\boldsymbol{u}^{t}

^b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Dark Matter – Experimental Searches

XVIII Frascati Spring School "Bruno Touschek" – Spring 2016

Marc Schumann, AEC Bern marc.schumann@lhep.unibe.ch

Content

•	Direct Detection	1 2	Basics: Rates and signatures; energy scales Backgrounds: Sources, reduction	Mon
•	Detectors	3 4	Crystals, cryogenic, directional detectors Nal, Germanium Cryogenic liquids Xenon and Argon	Tue
•	Indirect Detection Current Results	5 6	Indirect detection: Cosmic rays, gamma lines, neutrinos The current dark matter landscape The future	Wed

Slides:

http://www.lhep.unibe.ch/schumann/dm_2016.html

Direct WIMP Detection: Experiments

Experimental Progress

Light and heavy WIMPs

3 Crystals, Cryogenic, Directional Detectors

- Crystal Detectors
 - → mainly anorganic NaI, CsI sctintillators
 - \rightarrow also Ge
 - → DAMA/Libra, KIMS, ANAIS, CoGeNT → DMIce, SABRE
- Cryogenic Detectors
 - \rightarrow cooled down to mK measure lattice vibrations
 - → two signals (phonons+charge, phonons+light) for signal/background discrimination
 - → SuperCDMS, EDELWEISS, CRESST-II → SuperCDMS
- Directional Detectors
 - \rightarrow measure direction of nuclear recoils
 - \rightarrow this requires non-dense targets \rightarrow very low target mass
 - → DRIFT, DMTPC, NEWAGE, MIMAC

Annual Modulation

- \rightarrow recoil spectrum gets harder and softer during the year
- → search for annually modulating signal (3% effect)
- \rightarrow does not require many physical assumptions

Solid state detector

Semiconductor = band gap between valence and conduction band is small Silicon = 1.12 eV, Germanium = 0.66 eV

CoGeNT

Low Energy Spectra

Ge: CoGeNT

SuperCDMS

Cryogenic Detectors: Discrimination

SuperCDMS: Surface Event Rejection

Appl.Phys.Lett. 103 (2013) 164105

WIMP Signatures: Directionality

- The Earth's motion with respected to the Galactic rest frame produces a direction dependance of the recoil spectrum
- The peak WIMP flux comes from the direction of the solar motion, which points towards the constellation Cygnus
- · Assuming a smooth WIMP distribution, the recoil rate is then peaked in the opposite direction
- · In the laboratory frame, this direction varies over the course of a sidereal day due to the Earth's rotation
- This effect can provide a robust signature for a Galactic origin of a WIMP signal

Projection of the WIMP flux in Galactic coordinates

- \rightarrow daily modulation!
- BUT: detector must be able to detect direction of recoils; up to now this only works in very "non-dense" detectors

Track Detection

DM-TPC

Fig. 17: (a) UNM optical CCD test TCP - with particle tracking event images as follows with skewness head-tail analysis inset, (b) example high energy 178 keV F recoil showing clear head-tail, (c) very low energy F recoil event of 10 keV_{ee} (23 keV_{rec}) still shows asymmetry skewness, (d) similar energy electron recoil (9.7 keV_{ee}) shows clearly different dE/dx morphology with segmentation of track (see text for refs).

DRIFT-II @ Boulby (GB)

4 Cryogenic Liquids

- The liquiefied (→ cryogenic) noble liquids Xe and Ar are excellent scintillators and ionizers
 - → single phase: measure as much as light as possible DEAP-3600, CLEAN, XMASS
 - → dual phase TPCs: measure light and charge XENON100/1T, LUX, Panda-X, DarkSide → XENONnT, LZ
- The detectors have position sensitivity
 - \rightarrow fiducialization
 - → multiple scatter rejection
- Background reduction
 - \rightarrow charge/light ratio and scintillation pulse shape (Ar)
- A path towards massive future detectors
 - \rightarrow ton-scale experiments under construction

Light-Charge anti-Correlation

LXe examples

Astropart. Phys 35, 573 (2011)

Single Phase Detector

Figures from XMASS

LAr: Pulse Shape Discrimination

XMASS

- single phase **LXe** detector
- 800kg total, 100kg fiducial mass
- 60% of surface covered with 642 hexagonal PMTs
- very high LY (~7x higher than Xe100)
- located in Kamioka (JP)

~99.99% rejection @ 50% acceptance

~99.5% rejection @ 50% acceptance

The XENON100 Detector

Astropart. Phys. 35, 573 (2012)

The XENON Future

XENON1T @ LNGS

XENON1T

Low-background stainless steel cryostats

dual-phase LXe TPC

- total mass ~3.2 t
- active mass ~2.0 t
- fiducial mass: ~1 t
- TPC made from OFHC and PTFE

248 photomultipliers

- Hamamatsu R11410-21
- low background
- high QE (36% @ 178nm)
- extensive testing in cryogenic environments *JINST 8, P04026 (2013)*

