

Kaon Physics: Report from the Precision Frontier.

R. Tschirhart

Fermilab

May 19th 2005

LNF School, Frascati

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Lecture 1: The Precision Frontier. Hunt for small asymmetries that signal CP, CPT, or Unitarity violation in the kaon system.

>Needle in a Haystack: Understand the Haystack in excruciating detail, subtract winter from summer and the needle is revealed.

Lecture 2: The Sensitivity Frontier: A Window to New Physics Beyond the Standard Model.

>Needle in a Haystack: Get a really strong magnet to separate the signal from the background.

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Apologies and Acknowledgements....

- Not a complete treatment, not a review. Too many experiments, too much phenomenology.
 Select a few measurements and explore techniques and results as instruction.
- Special thanks to A. Ceccucci, L. Bellantoni, D. Bryman, S. Chen, G. Isidori, R. Kessler, L. Littenberg, Matteo Palutan, M. Sozzi, K. Schubert for excellent slides.

Big Questions of Flavor: Why Flavor?.... How are We Here? Baryogenesis? Leptogenesis?

 Naïve Big bang cosmology has a *balanced production of matter & antimatter*... but our current universe is dominated by matter.

Sakharov's 3 conditions

- for matter dominance
 - baryon number nonconservation
 - C and CP violation
 - not in thermal equilibrium

The March of Flavor Physics.

Neutral Kaons discovered in *Cosmic Rays* in 1947.

Quantitative Test of Matter-Antimatter Asymmetry of the Standard Model today.

Observation of CP Violation: $K^0_L \Rightarrow 2\pi$ in 1964.

Val Fitch

7

WATER

Some Other High Points in 1964....

Ranger-7 to Moon.

Martin Luther King Nobel Peace Prize.

British Invasion....

Penzias & Wilson Discover Cosmic Microwave Bkg.

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Weak interactions today: The weak quark eigenstates are related to the strong (or mass) eigenstates through a unitary transformation.

$$\mathcal{L}_{ew} = g u_j V_{ji} \gamma^{\lambda} (1 - \gamma^5) d_i W^{\lambda} + h.c.$$

Matter-Antimatter Symmetry: $V_{ij} = V_{ij}^{*}$

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Parity Violation $[(1 - \gamma^5)]$ put in by hand...the left hand in fact.

An interesting *observed* hierarchy.....

CKM Matrix Highly Constrained by Unitarity

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Unitarity implies:

May 19th , 2005

$$V_{\rm CKM}V_{\rm CKM}^{\dagger} = V_{\rm CKM}^{\dagger}V_{\rm CKM} = 1$$

• Rows and columns normalized (weak universality):

$$\sum_{i=1}^{3} |V_{ij}|^2 = 1 = \sum_{j=1}^{3} |V_{ij}|^2$$
$$\sum_{i=1}^{3} V_{ji} V_{ki}^{\dagger} = 0 = \sum_{i=1}^{3} V_{ij} V_{ik}^{\dagger}$$

 \Rightarrow Matrix can be described by only 4 parameters!

$$\begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

where: $\lambda \approx 0.220$ and $A \approx \rho \approx \eta \approx 1$.

Important: Imaginary part η violates CP symmetry!

Properties of the CKM Matrix

 Things rapidy get more complicated with increasing number of generations:

 $n_g = 2$ 1 angle 0 CP phase $n_g = 3$ 3 angles 1 CP phase $n_g = 4$ 6 angles 3 CP phases

• To have CP violation:

$$m_u \neq m_c \neq m_t$$
 and $m_d \neq m_s \neq m_b$

 Can represent 6 unitarity relations in terms triangles in the complex plane.

- Note: area of all triangles is the same: $A^2 \lambda^6 \eta$
- Length of sides determined by measuring decay rates.
- Size of angles determined by measuring CP asymmetries.

One can measure the CP-violating phase in the CKM matrix without ever measuring a CP asymmetry!

The Unitarity Triangles

SM works well at the Electroweak Scale

$$L_{SM} = L_{Gauge} + L_{Higgs}(\phi_i, A_i, \psi_i, Y, v)$$

Flavor degeneracy broken by Yukawa couplings CKM quark mixing matrix:

Where does CP Violation and T-violation manifest itself in our world today?

