Tilman Plehn

BSM physics

Anomalies

Higgs EF1

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

New Physics at the LHC

Tilman Plehn

Universität Heidelberg

Frascati, May 2016

BSM physics

- Anomalies Higgs EFT Top EFT DM EFT Higgs sectors
- DM sectors
- SUSY

Beyond the Standard Model

What is the Standard Model?

- a gauge theory with the group structure $\textit{SU}(3) \otimes \textit{SU}(2) \otimes \textit{U}(1)$
- massless SU(3) and U(1) gauge bosons
- massive electroweak gauge bosons
- single light Higgs scalar
- Dirac fermions in doublets and with masses equal to Yukawas
- generation mixing in quark and neutrino sector
- \Rightarrow QFT defined by particle content and (gauge) interactions

BSM physics

- Anomalies Higgs EFT Top EFT DM EFT Higgs sectors
- DM sectors
- SUSY

Beyond the Standard Model

What is the Standard Model?

- a gauge theory with the group structure $SU(3)\otimes SU(2)\otimes U(1)$
- massless SU(3) and U(1) gauge bosons
- massive electroweak gauge bosons
- single light Higgs scalar
- Dirac fermions in doublets and with masses equal to Yukawas
- generation mixing in quark and neutrino sector
- ⇒ QFT defined by particle content and (gauge) interactions

More physics at higher scales

- renormalizable Lagrangian [all operators to D4]
- neutrino masses? [see-saw at 10¹¹ GeV?]
- flavor physics? [new operators above 10⁴ GeV?]
- dark matter? [only solid evidence for new physics]
- gravity? [mostly negligible, and unrenormalizable in usual sense]
- \Rightarrow general effective-theory Lagrangian with those interactions and particles
- \Rightarrow cutoff scale built in, size of Λ negotiable
- ⇒ who the hell cares....???

- Higgs mass including loops wants to be cutoff scale Λ \Rightarrow
- effective Standard-Model destabilized [Higgs wants to be at A, but does not function there] \Rightarrow
- hierarchy problem \Rightarrow

DM EFT

BSM physics

Anomalies Higgs EFT Top EFT DM EFT Higgs sectors DM sectors

Beyond the Standard Model

Starting from data...

- ...after the Higgs discovery
- ...and requiring high-scale physics
- Higgs mass driven to cutoff of effective Standard Model
- \Rightarrow easy solution: counter term to cancel loops \Rightarrow artificial, unmotivated, ugly
- ⇒ or new physics at TeV scale: supersymmetry extra dimensions little Higgs (Goldstone Higgs) Higgsless, composite Higgs, TopColor, YourFavoriteNewPhysics...
- $\Rightarrow\,$ typically cancellation by new particles or discussing away high scale
- $\Rightarrow \ \text{beautiful concepts, but problematic at TeV scale} \quad \ \ \left[\text{data seriously in the way} \right] \\$
- \Rightarrow new physics models in baroque state

BSM physics

Top EFT

DM EFT

DM sectors

Anomalies

Strategies

Theory tool box

- Lagrangian language established by Higgs discovery
- full new physics model [built to solve problems]
- simplified models [capturing experimental features, theoretically poor]
- effective field theory [symmetries and particles fixed, non-renormalizable operators]
- matter of convenience and taste

	bottom-up EFT	simplified models	full models
agnostic	lecture 2		
data-driven		lecture 3	lecture 4
theory-driven		lecture 3	

Strategies

Theory tool box

BSM physics Anomalies

Top EFT

DM EFT

DM sectors

- Lagrangian language established by Higgs discovery
 - full new physics model [built to solve problems]
 - simplified models [capturing experimental features, theoretically poor]
 - effective field theory [symmetries and particles fixed, non-renormalizable operators]
 - matter of convenience and taste

	bottom-up EFT	simplified models	full models
agnostic	lecture 2		pre-LHC
data-driven		lecture 3	lecture 4
theory-driven		lecture 3	pre-LHC

BSM physics Anomalies

Top EFT

DM EFT

DM sectors

Theory tool box

Strategies

- Lagrangian language established by Higgs discovery
- full new physics model [built to solve problems]
- simplified models [capturing experimental features, theoretically poor]
- effective field theory [symmetries and particles fixed, non-renormalizable operators]
- matter of convenience and taste

	bottom-up EFT	simplified models	full models
agnostic	lecture 2	dishonest	pre-LHC
data-driven	boring	lecture 3	lecture 4
theory-driven	pointless	lecture 3	pre-LHC

750 GeV — the finger to particle theory

New Physics

at the LHC

Anomalies

DM EFT

DM sectors

My take on all those 750 GeV papers

- open questions due to limited significance
- general problem: signal rate large
- largely EFT exercise
- dimension-5 operators $XG^{\mu\nu}G_{\mu\nu}$ and $XA^{\mu\nu}A_{\mu\nu} \longrightarrow$ avoid di-jet constraints
- gauge invariant $XB^{\mu\nu}B_{\mu\nu}$ and $XW^{\mu\nu}W_{\mu\nu} \longrightarrow$ avoid VV constraints
- no clear link to other data
- \Rightarrow great to play with, but only for fun, please

BSM physics

Anomalies

- Higgs EF
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Hooperon - the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by annihilating DM into photons
- $m_\chi \sim$ 25 ... 30 GeV from spectrum

BSM physics

Anomalies

- Higgs EF
- Top EFT
- DM EFT
- Hiaas sectors
- DM sectors
- SUSY

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by annihilating DM into photons
- $m_\chi \sim$ 25 ... 30 GeV from spectrum

In conclusion, we have studied the angular distribution and energy spectrum of gamma rays measured by the Fermi Gamma Ray Space Telescope in the region surrounding the Galactic Center, and find that this data is well described by a scenario in which a 25-30 GeV dark matter particle, distributed with a halo profile slightly steeper than NFW ($\gamma = 1.1$), is annihilating with a cross section within a factor of a few of the value predicted for a thermal relic.

Anomalies

- Top EFT
- DM EFT
- Higas sectors DM sectors

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

 s^{-1})

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by annihilating DM into photons
- $-m_{\chi}\sim 25$... 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good

Anomalies

- Top EFT DM EFT
- Higas sectors DM sectors

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

 s^{-1})

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by annihilating DM into photons
- $-m_{\chi}\sim 25$... 30 GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution

Anomalies

- Higas sectors

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

s⁻¹)

Ŷ

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by annihilating DM into photons
- $-m_{\chi}\sim 25\ldots 30$ GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
- even better with modified NFW contribution

of the analysis that has previously not been employed. After subtraction of interstellar emission and point sources, an extended residual is present. It can be fit with a centrally peaked profile with a specified spectral model, but not all of the positive residual is accounted for by such a model. Because of the uncertain nature of the properties of the positive residual due to the IEM and point source determination, a precise physical interpretation of its origin is premature.

