between $0.35 \mathrm{GeV}^{2}$ and $0.95 \mathrm{GeV}^{2}$ using the radiative return with a negligible statistical error and 1.3% total systematic uncertainty
\times Complementary analysis requiring the photon to be emitted at large angles has been started, which allows to enter the region for $\mathrm{M}_{\pi \pi}{ }^{2}<0.3 \mathrm{GeV}^{2}$
\checkmark The selection of the signal is finished and well stable
\checkmark Next step: efficiency and background content from DATA

A glance at the future

- An upgrade of the small photon angle analysis is being done using 2002 data
- Measurement of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}\right) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)$ (normalization to muons) \Rightarrow direct measurement of R
- ... and PoP (Physics - or peck(!?) - at off-Peak):
move the center of mass energy of DAФNE below the ϕ resonance to reduce $\pi^{+} \pi^{-} \pi^{0}$ background

Backup Slides

$$
\mathrm{a}_{\mu}^{\text {hadr }}=\frac{1}{4 \pi^{3}}\left(\int_{4 \mathrm{~m}_{\pi}^{2}}^{\mathrm{E}_{\mathrm{Lm}}^{2}} \mathrm{ds} \sigma^{\text {hadr, exp }}(\mathrm{s}) \mathrm{K}(\mathrm{~s})+\int_{\mathrm{E}_{\mathrm{cm}}^{2}}^{\infty} \mathrm{ds} \sigma^{\text {hadr,pecd }}(\mathrm{s}) \mathrm{K}(\mathrm{~s})\right)
$$

- $\mathrm{E}_{\text {cut }}$ is the threshold energy above which pQCD is applicable
- s is the c.o.m.-energy squared of the hadronic system
- $\mathrm{K}(\mathrm{s})$ is a steady function that goes with $1 / \mathrm{s}$, enhancing low energy contributions of $\sigma^{\text {hadr }}(\mathrm{s})$

The region around the energy of the ρ-meson adds with ca. 67% to the total value of $\mathrm{a}_{\mu}{ }^{\text {hadr }}$. [Jegerlehner; hep-ph/0312372]

The ρ-meson decays to 100% in $\pi^{+} \pi^{-}$, so in this energy region the analysis efforts concentrate on the determination of $\sigma\left(\mathbf{e}^{+} \mathbf{e}^{-} \longrightarrow \pi^{+} \pi^{-}\right)$
$\mathrm{a}_{\mu}{ }^{\text {hadr }}$ can be expressed in terms of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons) by the use of a dispersion integral:

$$
\mathrm{a}_{\mu}^{\text {hadr }}=\frac{1}{4 \pi^{3}}\left(\int_{4 \mathrm{~m}_{\pi}^{2}}^{\mathrm{E}_{\mathrm{cut}}^{2}} \mathrm{ds} \sigma^{\text {hadr, exp }}(\mathrm{s}) \mathrm{K}(\mathrm{~s})+\int_{\mathrm{E}_{\mathrm{Cut}}^{2}}^{\infty} \mathrm{ds} \sigma^{\text {hadr }, \mathrm{pCCD}}(\mathrm{~s}) \mathrm{K}(\mathrm{~s})\right)
$$

- $\mathrm{E}_{\text {cut }}$ is the threshold energy above which pQCD is applicable
- s is the c.o.m.-energy squared of the hadronic system
- $\mathrm{K}(\mathrm{s})$ is a steady function that goes with $1 / \mathrm{s}$, enhancing low energy contributions of $\sigma^{\text {hadr }}(\mathrm{s})$

$$
\frac{\mathrm{d} \sigma_{\pi \pi \gamma}}{\mathrm{dM}_{\pi \tau}^{2}}=\frac{\mathrm{N}^{\mathrm{obs}}-\mathrm{N}^{\mathrm{bkg}}}{\Delta \mathrm{M}_{\pi \pi}^{2}} \times \frac{1}{\varepsilon_{\text {Select }}} \times \frac{1}{\mathrm{~L}}
$$

Efficiencies:

- Trigger \& Cosmic veto
- Tracking, Vertex
- π-e separation
- Reconstruction filter
- Trackmass-cut
- Unfolding resolution
- Acceptance

Background:
$-\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \gamma$
$\cdot \mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mu^{+} \mu^{-} \gamma$

- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{f} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

Errors:

Luminosity:
Bhabhas at large angles
$>55^{\circ}, \sigma_{\text {eff }}=430 \mathbf{n b}$

Statistics: 141pb ${ }^{-1}$ of 2001-Data 1.5 Million Events

Radiator-Function H(s) (ISR):

- ISR-Process calculated at NLO-level Generator PHOKHARA (Kühn et.al)
- Comparison with KKMC (Jadach et.al.) Precision: 0.5\%

Radiative Corrections:

i) Bare Cross Section
divide by Vacuum Polarisation
ii) FSR - Corrections

Cross section $\sigma_{\pi \pi}$ must be incl. for FSR

$$
M_{\pi \pi}^{2} \frac{d \sigma_{\pi \pi \gamma}}{d M_{\pi \pi}^{2}}=\sigma_{\pi \pi}(s) \times \mathbf{H}(\mathbf{s})
$$

Radiative Return requires ISR photon \rightarrow be inclusive for ISR-FSR-events $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \gamma_{\mathrm{ILP}}\left(\gamma_{\mathrm{FSR}}\right)$

Result: Cross Section $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$

Published in

Phys. Lett. B606, 12 (2005)

Exp. syst. uncertainties:

- Efficiencies
- Background Subtraction TOTAL
0.9%
Theory syst. uncertainties:
- Radiator Function H 0.5%
- Vacuum Polarization 0.2%
- Luminosity 0.6%
- FSR resummation 0.3%

TOTAL 0.9%
TOTAL syst. ERROR 1.3\%

Comparison with results from CMD-2 experiment (pion form factor)
$\left.\sigma_{\pi \pi}\left(M_{\pi \pi}^{2}\right)=\frac{\pi \alpha^{2}}{3 M_{\pi \pi}^{2}} \beta_{\pi}^{3} \right\rvert\, F_{\pi}\left(M_{\pi \pi}^{2}\right)^{2}$
Evaluating the dispersion integral

$$
\frac{1}{4 \pi^{3}} \int \sigma^{\pi \pi}(s) K(s) d s
$$

between $0.37<\mathrm{M}_{\pi \pi}{ }^{2}<0.93 \mathrm{GeV}^{2}$:
KLOE: $\left(375.6 \pm 0.8_{\text {stat }} \pm 4.9_{\text {syst+theo }}\right) 10^{-10}$
CMD2: $\left(378.6 \pm 2.7_{\text {stat }} \pm 2.3_{\text {syst+theo }}\right) 10^{-10}$

Pion Formfactor

- KLOE data points are not in excellent but in a fair agreement with CMD-2
- Significant discrepancies in the diff. spectrum: KLOE higher at low s_{π} and lower at large s_{π}
- Apparently effects compensate in the evaluation of the dispersion integral

The current status of a_{μ} from experiment and (SM-) theory: $a_{\mu}{ }^{\exp }$

$$
\left(g_{\mu}-2\right) / 2=(11659208.0 \pm 6.0) \times 10^{-10}
$$

E821, hep-ex/0401008
$a_{\mu}^{\text {theor, SM }}$

$$
\left(g_{\mu}-2\right) / 2=a_{\mu}^{\text {QED }}+a_{\mu}^{\text {had }}+a_{\mu}^{\text {weak }}
$$

$$
a_{\mu}{ }^{\text {exp }}-a_{\mu}^{\text {theor, } S M}=0.7-2.6 \sigma \text { difference }
$$

- The nature of the difference in the two evaluations of $a_{\mu}{ }^{\text {had }}$ is currently not understood
- The reduction of the error on the hadronic contribution to the SM calculation of a_{μ} could (together with a further reduction of the experimental error) give this discrepancy between theory and experiment a higher significance

The cross section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$has to be inclusive with respect to final state radiation events in order to evaluate a_{μ}

We distinguish between two kinds of FSR contributions:

LO-FSR: No initial state radiation, e^{+}and e^{-}collide at the energy $\mathrm{M}_{\phi}=1.02 \mathrm{GeV}$
NLO-FSR: Simultaneous presence of one photon from initial state radiaition and one photon from final state radiation

Are we overestimating one (or more) efficiency in the MC?
Or are we overestimating the 3π contribution?