CP Violation:

- 1) CPV in Mixing; e.g. $Re(\varepsilon_K)$, $Re(\varepsilon_B)$
- 2) CPV in Mixing-Decay Interference; e.g. $Sin2\beta$ in neutral B system.
- 3) CPV in Decays to one final state (Direct); e.g. $Re(\epsilon'/\epsilon)$
- T Violation and T odd effects:
 - 1) Observation of T-Violation in $K^0 \iff \overline{K}^0$.
 - 2) Observation of T-odd decay asymmetries in $K_L \rightarrow \pi^+\pi^-e^+e^-$.

B^0 - B^0 mixing introduces time-dependant CP violation

CP asymmetry in $\overline{B^0} \rightarrow (cc)K^0$

Theoretically clean: Tree level dominates and CP *only* from B^0 - B^0 mixing Relatively large branching fractions

Clear expt

Signatures:

<u>Example for Type-2 CPV: $B^0, \overline{B}^0 \rightarrow c\overline{c}K$ </u>

$sin2\beta = 0.736 \pm 0.049$ (PDG 2004)

Neutral Kaon Phenomenology Review:

Strangeness eigenstates:

 $\begin{array}{ll} \mathrm{K}^{0}(\bar{\mathbf{s}}\mathrm{d}) & (S=+1) \\ \\ \overline{\mathrm{K}^{0}}(\mathrm{s}\bar{\mathrm{d}}) & (S=-1) \end{array} \end{array}$

CP eigenstates:

$$K_{1} = (K^{0} + \overline{K^{0}})/\sqrt{2} \quad (CP = +1)$$
$$K_{2} = (K^{0} - \overline{K^{0}})/\sqrt{2} \quad (CP = -1)$$
$$\pi^{+}\pi^{-}, \pi^{0}\pi^{0} \quad (CP = +1)$$

Mass and Lifetime eigenstates:

$$\begin{split} \mathrm{K}_{\mathrm{S}} &\simeq \mathrm{K}_{1} + \varepsilon \mathrm{K}_{2} \quad (\mathrm{c}\tau_{\mathrm{S}} = 2.67 \ \mathrm{cm}) \\ \mathrm{K}_{\mathrm{L}} &\simeq \mathrm{K}_{2} + \varepsilon \mathrm{K}_{1} \quad (\mathrm{c}\tau_{\mathrm{L}} = 15.5 \ \mathrm{m}) \end{split}$$

$ m K_S$		K_L
69 % π ⁺ π ⁻ 31 % π ⁰ π ⁰	$\begin{array}{c} 21 \ \% \\ 13 \ \% \\ 27 \ \% \\ 39 \ \% \\ 0.2 \ \% \end{array}$	$3\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$ $\pi\mu\nu$ $\pi e\nu$ $\pi^{+}\pi^{-}$
	0.1 %	$\pi^0\pi^0$

 $\varepsilon = (2.27 \pm 0.02) \times 10^{-3}$

Is there also a component of CP violation in the decay process?

$$K_{L} = K_{2}^{-1} + \varepsilon K_{1}^{+1} \qquad \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$$

$$CP = +1$$

Need interference of two decay amplitudes

 $\pi\pi$ from K⁰ can have I=0,2 \Rightarrow amplitudes A₀, A₂

$$A(K^{0} \rightarrow \pi \pi, I) = A_{I} \exp(i\delta_{I})$$
$$A(\overline{K^{0}} \rightarrow \pi \pi, I) = A_{I}^{*} \exp(i\delta_{I})$$

 $\varepsilon' = \frac{i}{\sqrt{2}} \Im \mathfrak{m} \frac{A_2}{A_0} \exp(i(\delta_2 - \delta_0))$

May 19th, 2005 R. Tschirhart, Fermilab. LNF Spring School, Frascati.