- Anomalies
- Top EFT
- DM EFT
- Higas sectors DM sectors

Hooperon — the best dark matter has to offer

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper (unpublished? 2009)]

່ທ

Ŷ

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by annihilating DM into photons
- $-m_{\chi}\sim 25\ldots 30$ GeV from spectrum

Kind of confirmed by FERMI [Murgia etal (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
- even better with modified NFW contribution
- different DM candidates [Calore etal] _
- DM model playground \Rightarrow

Tilman Plehn

BSM physics

Anomalies

- Higgs EFT
- Top EFT
- DM EFT
- Higgs secto
- DM sectors
- SUSY

Higgs couplings

, A

Agnostic: why super-simple SM-Higgs sector? [SFitter]

- or: all couplings proportional to masses?
 - assume: narrow CP-even scalar
 Standard Model operators
 - total production/decay rates only
 - Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

- electroweak renormalizability through some UV completion
- QCD renormalizability not an issue

$$\begin{array}{c} gg \rightarrow H \\ qq \rightarrow qqH \\ gg \rightarrow ttH \\ qq' \rightarrow VH \end{array} \longleftrightarrow \begin{array}{c} fH \rightarrow ZZ \\ H \rightarrow WW \\ H \rightarrow b\bar{b} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \end{array}$$

Tilman Plehn

BSM physics

Anomalies

- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Higgs couplings

Agnostic: why super-simple SM-Higgs sector? [SFitter]

- or: all couplings proportional to masses?
- assume: narrow CP-even scalar
 Standard Model operators
- total production/decay rates only
- Lagrangian

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{SM}} + \Delta_W \; g m_W H \; W^{\mu} W_{\mu} + \Delta_Z \; \frac{g}{2c_w} m_Z H \; Z^{\mu} Z_{\mu} - \sum_{\tau, b, t} \Delta_f \; \frac{m_f}{v} H \left(\bar{f}_R f_L + \text{h.c.} \right) \\ &+ \Delta_g F_G \; \frac{H}{v} \; G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \; \frac{H}{v} \; A_{\mu\nu} A^{\mu\nu} + \text{invisible} + \text{unobservable} \end{split}$$

Total width

- coupling extraction impossible without width assumption
- observed partial widths:

$$N = \sigma BR \propto rac{g_p^2}{\sqrt{\Gamma_{
m tot}}} \; rac{g_d^2}{\sqrt{\Gamma_{
m tot}}} \sim rac{g^4}{g^2 \sum rac{\Gamma_i(g^2)}{g^2} + \Gamma_{
m unobs}} \; \stackrel{g^2 o 0}{
ightarrow} = 0$$

gives constraint from $\sum \Gamma_i(g^2) < \Gamma_{tot} \rightarrow \Gamma_H|_{min}$

- WW \rightarrow WW unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{max}$ [HiggsSignals]
- our assumption $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Higgs couplings now and in the future

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties

BSM physics

Anomalies

- Higgs EFT
- Top EFT
- DM EFT

Higgs sector

DM sectors

SUSY

Higgs couplings now and in the future

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops

Tilman Plehn

Anomalies

- Higgs EFT
- Top EFT
- DM EFT
- DM sectors

Higgs couplings now and in the future

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- $-g_{\gamma}$ with new loops
- g_q vs g_t barely possible

BSM physics

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Higgs couplings now and in the future

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- \Rightarrow Standard Model within 25%

BSM physics

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- \Rightarrow Standard Model within 25%

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

- LHC extrapolations unclear
- systematic/theory uncertainties large
- e⁺e⁻ linear collider much better

unobserved decays avoided width measured from σ_{ZH} $H \rightarrow c\bar{c}$ accessible invisible decays hugely improved QCD theory error bars avoided

BSM physics

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sector
- DM sectors
- SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- ⇒ Standard Model within 25%

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

- LHC extrapolations unclear
- systematic/theory uncertainties large
- $-e^+e^-$ linear collider much better

unobserved decays avoided width measured from σ_{ZH} $H \rightarrow c\bar{c}$ accessible invisible decays hugely improved QCD theory error bars avoided

- 500 GeV linear collider even better

BSM physics

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- ⇒ Standard Model within 25%

Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP]

- LHC extrapolations unclear
- systematic/theory uncertainties large
- $-e^+e^-$ linear collider much better
 - unobserved decays avoided width measured from σ_{ZH} $H \rightarrow c\bar{c}$ accessible invisible decays hugely improved QCD theory error bars avoided
- 500 GeV linear collider even better
- \Rightarrow Higgs factory case obvious

BSM physics

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Higgs couplings now and in the future

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops
- $-g_g vs g_t$ barely possible
- including invisible decays
- ⇒ Standard Model within 25%

Three major problems with approach

- 1- theory: no electroweak renormalizability
- 2- experiment: no kinematic distributions
- 3- phenomenology: no link to other sectors

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Hiaas sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{split}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s}v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\phi,2}}{\Lambda^{2}} \mathcal{O}_{\phi,2}$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} = \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} = \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{split}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = -\frac{\alpha_{s}v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^{2}} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{\phi,2}}{\Lambda^{2}} \mathcal{O}_{\phi,2}$$

- Higgs couplings to SM particles [derivatives = momentum, #2 solved]

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z^{\mu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{split}$$

- relevant part after equation of motion, etc

$$\mathcal{L}^{HVV} = - \frac{\alpha_s v}{8\pi} \frac{f_g}{\Lambda^2} \mathcal{O}_{GG} + \frac{f_{BB}}{\Lambda^2} \mathcal{O}_{BB} + \frac{f_{WW}}{\Lambda^2} \mathcal{O}_{WW} + \frac{f_B}{\Lambda^2} \mathcal{O}_B + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_{\phi,2}}{\Lambda^2} \mathcal{O}_{\phi,2}$$

- Higgs couplings to SM particles [derivatives = momentum, #2 solved]

$$\mathcal{L}^{HVV} = g_g H G^a_{\mu\nu} G^{a\mu\nu} + g_\gamma H A_{\mu\nu} A^{\mu\nu} + g^{(1)}_Z Z_{\mu\nu} Z^{\mu} \partial^{\nu} H + g^{(2)}_Z H Z_{\mu\nu} Z^{\mu\nu} + g^{(3)}_Z H Z_{\mu} Z^{\mu} + g^{(1)}_W \left(W^+_{\mu\nu} W^{-\mu} \partial^{\nu} H + \text{h.c.} \right) + g^{(2)}_W H W^+_{\mu\nu} W^{-\mu\nu} + g^{(3)}_W H W^+_{\mu} W^{-\mu} + \cdots$$

- plus Yukawa structure $f_{\tau,b,t}$
- 9 operators for Run I data

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{aligned} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{aligned}$$

- linked to Higgs couplings

$$\begin{split} g_{g} &= \frac{f_{GG}v}{\Lambda^{2}} \equiv -\frac{\alpha_{s}}{8\pi} \frac{f_{g}v}{\Lambda^{2}} & g_{\gamma} = -\frac{g^{2}vs_{w}^{2}}{2\Lambda^{2}} \frac{f_{BB} + f_{WW}}{2} \\ g_{Z}^{(1)} &= \frac{g^{2}v}{2\Lambda^{2}} \frac{c_{w}^{2}f_{W} + s_{w}^{2}f_{B}}{2c_{w}^{2}} & g_{W}^{(1)} = \frac{g^{2}v}{2\Lambda^{2}} \frac{f_{W}}{2} \\ g_{Z}^{(2)} &= -\frac{g^{2}v}{2\Lambda^{2}} \frac{s_{w}^{4}f_{BB} + c_{w}^{4}f_{WW}}{2c_{w}^{2}} & g_{W}^{(2)} = -\frac{g^{2}v}{2\Lambda^{2}} f_{WW} \\ g_{Z}^{(3)} &= M_{Z}^{2}(\sqrt{2}G_{F})^{1/2} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) & g_{W}^{(3)} = M_{W}^{2}(\sqrt{2}G_{F})^{1/2} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) \\ g_{f} &= -\frac{m_{f}}{v} \left(1 - \frac{v^{2}}{2\Lambda^{2}}f_{\phi,2}\right) + \frac{v^{2}}{\sqrt{2}\Lambda^{2}}f_{f} \end{split}$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{aligned}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [remember #2]

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} (\phi^{\dagger}\phi) \partial_{\mu} (\phi^{\dagger}\phi) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} (\phi^{\dagger}\phi)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) (\phi^{\dagger}\phi) \end{split}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [remember #2]

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= \left(D_{\mu} \phi \right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu} \phi \right) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= \left(D_{\mu} \phi \right)^{\dagger} \phi \phi^{\dagger} \left(D^{\mu} \phi \right) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger} \phi \right)^{3} & \mathcal{O}_{\phi,4} &= \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) \left(\phi^{\dagger} \phi \right) \end{split}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [remember #2]
- with impact...