CP Violating Charge Asymmetry due to mixing is very precisely measured in the K_L system.

$$\delta_{L}^{e} = \frac{\Gamma(K_{L} \rightarrow \pi^{+}e^{+}\nu) - \Gamma(K_{L} \rightarrow \pi^{+}e^{-}\nu)}{\Gamma(K_{L} \rightarrow \pi^{+}e^{+}\nu) + \Gamma(K_{L} \rightarrow \pi^{+}e^{-}\nu)}$$
Definitive measurement based
on 300M $K_{L}^{\rightarrow} \pi e\nu$ Decays!
 $Re(\varepsilon_{K}) = (1.64 \pm 0.06) \cdot 10^{-3}$
[PDG 2002]

 $\varepsilon' \Rightarrow$ Direct CP violation:

$$\eta_{+-} \equiv \frac{A(\mathbf{K}_{\mathrm{L}} \to \pi^{+} \pi^{-})}{A(\mathbf{K}_{\mathrm{S}} \to \pi^{+} \pi^{-})} \simeq \varepsilon + \varepsilon'$$

$$\eta_{00} \equiv \frac{A(\mathrm{K_L} \to \pi^0 \pi^0)}{A(\mathrm{K_S} \to \pi^0 \pi^0)} \simeq \varepsilon - 2 \varepsilon'$$

$$R = \frac{\Gamma(K_{L} \to \pi^{o} \pi^{o}) / \Gamma(K_{S} \to \pi^{o} \pi^{o})}{\Gamma(K_{L} \to \pi^{+} \pi^{-}) / \Gamma(K_{S} \to \pi^{+} \pi^{-})} \simeq 1 - \mathbf{6} \operatorname{Re}(\frac{\varepsilon'}{\varepsilon})$$

IF the 4 modes are taken

- simultaneously
- in the same decay region

$$\mathbf{R} = \frac{N(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0}\pi^{0}) N(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{+}\pi^{-})}{N(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{0}\pi^{0}) N(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+}\pi^{-})}$$

May 19th , 2005

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

KTeV Experiment: K_S beam made from an incident K_L beam.

K_L Beam passes through 2m of plastic scintillator, which induces a $\sim 3\%$ coherent K_S component in the downstream amplitude.

 $K_{\text{Down}} = K_{\text{L}} + \rho K_{\text{S}}$

K_{I} and K_{S} in the Regenerator Beam. **KTEV** $\frac{1}{55}$

The regenerator beam is a coherent super-position of K_S and K_L . Must account for K_L component to extract correct value of $\operatorname{Re}(\epsilon'/\epsilon)$.

 K_{Reg} shape depends on:

- $\tau_S, \Delta m, \phi_\eta$.
- Attenuation in the regenerator.

- Magnetic spectrometer to reconstruct kinematics.
- Regenerator/Vacuum beam identification using *x*-vertex position
- Clearance cuts define fiducial volume.

- CsI calorimeter to reconstruct photons energies and positions
- *z_v* determined as average of

$$z_{\pi^0} = \sqrt{E_1 E_2} R_{12} / m_{\pi^0}$$

- Regenerator/Vacuum beam identification using x-center of enegy
- Fiducial volume defind by veto detectors & z_v

Sister Experiment to KTeV: CERN-NA48.

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Innovative NA48 CERN Beamline; K_L/K_S tagged event-by-event with time

Raw $K^0 \Rightarrow \pi \pi$ Statistics: $\sigma(\epsilon'/\epsilon) = 1.7 \times 10^{-4}$

Status of $\operatorname{Re}(\varepsilon'/\varepsilon)$...

May 19th , 2005

Experiment Direct CPV Established!:

NA48, Final Result: $\text{Re}(\epsilon)/\epsilon_0 = (14.7\pm2.2)\cdot10^{-4}$ KTeV, (1/2 Data): $\text{Re}(\epsilon)/\epsilon_0 = (20.7\pm2.8)\cdot10^{-4}$

World Average: $\text{Re}(\epsilon)/\epsilon_0 = (16.6 \pm 1.6) \cdot 10^{-4}$

Theory: (victim of connecting quarks to hadrons)

Typical range has been $5x10^{-4}$ to $40x10^{-4}$, Some hope that Lattice theory and technology can make a precise postdiction someday.

Turning now to T-Violation

- CP Violation is precisely measured in neutral K and B mixing phenomena, and established in in K decay amplitudes.
- > CPT symmetry predicts corresponding phenomena in T violation.
- > Let's go look for it in neutral kaons....

CPLEAR: CP Physics at a Low Energy Antiproton Ring at CERN. Technique is to stop \bar{p} 's in H₂, and observe the following reactions:

 $pp \Rightarrow K^+\pi^-\overline{K^0}$, and

 $p\bar{p} \Rightarrow K^{-}\pi^{+}K^{0}.$

The $K^{0}/\overline{K^{0}}$ is tagged by the away-side $K\pi$. Hence one can study the time evolution of CPV in $K^{0} \Leftrightarrow \overline{K^{0}}$ mixing.

The CPLEAR Detector

4 5 357

cherenkov scintillator

 π^+

 $\sigma(M_{K^0}) \approx 13 \, {
m MeV/c^2}$

 $\sigma_{\tau} \approx (5-10) \text{ ps}$

35

3 proportional

chambers

6 drift chambers

$\pi^+\pi^-$ Results from CPLEAR, CPV in mixing:

Measurement of \mathcal{T} violation

$$\mathbf{A_T} = rac{R\left(\overline{\mathbf{K}^0}
ightarrow \mathbf{K}^0
ight) - R\left(\mathbf{K}^0
ightarrow \overline{\mathbf{K}^0}
ight)}{R\left(\overline{\mathbf{K}^0}
ightarrow \mathbf{K}^0
ight) + R\left(\mathbf{K}^0
ightarrow \overline{\mathbf{K}^0}
ight)} = 4 \Re e \, oldsymbol{arepsilon_T}$$

Example $\tau = 0.5\tau_{\rm S}$

officiency

CPLEAR measures:	$f N(K^0_{ au=0} o e^-\pi^+ar u)[au] N(\overline K^0_{ au=0} o e^+\pi^- u)[au]$	= 15050 = 13559	A = 0.0521

reconstruction

different

1

first correction:	for $e^+\pi^-$ and $e^-\pi^+$. Obtained from unbiased pure electron and pion samples: $\langle \eta \rangle = 1.014 \pm 0.002$	A = 0.0610
second correction:	different reconstruction efficiency for $K^+\pi^-$ and $K^-\pi^+$. Obtained from $\pi\pi$ decays: $\langle \alpha \rangle = 1.12756 \pm 0.00034$ (ratio of $K^+\pi^-/K^-\pi^+$ efficiencies) × $[1 + 4\Re e (\varepsilon_T + \delta)]$	A = 0.0098

third correction:assumeCPTconservationinsemileptonic decay amplitudes, useA = 0.0066 $\delta_l = 2\Re e (\varepsilon_T + \delta) = (0.327 \pm 0.012)\%$

T-odd Observable

$$\hat{z} = \frac{\vec{p}_{\pi^{+}} + \vec{p}_{\pi^{-}}}{|\vec{p}_{\pi^{+}} + \vec{p}_{\pi^{-}}|}$$

$$\sin\phi\cos\phi = (\hat{n}_{ee} \times \hat{n}_{\pi\pi}) \cdot \hat{z}(\hat{n}_{ee} \cdot \hat{n}_{\pi\pi})$$

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Observed by KTeV and NA48

Does observing a T-odd effect imply T-violation??....No.

- > Final state interactions in *decays* can fake a T-odd effect. Consider $K_L \rightarrow \pi^+ \pi^- e^+ e^-$, where Coulumb interactions and strong phase shifts can bias sin $\phi \cos \phi$.
- > Also, it is in general difficult to untangle Todd effects from CPT-odd effects...Oh to have that problem!

CPT Violation...

≻CPT Violation? That is nuts! Yes, but so was CP violation in 1964, and P & C violation before then.

➤CPT violation is an enormous challenge to field theory...serious problems with Lorentz invariance and Causality....but is this the world at the Plank scale?

➢ Experimentally well defined: Search for differences in particle-antiparticle masses, lifetimes, total decay rates. One does have to be very careful about expressing results in a form that does not implicitly presume CPT symmetry.

CP & CPT One Page Primer... CPT symmetry in Particle-Antiparticles: $\mathbf{m}_{K} = \overline{\mathbf{m}}_{K}, \quad \tau_{K} = \overline{\tau}_{K}, \quad \mathbf{V}_{ckm} = \mathbf{V}^{\dagger}_{ckm}.$ Hence the stringent limit on $\mathbf{m}_{K} - \overline{\mathbf{m}}_{K}$ from $\Delta \mathbf{m}(\mathbf{K}_{L} - \mathbf{K}_{S})$ (~ 10⁻⁷ eV, 5 GHz RF!):

> $\Delta m_{K0}/M_{K0}$ < 1x10⁻¹⁸; 95% C.L. M_{K0}/M_{Plank} ~1x10⁻¹⁹....Relevant??