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Run 1 legacy

- kinematics: $p_{T,V}, \Delta \phi_{jj}$ [remember #2]
- with impact...

...in last bin

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

D6 Higgs operators

Higgs sector effective field theory

- set of Higgs operators [renormalizable, #1 solved]

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi G_{\mu\nu}^{a} G^{a\mu\nu} & \mathcal{O}_{WW} &= \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{BB} &= \cdots \\ \mathcal{O}_{BW} &= \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi & \mathcal{O}_{W} &= (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) & \mathcal{O}_{B} &= \cdots \\ \mathcal{O}_{\phi,1} &= (D_{\mu}\phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu}\phi) & \mathcal{O}_{\phi,2} &= \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right) \\ \mathcal{O}_{\phi,3} &= \frac{1}{3} \left(\phi^{\dagger}\phi\right)^{3} & \mathcal{O}_{\phi,4} &= (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) \left(\phi^{\dagger}\phi\right) \end{aligned}$$

Run 1 legacy

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

- DM EFT
- Higgs sectors

DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = \left(D_{\mu}\phi\right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu}\phi\right) \qquad \mathcal{O}_{B} = \left(D_{\mu}\phi\right)^{\dagger} \hat{B}^{\mu\nu} \left(D_{\nu}\phi\right) \qquad \mathcal{O}_{WW} = \mathsf{Tr}\left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho}\right)$$

- kinematics: $p_{T,\ell}$ in VV production

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

- DM EFT
- Higgs sectors
- DM sectors

SUSY

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = \left(D_{\mu}\phi\right)^{\dagger}\hat{W}^{\mu\nu}\left(D_{\nu}\phi\right) \qquad \mathcal{O}_{B} = \left(D_{\mu}\phi\right)^{\dagger}\hat{B}^{\mu\nu}\left(D_{\nu}\phi\right) \qquad \mathcal{O}_{WW} = \mathsf{Tr}\left(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}\right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

- Top EFT
- DM EFT
- Higgs secto
- DM sectors
- SUSY

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = \left(D_{\mu}\phi\right)^{\dagger}\hat{W}^{\mu\nu}\left(D_{\nu}\phi\right) \qquad \mathcal{O}_{B} = \left(D_{\mu}\phi\right)^{\dagger}\hat{B}^{\mu\nu}\left(D_{\nu}\phi\right) \qquad \mathcal{O}_{WW} = \mathsf{Tr}\left(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}\right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting correlations

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

- Top EFT
- DM EFT
- Higgs sect
- DM sectors
- SUSY

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = \left(D_{\mu}\phi\right)^{\dagger}\hat{W}^{\mu\nu}\left(D_{\nu}\phi\right) \qquad \mathcal{O}_{B} = \left(D_{\mu}\phi\right)^{\dagger}\hat{B}^{\mu\nu}\left(D_{\nu}\phi\right) \qquad \mathcal{O}_{WW} = \mathsf{Tr}\left(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}\right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting correlations
- ⇒ complete Higgs-gauge analysis

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

- Top EFT
- DM EFT
- Higgs secto
- DM sectors
- SUSY

D6 Higgs-gauge operators

Triple gauge couplings

- one more Higgs-gauge operator [#3 solved]

$$\mathcal{O}_{W} = \left(D_{\mu}\phi\right)^{\dagger} \hat{W}^{\mu\nu} \left(D_{\nu}\phi\right) \qquad \mathcal{O}_{B} = \left(D_{\mu}\phi\right)^{\dagger} \hat{B}^{\mu\nu} \left(D_{\nu}\phi\right) \qquad \mathcal{O}_{WW} = \text{Tr}\left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho}\right)$$

- kinematics: $p_{T,\ell}$ in VV production
- combined LHC channels
- affecting correlations
- ⇒ complete Higgs-gauge analysis

LHC vs LEP

- triple gauge vertices g_1, κ, λ vs operators
- semileptonic analyses missing for 8 TeV
- ⇒ Run I LHC beating LEP

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higas sector

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = \frac{1}{2} \left(\tilde{H} + v \right)^{2} \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^2}{\Lambda^2}}$$

Tilman Plehn

BSM physics Anomalies

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sector

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^{2} \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{\mathsf{kin}} = \frac{1}{2} \partial_{\mu} \tilde{H} \, \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi, 2} v^{2}}{\Lambda^{2}} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \, \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi, 2} v^{2}}{\Lambda^{2}}}$$

second operator, minimum condition giving v

$$v^2 = -\frac{\mu^2}{\lambda} - \frac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

Tilman Plehn

BSM physics Anomalies

/110/110/05

Higgs EFT

Top EFT

DM EFT

Higgs sector

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

first operator, wave function renormalization

$$\mathcal{O}_{\phi,2} = rac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) = rac{1}{2} \left(\tilde{H} + v
ight)^{2} \; \partial_{\mu} \tilde{H} \; \partial^{\mu} \tilde{H}$$

proper normalization of combined kinetic term [LSZ]

$$\mathcal{L}_{kin} = \frac{1}{2} \partial_{\mu} \tilde{H} \partial^{\mu} \tilde{H} \left(1 + \frac{f_{\phi,2} v^2}{\Lambda^2} \right) \stackrel{!}{=} \frac{1}{2} \partial_{\mu} H \partial^{\mu} H \quad \Leftrightarrow \quad H = \tilde{H} \sqrt{1 + \frac{f_{\phi,2} v^2}{\Lambda^2}}$$

second operator, minimum condition giving v

$$v^2 = -\frac{\mu^2}{\lambda} - \frac{f_{\phi,3}\mu^4}{4\lambda^3\Lambda^2}$$

both operators contributing to Higgs mass

$$\mathcal{L}_{\text{mass}} = -\frac{\mu^2}{2}\tilde{H}^2 - \frac{3}{2}\lambda v^2\tilde{H}^2 - \frac{f_{\phi,3}}{\Lambda^2}\frac{15}{24}v^4\tilde{H}^2 \stackrel{!}{=} -\frac{m_H^2}{2}H^2$$
$$\Leftrightarrow \qquad m_H^2 = 2\lambda v^2\left(1 - \frac{f_{\phi,2}v^2}{\Lambda^2} + \frac{f_{\phi,3}v^2}{2\Lambda^2\lambda}\right)$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Hiaas sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu} \left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}} + \frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}} \right) H^{3} - \frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}} H \partial_{\mu}H \partial^{\mu}H \right] \\ &- \frac{m_{H}^{2}}{8\nu^{2}} \left[\left(1 - \frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}} + \frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}} \right) H^{4} - \frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}} H^{2} \partial_{\mu}H \partial^{\mu}H \right] \end{split}$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Hiaas sectors

DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu}\left[\left(1-\frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}}+\frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}}\right)H^{3}-\frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H\partial_{\mu}H\partial^{\mu}H\right] \\ &-\frac{m_{H}^{2}}{8\nu^{2}}\left[\left(1-\frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}}+\frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}}\right)H^{4}-\frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H^{2}\partial_{\mu}H\partial^{\mu}H\right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