Re(ε'/ε): $K^0 \rightarrow 2\pi \neq \overline{K^0} \rightarrow 2\pi$, $\delta \sim 1 \times 10^{-6}$ This is a violation in *partial rate* (CPV), not the *total rate* (CPT).

May 19th , 2005

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Probing CPT Symmetry in Kaons

In general the most sensitive probe of CPT in mixing and decay amplitudes come from precise comparison of CP violating amplitudes (η) and charge asymmetries (δ).

As a relatively simple exercise we will study CPT signatures in the balance of K_S and K_L charge asymmetries.

Constraining $\Delta S = \Delta Q$:

Test of $\Delta S = \Delta Q$ rule: no $\Delta S \neq \Delta Q$ transitions at first order in SM

 $x = (c^* - d^*) / (a + b)$ $\Delta S \neq \Delta Q \text{ in } \overline{K^0} \text{ decay to } e^+$ $\overline{\mathbf{x}} = (\mathbf{c} + \mathbf{d}) / (\mathbf{a}^* - \mathbf{b}^*)$ $\Delta \mathbf{S} \neq \Delta \mathbf{Q} \text{ in } \mathbf{K}^0 \text{ decay to } \mathbf{e}^-$

 $\Rightarrow x_+ = (x + \bar{x})/2 \sim \text{Re}(c^*/a) + i \text{Im}(d^*/a)$

Rex₊ describes $\Delta S \neq \Delta Q$ when CPT conserved

Re
$$x_{+} = \frac{1}{2} \frac{\Gamma_{S}^{\pi e \nu} - \Gamma_{L}^{\pi e \nu}}{\Gamma_{S}^{\pi e \nu} + \Gamma_{L}^{\pi e \nu}}$$
 |x| ~ 10⁻⁷
SM expect.

 $Re(x_{+}) = (-0.0018 \pm 0.0041_{stat} \pm 0.0045_{syst})$ CPLEAR 98

M. Palutan

4 KLOE operates at DA Φ NE, the e⁺e⁻ collider known as the "Frascati ϕ -factory"

Kaons are produced almost back-to-back in the Laboratory

Neutral kaons tagging: K_s "beam"

• Clean $\mathbf{K}_{\mathbf{S}}$ tagging by time-of-flight identification of $\mathbf{K}_{\mathbf{I}}$ interactions in the calorimeter :

$$tof(\mathbf{K}_{\mathbf{L}}) \sim 30 \text{ ns}$$
 ($tof(\gamma) \sim 6 \text{ ns}$)

- K₁ velocity in the ϕ rest frame $\beta^* \sim 0.218$
- Tagging efficiency $\epsilon_{tag,total} \sim 30\% \Rightarrow 1.4 \ 10^8$

tagged K_s

Kinematic closure of the event $(\mathbf{p}_{\mathrm{S}}=\mathbf{p}_{\phi}-\mathbf{p}_{\mathrm{L}})$: K_s angular resolution: $\sim 1^{\circ} (0.3^{\circ} \text{ in } \phi)$ K_s momentum resolution: ~ 1 MeV/c

M. Palutan

$K_S \rightarrow \pi e \nu - \text{Events counting}$

 $K_S \rightarrow \pi e v - Preliminary BR$, A_S , $Re(x_+)$

Normalize signal counts to $K_S \rightarrow \pi \pi(\gamma)$ counts in the same data set ; use KLOE measurement for BR($K_S \rightarrow \pi^+ \pi^-(\gamma)$)

 $BR(K_S \to \pi e\nu) = (7.09 \pm 0.07_{stat} \pm 0.08_{syst}) \ 10^{-4}$

(Published result: $(6.91 \pm 0.34_{stat} \pm 0.15_{syst}) 10^{-4}$, KLOE '02)