- Higgs sectors
- DM sectors

SUSY

Exercise: higher-dimensional operators

Higgs sector including dimension-6 operators

$$\mathcal{L}_{D6} = \sum_{i=1}^{2} \frac{f_i}{\Lambda^2} \mathcal{O}_i \quad \text{with} \quad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \; \partial^{\mu} (\phi^{\dagger} \phi) \;, \quad \mathcal{O}_{\phi,3} = -\frac{1}{3} (\phi^{\dagger} \phi)^3$$

Higgs self couplings momentum dependent

$$\begin{split} \mathcal{L}_{\text{self}} &= -\frac{m_{H}^{2}}{2\nu}\left[\left(1-\frac{f_{\phi,2}\nu^{2}}{2\Lambda^{2}}+\frac{2f_{\phi,3}\nu^{4}}{3\Lambda^{2}m_{H}^{2}}\right)H^{3}-\frac{2f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H\partial_{\mu}H\partial^{\mu}H\right] \\ &-\frac{m_{H}^{2}}{8\nu^{2}}\left[\left(1-\frac{f_{\phi,2}\nu^{2}}{\Lambda^{2}}+\frac{4f_{\phi,3}\nu^{4}}{\Lambda^{2}m_{H}^{2}}\right)H^{4}-\frac{4f_{\phi,2}\nu^{2}}{\Lambda^{2}m_{H}^{2}}H^{2}\partial_{\mu}H\partial^{\mu}H\right] \end{split}$$

alternatively, strong multi-Higgs interactions

$$H = \left(1 + \frac{f_{\phi,2}v^2}{2\Lambda^2}\right)\tilde{H} + \frac{f_{\phi,2}v}{2\Lambda^2}\tilde{H}^2 + \frac{f_{\phi,2}}{6\Lambda^2}\tilde{H}^3 + \mathcal{O}(\tilde{H}^4)$$

 \Rightarrow operators and distributions linked to poor UV behavior

D6 top operators

New Physics at the LHC Tilman Plehn

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

- single, pair-wise, and associated top production [plus decays]
- including anomalous A_{FB} from Tevatron
- 4-quark, Yang-Mills, electroweak operators

 $\mathcal{O}_{qq} = ar{q} \gamma_{\mu} q \, ar{t} \gamma^{\mu} t \qquad \mathcal{O}_{G} = f_{ABC} G^{A\nu}_{\mu} G^{B\lambda}_{\nu} G^{C\mu}_{\lambda}$

$$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi \textit{G}^{a}_{\mu\nu} \textit{G}^{a\mu\nu} \cdots$$

- profile likelihoods and individual limits
- \Rightarrow Generic D6 reach \sim 500 GeV [c = 1]

D6 top operators

New Physics at the LHC Tilman Plehn

BSM physics Anomalies

- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors

SUSY

Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White]

- single, pair-wise, and associated top production [plus decays]
- including anomalous A_{FB} from Tevatron
- 4-quark, Yang-Mills, electroweak operators

 $\mathcal{O}_{qq} = \bar{q} \gamma_{\mu} q \, \bar{t} \gamma^{\mu} t \qquad \mathcal{O}_{G} = f_{ABC} G^{A\nu}_{\mu} G^{B\lambda}_{\nu} G^{C\mu}_{\lambda}$

$$\mathcal{O}_{\phi G} = \phi^{\dagger} \phi G^{a}_{\mu \nu} G^{a \mu \nu} \cdots$$

- profile likelihoods and individual limits
- \Rightarrow Generic D6 reach \sim 500 GeV [C = 1]

For theorists: in terms of models

- axigluon: $M_A > 1.4 \text{ TeV}$ [tresonance]
- SM-like W': $M_{W'} > 1.2 \text{ TeV}$ [t-channel,...]
- ⇒ models less sensitive to correlations

D6 dark matter operators

New Physics at the LHC Tilman Plehn

- BSM physics
- Anomalies
- Higgs EF1
- Top EFT
- DM EFT
- Higgs sectors DM sectors

Combining direct, indirect, collider results for WIMPs [Tait etal]

- choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon]
- consider D6 scattering process $\chi\chi \rightarrow$ SM SM
- relic density from annihilation $[m_{\chi}/\tau \sim 30]$
- indirect detection even later
- direct detection non-relativistic $[E \sim 10 \, \text{MeV}]$
- LHC tricky: single scale $m_\chi \ll m_{
 m mediator}$?
- example: scalar dark matter

LabelCoefficient	Operator	σ_{SI}	$\langle \sigma_{ann} v \rangle$
	Real scalar		
R1 $\lambda_1 \sim 1/(2M^2)$	$m_q \chi^2 \bar{q} q$	\checkmark	s-wave
R2 $\lambda_2 \sim 1/(2M^2)$	$im_q \chi^2 \bar{q} \gamma^5 q$		s-wave
R3 $\lambda_3 \sim \alpha_s/(4M^2)$	$\chi^{2}G_{\mu\nu}G^{\mu\nu}$	\checkmark	s-wave
R4 $\lambda_4 \sim \alpha_s/(4M^2$)iχ ² G _{μν} Ĝ ^{μν}		s-wave
Co	mplex scalar		
C1 $\lambda_1 \sim 1/(M^2)$	$m_q \chi^{\dagger} \chi \bar{q} q$	\checkmark	s-wave
C2 $\lambda_2 \sim 1/(M^2)$	$im_q \chi^{\dagger} \chi \bar{q} \gamma^5 q$		s-wave
C3 $\lambda_3 \sim 1/(M^2)$	$\chi^{\dagger}_{,\partial\mu}\chi\bar{q}\gamma^{\mu}q$	\checkmark	p-wave
C4 $\lambda_4 \sim 1/(M^2)$	$\chi^{\dagger}_{,}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}$	7	p-wave
C5 $\lambda_5 \sim \alpha_s/(8M^2)$	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	\checkmark	s-wave
C6 $\lambda_6 \sim \alpha_s/(8M^2)$)i $\chi^{\dagger}\chi G_{\mu\nu} {\Bar{G}}^{\mu u}$		s-wave

D6 dark matter operators

New Physics at the LHC Tilman Plehn

BSM physics

- Anomalies
- Higgs EF1
- Top EFT

DM EFT

Higgs sectors DM sectors

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density
- scalar dark matter

LabelCoefficient	Operator	σ_{SI}	$\langle \sigma_{ann} v \rangle$
	Real scalar		
R1 $\lambda_1 \sim 1/(2M)$	²) $m_q \chi^2 \bar{q} q$	\checkmark	s-wave
R2 $\lambda_2 \sim 1/(2M)$	²) $im_q \chi^2 \bar{q} \gamma^5 q$		s-wave
R3 $\lambda_3 \sim \alpha_s/(4$	$M^{2})\chi^{2}G_{\mu\nu}G^{\mu\nu}$	\checkmark	s-wave
R4 $\lambda_4 \sim \alpha_s/(4$	M^2) $i\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$,	s-wave

- profile likelihood
- flat prior on log λ_i [prior 1/ λ_i]
- Dirichlet prior prefering similar-sized Wilson coefficients

D6 dark matter operators

New Physics at the LHC Tilman Plehn

- BSM physics
- Anomalies
- Higgs EF1
- Top EFT

DM EFT

Higgs sectors DM sectors

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density
- scalar dark matter

LabelCoefficient	Operator	σ_{SI}	$\langle \sigma_{ann} v \rangle$
	Real scalar		
R1 $\lambda_1 \sim 1/(2M)$	$\frac{2}{m_q \chi^2 \bar{q} q}$	\checkmark	s-wave
R2 $\lambda_2 \sim 1/(2M)$	$(2) im_q \chi^2 \bar{q} \gamma^5 q$		s-wave
R3 $\lambda_3 \sim \alpha_s/(4$	$M^{2})\chi^{2}G_{\mu\nu}G^{\mu\nu}$	′ √	s-wave
R4 $\lambda_4 \sim \alpha_s/(4$	M^2)i $\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	ν	s-wave