 $\begin{array}{l} \textbf{Re}(\textbf{x}_{+}) = (\ \textbf{0.0136} \pm \textbf{0.0031}_{stat} \pm \textbf{0.0029}_{syst}) & \text{with PDG02} \quad \textbf{BR}(\textbf{K}_{L} \rightarrow \pi e \nu) \\ \textbf{Re}(\textbf{x}_{+}) = (\ \textbf{0.0017} \pm \textbf{0.0029}_{stat} \pm \textbf{0.0029}_{syst}) & \text{with KTeV} \quad \textbf{BR}(\textbf{K}_{L} \rightarrow \pi e \nu) \\ \textbf{Re}(\textbf{x}_{+}) = (-0.0018 \pm 0.0041_{stat} \pm 0.0045_{syst}) & \text{CPLEAR} \end{array}$

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Summary of CPT in the kaon system.

> Tightest constraint comes from the very small value of $\Delta m_{(L,S)}$. The actual limit on $\Delta m_{(K,\overline{K})}$ comes from an additional factor of ~1/100 from CP violating phase differences. This can in principle be improved by another x10 with next generation precision experiments.

At Plank scale then?

May 19th, 2005

Constraints on CPT effects in mixing and rate differences are in the $10^{-2} - 10^{-6}$ range. This can improve by x10 with next generation experiments.

Back to Unitarity...How Tightly is CKM Constrained? Are There Hidden Flavors?

Weak eigenstates
$$\begin{pmatrix} d_w \\ s_w \\ b_w \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
Mass eigenstates
Uncertainty on $\Sigma_j |V_{ij}|^2$
w/ Particle
Data Group '04 $\begin{pmatrix} d_w \\ s_w \\ b_w \end{pmatrix} = \begin{pmatrix} 0.974 & 0.22 & 0.004 \\ 0.22 & 0.97 & 0.04 \\ 0.005 & 0.04 & 0.99 \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Unitarity (or lack thereof) of CKM matrix tests existence of further quark generations and possible new physics (eg. Supersymmetry)

May 19th, 2005

Tests of Unitarity, before 2004 V_{us} Revolution: Precise test of unitarity

SM:
$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

May 19th, 2005

 V_{ud}^2 =0.9487±0.0010 (nuclear decays) PDG V_{us}^2 =0.0482±0.0010 (from e.g. K⁺→π⁰e⁺ v_e) 2004 V_{ub}^2 =0.000011±0.000003 (B meson decays)

Data: $V_{ud}^{2}+V_{us}^{2}+V_{ub}^{2}=0.9970\pm0.0014$ (2.2 σ deviation)

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

First hint: BNL-865 Measurement of $K^+ \rightarrow \pi^0 e^+ \nu_e$

54

Extracting $|V_{\mu s}|$ from K^{0}_{e3}

 δ_{ℓ}

May 19th, 2005

Long standing issue: 1st row unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \neq 1$

BNL E865 (May 2003) found a higher value $(a) \sim 2.2 \sigma$ level for $Br(K^+ \rightarrow \pi^0 e^+ \nu)$ consistent with unitarity but giving $|V_{us}| \sim 2.7\sigma$ above existing $Br(K_{I} \rightarrow \pi^{\pm} e^{\pm} \nu)$ value.

$$\Gamma_{\ell 3} = \frac{Br(K_L \to \pi^{\pm} \ell^{\mp} \nu)}{\tau_L} = \left(\frac{G_F^2 m_K^5}{384 \pi^3}\right) S_{EW} f_+^2 (t=0) (1+\delta_\ell) |V_{us}|^2 \int \hat{f}^2$$

$$S_{\rm EW}$$
 Short range EW & QCD corrections - same for e,μ

Form factor at $t = (P_{\ell} + P_{\gamma})^2 = 0$; we use 0.961 ±0.008 $f_{+}(0)$ [Leutwyler & Roos, 1984]

Long range (mode-dependent) radiative corrections $\int \hat{f}^2$ Integral over phase space of form factor squared

Step 1: Radiative corrections

$$\Gamma_{\ell 3} = \frac{Br(K_L \to \pi^{\pm} \ell^{\mp} \nu)}{\tau_L} = \left(\frac{G_F^2 m_K^5}{384 \pi^3}\right) S_{EW} f_+^2 (t=0) (1+\delta_\ell) |V_{us}|^2 \int \hat{f}^2$$

T.Andre, hep-ph/0406006

Take

$$\pi^{-}(p_{\pi})|\overline{s}_{L}\gamma^{\alpha}u_{L}|K^{0}(p_{K})\rangle = f_{+}(t)[p_{K}+p_{\pi}]+f_{-}(t)[p_{K}-p_{\pi}]$$

Evaluate with linear, quadratic and pole model form factors f

Data-MC comparison of radiated photon energy well modeled for all relevant charged decay modes.