- profile likelihood
- flat prior on log λ_i [prior $1/\lambda_i$]
- Dirichlet prior prefering similar-sized Wilson coefficients
- Fermi: GCE plus dwarf galaxies
- \Rightarrow with data, the method hardly matters... $\frac{1}{2}$

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors

(Simplified) Higgs portal

Higgs sector minimal? [theory-driven question]

- secondary question: D6 Higgs approach applicable?
- renormalizable extended potential [with or without VEV]

$$\begin{split} V(\phi, \mathcal{S}) &= -\mu_1^2 (\phi^{\dagger} \phi) + \lambda_1 |\phi^{\dagger} \phi|^2 - \mu_2^2 \mathcal{S}^2 + \kappa \mathcal{S}^3 + \lambda_2 \mathcal{S}^4 + \lambda_3 |\phi^{\dagger} \phi| \mathcal{S}^2 \\ &\to -\mu_1^2 (\phi^{\dagger} \phi) + \lambda_1 |\phi^{\dagger} \phi|^2 - \mu_2^2 \mathcal{S}^2 + \lambda_2 \mathcal{S}^4 + \lambda_3 |\phi^{\dagger} \phi| \mathcal{S}^2 \end{split}$$

- mixing to the observed Higgs mass eigenstate

$$H_1 = \cos \chi H_\phi + \sin \chi S$$

- decays to SM and hidden sectors [plus $H_2 \rightarrow H_1 H_1$ cascade decays]

$$\Gamma_{1} = \cos^{2} \chi \, \Gamma_{1}^{SM} + \sin^{2} \chi \, \Gamma_{1}^{hid} = \cos^{2} \chi \, \Gamma_{1}^{SM} \left(1 + \tan^{2} \chi \frac{\Gamma_{1}^{hid}}{\Gamma_{1}^{SM}} \right)$$

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors

(Simplified) Higgs portal

Higgs sector minimal? [theory-driven question]

- secondary question: D6 Higgs approach applicable?
- renormalizable extended potential [with or without VEV]

$$\begin{split} V(\phi, \mathcal{S}) &= -\mu_1^2 (\phi^{\dagger} \phi) + \lambda_1 |\phi^{\dagger} \phi|^2 - \mu_2^2 \mathcal{S}^2 + \kappa \mathcal{S}^3 + \lambda_2 \mathcal{S}^4 + \lambda_3 |\phi^{\dagger} \phi| \mathcal{S}^2 \\ &\to -\mu_1^2 (\phi^{\dagger} \phi) + \lambda_1 |\phi^{\dagger} \phi|^2 - \mu_2^2 \mathcal{S}^2 + \lambda_2 \mathcal{S}^4 + \lambda_3 |\phi^{\dagger} \phi| \mathcal{S}^2 \end{split}$$

- mixing to the observed Higgs mass eigenstate

$$H_1 = \cos \chi H_\phi + \sin \chi S$$

- decays to SM and hidden sectors [plus $H_2 \rightarrow H_1 H_1$ cascade decays]

$$\Gamma_{1} = \cos^{2} \chi \, \Gamma_{1}^{\text{SM}} + \sin^{2} \chi \, \Gamma_{1}^{\text{hid}} = \cos^{2} \chi \, \Gamma_{1}^{\text{SM}} \left(1 + \tan^{2} \chi \frac{\Gamma_{1}^{\text{hid}}}{\Gamma_{1}^{\text{SM}}} \right)$$

Invisible Higgs decays

WBF best choice to boost Higgs

- cut on missing energy and $\Delta \phi_{ii}$

New Physics at the LHC Tilman Plehn

- Anomalies
- Top EFT
- DM EFT

Higgs sectors

DM sectors

Invisible Higgs decays

New Physics at the LHC Tilman Plehn

- BSM physics
- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors

LHC challenges: invisible decays [Eboli & Zeppenfeld]

- WBF best choice to boost Higgs
- backgrounds: $Z_{\nu\nu}jj$ in QCD $[\sigma \propto \alpha \alpha_s^2]$ $Z_{\nu\nu}jj$ WBF-like $[\sigma \propto \alpha^3]$
- cut on missing energy and $\Delta \phi_{jj}$

Tilman Plehn

BSM physics

- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors SUSY

LHC challenges: invisible decays [Eboli & Zeppenfeld]

- WBF best choice to boost Higgs
- backgrounds: $Z_{\nu\nu}jj$ in QCD $[\sigma \propto \alpha \alpha_s^2]$ $Z_{\nu\nu}jj$ WBF-like $[\sigma \propto \alpha^3]$
- cut on missing energy and $\Delta \phi_{jj}$
- central jet veto to suppress QCD background
- \Rightarrow trigger the problem

Invisible Higgs decays

Tilman Plehn

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors SUSY

LHC challenges: invisible decays [Eboli & Zeppenfeld]

- WBF best choice to boost Higgs
- backgrounds: $Z_{\nu\nu}jj$ in QCD $[\sigma \propto \alpha \alpha_s^2]$ $Z_{\nu\nu}jj$ WBF-like $[\sigma \propto \alpha^3]$
- cut on missing energy and $\Delta \phi_{jj}$
- central jet veto to suppress QCD background
- \Rightarrow trigger the problem

Invisible Higgs decays

Multivariate update [Bernaciak, TP, Schichtel, Tattersall]

- baseline cuts: jet veto plus Δφ_{jj} multivariate: 2-jet, 3-jet sample
- reach $BR_{inv}\sim4\%$ for 3000 fb $^{-1}$
- further improvement to 2% from QCD jets to 10 GeV...
- \Rightarrow QCD the limiting factor

Tilman Plehn

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT
- DITLI

Higgs sectors

DM sectors SUSY

Invisible Higgs decays

LHC challenges: invisible decays [Eboli & Zeppenfeld]

- WBF best choice to boost Higgs
- backgrounds: $Z_{\nu\nu}jj$ in QCD $[\sigma \propto \alpha \alpha_s^2]$ $Z_{\nu\nu}jj$ WBF-like $[\sigma \propto \alpha^3]$
- cut on missing energy and $\Delta \phi_{jj}$
- central jet veto to suppress QCD background
- \Rightarrow trigger the problem

Multivariate update [Bernaciak, TP, Schichtel, Tattersall]

- baseline cuts: jet veto plus Δφ_{jj} multivariate: 2-jet, 3-jet sample
- reach $BR_{inv}\sim4\%$ for 3000 fb $^{-1}$
- further improvement to 2% from QCD jets to 10 GeV...
- \Rightarrow QCD the limiting factor

- /110/114/10/3
- Higgs EFT
- Top EFT
- DM EFT

Higgs sectors

DM sectors

(Simplified) two Higgs doublets

Doublet extension

- two complex doublets, 8 degrees of freedom three Goldstones W[±], Z⁰ five Higgs fields h⁰, H⁰, A⁰, H[±]
- renormalizable extended potential

$$\begin{split} V(\phi_1,\phi_2) &= m_{11}^2 \phi_1^{\dagger} \phi_1 + m_{22}^2 \phi_2^{\dagger} \phi_2 - \left[m_{12}^2 \phi_1^{\dagger} \phi_2 + \text{h.c.} \right] \\ &+ \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 |\phi_1^{\dagger} \phi_2|^2 \\ &+ \left[\frac{\lambda_5}{2} (\phi_1^{\dagger} \phi_2)^2 + \lambda_6 (\phi_1^{\dagger} \phi_1) (\phi_1^{\dagger} \phi_2) + \lambda_7 (\phi_2^{\dagger} \phi_2) (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] \end{split}$$

Two doublets [no flavor, CP, custodial troubles]

- angle β = atan(v_2/v_1) angle α defining *h* and *H* \rightarrow gauge boson coupling $g_{W,Z} = \sin(\beta - \alpha)g_{W,Z}^{SM}$
- type-I: all fermions with ϕ_2 type-II: up-type fermions with ϕ_2 lepton-specific: type-I quarks and type-II leptons flipped: type-II quarks and type-I leptons
- single hierarchy $m_h \ll m_{H,A,H^\pm}$ with $\sin^2 lpha \sim 1/(1+\tan^2 eta)$ [custodial symmetry]

New Physics at the LHC Tilman Plehn

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors SUSY

(Simplified) scalar/gauge extensions

Scalar top partners [simplfied supersymmetry]

- toy model for non-Higgs scalar
- Lagrangian with scalar top partner, singlet plus doublet

$$\begin{split} \mathcal{L} \supset & (D_{\mu}\tilde{)}^{\dagger}(D^{\mu}\tilde{Q}) + (D_{\mu}\tilde{t}_{R})^{*}(D^{\mu}\tilde{t}_{R}) - \tilde{Q}^{\dagger}M^{2}\tilde{Q} - M^{2}\tilde{t}_{R}^{*}\tilde{t}_{R} \\ & -\kappa_{LL}(\phi\cdot\tilde{Q})^{\dagger}(\phi\cdot\tilde{Q}) - \kappa_{RR}(\tilde{t}_{R}^{*}\tilde{t}_{R})(\phi^{\dagger}\phi) - \left[\kappa_{LR}M\tilde{t}_{R}^{*}(\phi\cdot\tilde{Q}) + \mathrm{h.c.}\right] \end{split}$$

- contribution through loops all over Higgs-gauge sector

Triplet gauge extension [whatever that becomes in the UV]

- additional vector triplet field V_{μ}

$$\begin{split} \mathcal{L} \supset &- \frac{1}{4} \tilde{V}^{a}_{\mu\nu} \tilde{V}^{\mu\nu a} + \frac{M^{2}_{\tilde{V}}}{2} \tilde{V}^{a}_{\mu} \tilde{V}^{\mu a} + i \frac{g_{V}}{2} c_{H} \tilde{V}^{a}_{\mu} \left[\phi^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} \phi \right] + \frac{g^{2}_{W}}{2g_{V}} \tilde{V}^{a}_{\mu} \sum_{\text{fermions}} c_{F} \overline{F}_{L} \gamma^{\mu} \sigma^{a} F_{L} \\ &+ \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} \tilde{V}^{a}_{\mu} \tilde{V}^{b}_{\nu} D^{[\mu} \tilde{V}^{\nu]c} + g^{2}_{V} c_{VVHH} \tilde{V}^{a}_{\mu} \tilde{V}^{\mu a} (\phi^{\dagger} \phi) - \frac{g_{w}}{2} c_{VVW} \epsilon_{abc} W^{\mu\nu} \tilde{V}^{b}_{\mu} \tilde{V}^{c}_{\nu} \end{split}$$

- new states, mixing with W[±] and Z weak gauge coupling to W, Z mass eigenstates
- strongly interacting towards UV

Tilman Plehn

BSM physics

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT

Higgs sectors

DM sectors

SUSY

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 - theory: how do D6 vs EFT vs full model differences appear?

Tilman Plehn

BSM physics

- Anomalies
- Higgs EF1
- Top EFT
- DM EFT

Higgs sectors

DM sectors

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 theory: how do D6 vs EFT vs full model differences appear?
- push (simplified) models to visible deviations at 13 TeV
 Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)]

$$\left|\frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1\right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 10\% \qquad \Leftrightarrow \qquad \Lambda \lesssim 400 \ \text{GeV}$$

no scale hierarchy for testable models?!

Tilman Plehn

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 theory: how do D6 vs EFT vs full model differences appear?
- push (simplified) models to visible deviations at 13 TeV
 Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)]

$$\left. \frac{\sigma \times \mathsf{BR}}{\left(\sigma \times \mathsf{BR} \right)_{\mathsf{SM}}} - 1 \right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 10\% \qquad \Leftrightarrow \qquad \Lambda \lesssim 400 \ \text{GeV}$$

no scale hierarchy for testable models?!

- construct and match D6-Lagrangian to model coupling modifications v^2/Λ^2 vs new kinematics ∂/Λ ? matching conditions with $v \lesssim \Lambda$, *v*-improved matching?

Tilman Plehn

BSM physic

- Anomalies
- Higgs EF1
- Top EFT
- DM EFT

Higgs sectors

DM sectors

Higgs D6 breakdown

D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP]

- phenomenology: does D6 capture all model features at LHC?
 theory: how do D6 vs EFT vs full model differences appear?
- push (simplified) models to visible deviations at 13 TeV
 Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)]

$$\left. \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}} - 1 \right| = \frac{g^2 m_h^2}{\Lambda^2} \gtrsim 10\% \qquad \Leftrightarrow \qquad \Lambda \lesssim 400 \ \text{GeV}$$

no scale hierarchy for testable models?!

- construct and match D6-Lagrangian to model coupling modifications v²/Λ² vs new kinematics ∂/Λ? matching conditions with v ≲ Λ, v-improved matching?
- LHC simulations: D6-Lagrangian vs full model production: WBF, VH, HH decays: $H \rightarrow \gamma\gamma$, 4 ℓ
- check where differences appear at 13 TeV kinematic distributions like p_{T,j} or m_{VH}? resonance peaks of new states?

Tilman Plehn

BSM physics

Anomalies

Higgs EF1

Top EFT

DM EFT

Higgs sectors

DM sectors SUSY

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC

	Singlet					EFT	EFT (v-improved)			
	m _H	$\sin\alpha$	v_s/v	$\Delta_x^{\text{singlet}}$	٨	\bar{c}_H	Δ_x^{EFT}		$ar{c}_H$	Δ_x^{EFT}
	500	0.2	10	-0.020	491	0.036	-0.018		0.040	-0.020
	350	0.3	10	-0.046	336	0.073	-0.037		0.092	-0.046
	200	0.4	10	-0.083	190	0.061	-0.031		0.167	-0.083
	1000	0.4	10	-0.083	918	0.183	-0.092		0.167	-0.092
_	500	0.6	10	-0.200	407	0.461	-0.231		0.400	-0.200

- effects in WBF and hh

Tilman Plehn

- Anomalies
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

-

- testable benchmarks for LHC

		2	HDM						EFT	
Туре	$\tan\beta$	α/π	m ₁₂	m _H 0	m _{A0}	$m_{H^{\pm}}$	-	Λ [GeV]	$ar{c}_u$	Ē _{d,ℓ}
1	1.5	-0.086	45	230	300	350		100	-0.744	-0.744
11	15	-0.023	116	449	450	457		448	0.000	0.065
11	10	0.032	157	500	500	500		99	0.465	-46.5
1	20	0	45	200	500	500		142	0.003	0.003

Tilman Plehn

- BSM physic
- Anomalies
- Higgs EF
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors

Higgs	D6	brea	kd	lowr	۱

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC

2HDM									
Туре	$\tan\beta$	α/π	m ₁₂	m _H 0	m _{A0}	$m_{H^{\pm}}$	Λ [GeV]	\bar{c}_{u}	Ē _{d,ℓ}
I	1.5	-0.086	45	230	300	350	100	-0.744	-0.744
11	15	-0.023	116	449	450	457	448	0.000	0.065
11	10	0.032	157	500	500	500	99	0.465	-46.5
1	20	0	45	200	500	500			
							×10 ⁻⁶		$p p \rightarrow h^0 \rightarrow \gamma$

– effects in $H \rightarrow \gamma \gamma$

New Physics at the LHC Tilman Plehn

- BSM physic Anomalies
- / 110/1101
- HIGGS EF
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC

	Scal	ar top-par	tner mod	el			EFT				
М	κ_{LL}	ĸ _{RR}	ĸLR	m _{ĩ1}	$m_{\tilde{t}_2}$	•	Ē _H	ē₩	¯c _{HW}		
500	-1.16	2.85	0.147	500	580		$6.22 \cdot 10^{-3}$	$-3.11 \cdot 10^{-7}$	$3.99 \cdot 10^{-7}$		
350	-3.16	-2.82	0.017	173	200		$4.30 \cdot 10^{-3}$	$-2.55 \cdot 10^{-4}$	$2.55 \cdot 10^{-4}$		
500	-7.51	-7.17	0.012	173	200		$1.66 \cdot 10^{-2}$	$-2.97 \cdot 10^{-4}$	$2.97 \cdot 10^{-4}$		

New Physics at the LHC Tilman Plehn

- Anomalies
- Top EFT
- DM EFT

Higgs sectors

- DM sectors

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

testable benchmarks for LHC

-0.5 200

250

EFT error

350

400 m_{vb} [GeV]

300

BSM physic Anomalies

- Higgs EF
- Top EFT
- DM EFT

Higgs sectors

DM sectors

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model							El	FT	
M _V	g_V	c _H	c _F	c _{VVHH}	m_{ξ}	ē₩	$ar{c}_H$	ē ₆	\bar{c}_{f}
591 946 941 1246 846	3.0 3.0 3.0 3.0 1.0	-0.47 -0.47 -0.28 -0.50 -0.56	-5.0 -5.0 3.0 3.0 -1.32	2.0 1.0 1.0 -0.2 0.08	1200 1200 1200 1200 849	-0.044 -0.017 0.006 0.006 -0.007	0.000 0.000 0.075 0.103 -0.020	0.000 0.000 0.100 0.138 -0.027	0.000 0.000 0.025 0.034 -0.007

BSM physic Anomalies

-
- niggs Ei
- Top EFT
- DM EFT

Higgs sectors

- DM sectors
- SUSY

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

	Triplet model									
M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ					
591	3.0	-0.47	-5.0	2.0	1200					
946	3.0	-0.47	-5.0	1.0	1200					
941	3.0	-0.28	3.0	1.0	1200					
1246	3.0	-0.50	3.0	-0.2	1200					
846	1.0	-0.56	-1.32	0.08	849					

- effects in Vh and WBF

BSM physic Anomalies

- Lines CC3
- Top EFT
- DM EFT

Higgs sectors

- DM sectors
- SUSY

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model						
M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ	
591	3.0	-0.47	-5.0	2.0	1200	
946	3.0	-0.47	-5.0	1.0	1200	
941	3.0	-0.28	3.0	1.0	1200	
1246	3.0	-0.50	3.0	-0.2	1200	
846	1.0	-0.56	-1.32	0.08	849	

effects in Vh and WBF

BSM physic Anomalies

-
- niggs Ei
- Top EFT
- DM EFT

Higgs sectors

- DM sectors
- SUSY

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model					
M_V	g_V	c _H	CF	c _{VVHH}	m_{ξ}
591	3.0	-0.47	-5.0	2.0	1200
946	3.0	-0.47	-5.0	1.0	1200
941	3.0	-0.28	3.0	1.0	1200
1246	3.0	-0.50	3.0	-0.2	1200
846	1.0	-0.56	-1.32	0.08	849

effects in Vh and WBF

BSM physic Anomalies

- Lines CC3
- Top EFT
- DM EFT

Higgs sectors

- DM sectors
- SUSY

Higgs D6 breakdown

Higgs portal

- testable benchmarks for LHC
- effects in WBF and hh

2HDM

- testable benchmarks for LHC
- effects in $H \rightarrow \gamma \gamma$

Top partners

- testable benchmarks for LHC
- effects in WBF and Vh

Vector triplet [Brehmer, Biekötter, Krämer, TP]

- testable benchmarks for LHC

Triplet model						
M _V	g_V	с _Н	CF	c _{VVHH}	m _ξ	
591	3.0	-0.47	-5.0	2.0	1200	
946	3.0	-0.47	-5.0	1.0	1200	
941	3.0	-0.28	3.0	1.0	1200	
1246	3.0	-0.50	3.0	-0.2	1200	
846	1.0	-0.56	-1.32	0.08	849	

effects in Vh and WBF

Tilman Plehn

BSM physics Anomalies

Higgs EE

Top EFT

DM EFT

Higgs sectors

DM sectors

Reasons for D6-breakdown in Higgs sector at LHC

Higgs D6 breakdown

Model	Process	EFT failure		
		resonance	kinematics	matching
singlet	on-shell $h \rightarrow 4\ell$, WBF, Vh,			×
	off-shell WBF,		(×)	Х
	hh	×	×	X
2HDM	on-shell $h \rightarrow 4\ell$, WBF, Vh,			×
	off-shell $H \rightarrow \gamma \gamma, \ldots$		(×)	×
	hh	×	×	×
top partner	WBF, Vh			×
vector triplet	WBF		(×)	×
	Vh	×	(\times)	×

Tilman Plehn

BSM physics Anomalies

Top EFT

DM EFT

Higgs sectors

DM sectors

Higgs D6 breakdown

Reasons for D6-breakdown in Higgs sector at LHC

Model	Process	EFT failure		
		resonance	kinematics	matching
singlet	on-shell $h \rightarrow 4\ell$, WBF, Vh,			×
	off-shell WBF,		(×)	Х
	hh	×	×	×
2HDM	on-shell $h \rightarrow 4\ell$, WBF, Vh,			Х
	off-shell $H \to \gamma \gamma, \dots$		(×)	Х
	hh	×	×	Х
top partner	WBF, Vh			Х
vector triplet	WBF		(×)	Х
	Vh	×	(\times)	×

Lessons from Higgs sector

- start with D6 description [data-driven era of particle physics]
- EFT expansion in E/A known to be dodgy
- simplified models theory-driven
- test of D6 in comparison with (simplified) models
- all relevant effect at tree level
- resonance peaks the key feature

niman Pienn

BSM physic Anomalies

- Hiaas EF
- Top EFT
- DM EFT

Higgs sector:

DM sectors

SUSY

(Simplified) DM scalar

DM scalar from Higgs sector [data-driven question]

- scalar dark matter, $m_S = 10 \dots 100 \text{ GeV}$
- coupling to Standard Model through renormalizable portal [Higgs as mediator]
- extended potential [Z2 symmetry, no VEV]

$$V(\phi, S) = -\mu^2(\phi^{\dagger}\phi) + \lambda_4 |\phi^{\dagger}\phi|^2 - \mu_S^2 S^2 + \lambda_3(\phi^{\dagger}\phi) S^2$$

- physical masses and parameters

$$m_{\rm S}=\sqrt{2\mu_{\rm S}^2-\lambda_3 v_{\rm H}^2}$$
 $g_{SSH}=-2\lambda_3 v_{\rm H}$ $g_{SSHH}=-2\lambda_3$

BSM physic Anomalies

- Top EFT
- DM EFT
- Higgs sector
- DM sectors
- SUSY

(Simplified) DM scalar

DM scalar from Higgs sector [data-driven question]