May 19th , 2005

Step 2: Form factors

$$\Gamma_{\ell 3} = \frac{Br(K_L \to \pi^{\pm} \ell^{\mp} \nu)}{\tau_L} = \left(\frac{G_F^2 m_K^5}{384 \pi^3}\right) S_{EW} f_+^2 (t=0) (1+\delta_\ell) |V_{us}|^2 (\int \hat{f}^2)$$

We parameterize with $f_{+}(t)$ and $f_{0}(t) = f_{+}(t) + \frac{t}{m_{K}^{2} - m_{\pi}^{2}} f_{-}(t)$

 f_i expanded in powers of t / m_{π}^2 ; coefficients are λ_i

- Since $p_{\rm K}$ is not known, there is a two-fold reconstruction ambiguity due to unseen ν
- We use $t_{\perp}^{\ell} = (P'_{\ell} + P'_{\nu})^2$ or $t_{\perp}^{\pi} = (P'_{K} P'_{\pi})^2$ -Basically, tevaluated without longitudinal coordinates to momenta. Costs ~15% of statistical power
- Some fits also use $m_{\ell\pi}$

KTEV $\frac{3}{4}$ $\frac{3}{5}$ Kaons at the Tevatron

May 19th , 2005

	K_{e3}	$K_{\mu 3}$		
Linear model x10-3				
λ_+	28.32±0.57	27.45±1.08		
λο	-	16.57±1.25		
Quadratic model x10-3				
λ,'	21.67±1.99	17.03±3.65		
λ,"	2.87±0.87	4.43±1.49		
λο	-	12.81±1.83		

Pole model fits also reported...

Linear model λ_+ values consistent with PDG values.

Quadratic term significant at 4σ level Lowers phase space integral by ~1%.

Step 3: Check steps 1&2 with $K_L \rightarrow \pi \ell \nu \gamma$

Acceptance corrections for $2^{nd} \gamma$ via PHOTOS ~1.8% for K_{e3}

Andre's prediction

May 19th , 2005

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Step 4: Get the branching ratio

$$\Gamma_{\ell 3} = \frac{Br(K_L \to \pi^{\pm} \ell^{\mp} \nu)}{\tau_L} = \left(\frac{G_F^2 m_K^5}{384 \pi^3}\right) S_{EW} f_+^2 (t=0) (1+\delta_\ell) |V_{us}|^2 \int \hat{f}^2$$

Ordinarily, would measure something like $\Gamma(K_L \to \pi^{\pm} \ell^{\mp} \nu) / \Gamma(K_L \to nice)$ where the "*nice*" mode has high statistics, a well-known rate, and is similar to K_{ℓ_3} in the detector. Sadly, there is no "*nice*" mode.

Particle Identification in KTeV

Benefits of High Energy Experiments: Clear separation of electrons, muons, and pions with calorimetry. Detector response is well modeled.

May 19th , 2005

Contrast: KLOE Particle ID in K_L decays: Use Kinematics and timing

- Except for $\Gamma_{000}/\Gamma_{Ke3}$, all ratios have final similar states
- Except for Γ_{00}/Γ_{000} , all ratios in same trigger; this analysis similar to the ϵ'/ϵ neutral mode analysis

- $K \rightarrow \pi \mu \nu$ ratios without/with μ ID agree to $(0.08 \pm 0.02_{stat})\%$
- $K \rightarrow \pi^+ \pi^- \pi^0$ ratios without/with $\pi^0 \rightarrow \gamma \gamma$ reconstruction in CsI -factor ~4 change in acceptance- agree to $(0.03 \pm 0.28_{stat})\%$

Uncertainties on Partial Width Ratios

K_L BR Measurements

From measured ratios to $|V_{us}|$

Modes	Partial Width Ratio				
Г _{Кµ3} / Г _{Ке3}	0.6640±0.0014±0.0022				
Г ₀₀₀ / Г _{Ке3}	$0.4782 \pm 0.0014 \pm 0.0053$	$P_{r'}(V) = 0.4067 \pm 0.0011$			
$\Gamma_{\rm +-0}$ / $\Gamma_{\rm Ke3}$	0.3078±0.0005±0.0017	$Br(K_{e3}) = 0.4007 \pm 0.0011$ $Br(K_{e3}) = 0.2701 \pm 0.0009$			
Γ_{+-} / $\Gamma_{{\sf Ke3}}$	(4.856±0.017±0.023)×10 ⁻³				
Γ ₀₀ / Γ ₀₀₀	(4.446±0.016±0.019)×10 ⁻³				
	•	Using $\tau_{\rm K} =$ 51.5 ±0.4 <i>ns</i>			
		$\Gamma(K_{e3}) = (7.897 \pm 0.065) \times 10^{6} s^{-1}$ $\Gamma(K_{\mu 3}) = (5.244 \pm 0.044) \times 10^{6} s^{-1}$			
K_{e3} : $ V_{us} = 0.2253 \pm 0.0023$					
К_{µ3}:	$ V_{\rm us} = 0.2250 \pm 0.0023$				
Average: $ V_{us} = 0.2252 \pm 0.0008_{KTeV} \pm 0.0021_{ext}$					
	Γ ratios	$\int_{f_1(0)} \tau_{y}$			
	form factors	rad corrs			
May 19 th , 2005 R. Tschirhart, Fermilab. LNF Spring School, Frascati. 68					

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

Comparisons with Theory and $|V_{ud}|$

Summary of Uncertainties on $|V_{ud}|^2 + |V_{us}|^2$

PDG Compilation of Selected Measurements....A lesson here!

Unitarity Conclusions

- "Unitarity Crisis" in first row of CKM matrix resolved.
- > Radiative corrections are critical.
- Ball is now in theory court to further extract |Vus|
- > Analysis of full KLOE statistics will be very welcome.

Precise Conclusions.

- CP & T violation well established, CPT and CKM unitarity safe for now due to precision measurements in the kaon system.
- > Experiment spinoffs: NA48(2): $\pi^+\pi^- \rightarrow \pi^0\pi^0$.
- A path to the ultimate energy frontier. Plank scale?

Spares

NA48(2) Observes Fascinating Rescattering effect in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

The charge exchange process $\pi^+\pi^- \rightarrow \pi^0\pi^0$ is not negligible under threshold, and interferes (destructively) with direct emission

	I _K Uncertainty from
	Semileptonic Form Factors
we include 0.7% uncertainty from model dependence (doubles error!).	
	$I_{K}(\text{quadratic: } \chi^{2}/\text{dof}=62/64) = 0.7\%$
4	$I_{K}(\text{pole model: } \chi^{2}/\text{dof}=66/65)$
	more precise than PDG, KTeV I _K
	uncertainty is comparable to PDG uncertainty based on linear FF model.
I _{Kµ3} /I _{Ke3} ratio is not affected.	
T	May 19 th , 2005 R. Tschirhart, Fermilab. LNF Spring School, Frascati. 78

Discovered at KTeV, confirmed by CERN-NA48...

R. Tschirhart, Fermilab. LNF Spring School, Frascati.

May 19th , 2005

79

Absolute Efficiency for $3\pi^0$ in B($3\pi^0$)/B(K_{e3}) ratio

Csl inefficiency (10⁻⁶) monitored by laser. Photon mis-pairings checked in 3π⁰ mass; for events outside signal-mass region, data-MC difference is only 0.14% (included as systematic uncertainty)

80

Aside: All is not entirely well...CP Violation Parameter $|\eta_{+}|$ Determined from KTeV Branching Fractions

Compare KTeV $|\eta_{+-}|$ with previous results using K_L-K_S interference [independent of KTeV-PDG discrepancy in B($K_L \rightarrow \pi\pi$)]

Recent $f_0(t)$ Comparisons (Kµ3 FF)

Fit with:

Semileptonic Form Factors: λ_+

Ignore 2nd order term in KTeV to compare with other measurements