- scalar dark matter, $m_S = 10 \dots 100 \text{ GeV}$
- coupling to Standard Model through renormalizable portal [Higgs as mediator]
- extended potential [Z2 symmetry, no VEV]

$$V(\phi, S) = -\mu^2(\phi^{\dagger}\phi) + \lambda_4 |\phi^{\dagger}\phi|^2 - \mu_S^2 S^2 + \lambda_3(\phi^{\dagger}\phi) S^2$$

- physical masses and parameters

$$m_S = \sqrt{2\mu_S^2 - \lambda_3 v_H^2}$$
 $g_{SSH} = -2\lambda_3 v_H$ $g_{SSHH} = -2\lambda_3$

DM conditions

- (in-) direct detection: same as DM EFT LHC: $m_S \leftrightarrow m_H$ open, all propagating states
- thermal relic density $\Omega \textit{h}^2 \sim 0.12~\text{[SS} \rightarrow \textit{b}\bar{\textit{b}},\textit{HH]}$

$$\sigma_{\text{ann}} \propto \begin{cases} \frac{\lambda_3^2 m_b^2}{m_H^4} & m_S \ll \frac{m_H}{2} & \lambda_3 \approx 0.3 \\ \frac{\lambda_3^2 m_b^2}{m_H^2 \Gamma_H^2} & m_S = \frac{m_H}{2} & \lambda_3 \approx 10^{-3} \\ \frac{\lambda_3^2}{m_S^2} & m_S > m_Z, m_H & \lambda_3 \approx 0.1 \end{cases}$$

Anomalies

- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

(Simplified) DM scalar

DM scalar from Higgs sector [data-driven question]

- scalar dark matter, $m_S = 10 \dots 100 \text{ GeV}$
- coupling to Standard Model through renormalizable portal [Higgs as mediator]
- extended potential [Z2 symmetry, no VEV]

$$V(\phi, S) = -\mu^2(\phi^{\dagger}\phi) + \lambda_4 |\phi^{\dagger}\phi|^2 - \mu_S^2 S^2 + \lambda_3(\phi^{\dagger}\phi) S^2$$

- physical masses and parameters

$$m_S = \sqrt{2\mu_S^2 - \lambda_3 v_H^2}$$
 $g_{SSH} = -2\lambda_3 v_H$ $g_{SSHH} = -2\lambda_3$

DM conditions

- (in-) direct detection: same as DM EFT LHC: $m_S \leftrightarrow m_H$ open, all propagating states
- thermal relic density $\Omega h^2 \sim 0.12$ [SS \rightarrow bb, HH]

$$\sigma_{\text{ann}} \propto \begin{cases} \frac{\lambda_3^2 m_b^2}{m_H^4} & m_S \ll \frac{m_H}{2} & \lambda_3 \approx 0.3 \\ \frac{\lambda_3^2 m_b^2}{m_H^2 \Gamma_H^2} & m_S = \frac{m_H}{2} & \lambda_3 \approx 10^{-3} \\ \frac{\lambda_3^2}{m_S^2} & m_S > m_Z, m_H & \lambda_3 \approx 0.1 \end{cases}$$

 $\lambda_{\rm hSS}$

BSM physic

(In-) direct detection boundary conditions

(Simplified) DM scalar

 Higgs mediator coupling to proton same effective ggH interaction as for gluon fusion production

$$\sigma_{SA \to SA} \approx 3 \cdot 10^{-7} \ \frac{\lambda_3^2}{m_S^2}$$

– Fermi GCE explained on the pole: $\langle v\sigma_{ann} \rangle \approx \langle v\sigma_{GCE} \rangle$

LHC searches

- important: for this (simplified) model we have discovered the mediator
- $m_S \ll m_H/2$ invisible Higgs decays [$m_{\rm DM} \ll m_{\rm mediator}$] LHC searches really for mediator
- $m_S \gtrsim m_H$ off-shell invisible Higgs decays? [$m_{\rm DM} \gtrsim m_{\rm mediator}$] LHC searches for DM particles
- \Rightarrow depressing in particular for small λ_3

Higgs secto DM sectors

SUSY

Top EFT

Tilman Plehn

- BSM physic Anomalies
- Higas EF1
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors

(Simplified) DM models

Requirements for a valid simplified model [1506.03116]

- (I) Besides the SM, the model should contain a DM candidate that is either absolutely stable or lives long enough to escape the LHC detectors, as well as a mediator that couples the two sectors. The dark sector can be richer, but the additional states should be somewhat decoupled...
- (II) The Lagrangian should contain (in principle) all terms that are renormalizable and consistent with Lorentz invariance, the SM gauge symmetries, and DM stability. However, it may be permissible to neglect interactions or to study cases where couplings are set equal to one another...
- (III) The additional interactions should not violate the exact and approximate accidental global symmetries of the SM...

Tilman Plehn

- BSM physic Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors

(Simplified) DM models

Requirements for a valid simplified model [1506.03116]

- (I) Besides the SM, the model should contain a DM candidate that is either absolutely stable or lives long enough to escape the LHC detectors, as well as a mediator that couples the two sectors. The dark sector can be richer, but the additional states should be somewhat decoupled...
- (II) The Lagrangian should contain (in principle) all terms that are renormalizable and consistent with Lorentz invariance, the SM gauge symmetries, and DM stability. However, it may be permissible to neglect interactions or to study cases where couplings are set equal to one another...
- (III) The additional interactions should not violate the exact and approximate accidental global symmetries of the SM...

Things not required: simplified models...

...need a good motivation, theoretical or experimental

...need a UV completion

- ...need to be agreed on by everyone in the field
- ...should be really hard/easy to experimentally test
- \Rightarrow there is no such thing as a wrong simplified model

Tilman Plehn

- BSM physic Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors

(Simplified) DM models

Requirements for a valid simplified model [1506.03116]

- (I) Besides the SM, the model should contain a DM candidate that is either absolutely stable or lives long enough to escape the LHC detectors, as well as a mediator that couples the two sectors. The dark sector can be richer, but the additional states should be somewhat decoupled...
- (II) The Lagrangian should contain (in principle) all terms that are renormalizable and consistent with Lorentz invariance, the SM gauge symmetries, and DM stability. However, it may be permissible to neglect interactions or to study cases where couplings are set equal to one another...
- (III) The additional interactions should not violate the exact and approximate accidental global symmetries of the SM...

General structure of simplified DM models

- relatively light dark matter candidate
- mediator, often inducing 2 \rightarrow 2 scattering process $\chi\chi \rightarrow$ SM SM
- predicting relice density, (in-) direct detection, LHC observables

Tilman Plehn

BSM physic

- Anomalies
- Higgs EF
- Top EFT
- DM EFT
- Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM-mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

$$\mathcal{L}_{ ext{fermion},\phi} \supset -g_{\chi}\phiar{\chi}\chi - rac{\phi}{\sqrt{2}}\sum_{f}g_{f}y_{i}^{f}ar{t}_{i}$$

- mono-jet(s), mono-V, mono-Higgs [not necessarily ISR]

 \Rightarrow mediators almost more relevant than DM states

BSM physic Anomalies

Top EFT

- DM EFT
- Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM-mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

$$\mathcal{L}_{ ext{fermion},\phi} \supset -g_{\chi}\phi ar{\chi}\chi - rac{\phi}{\sqrt{2}}\sum_{f}g_{f}y_{i}^{f}ar{f}_{i}$$

- mono-jet(s), mono-V, mono-Higgs [not necessarily ISR]
- (2) vector mediator, fermion/scalar DM

$$egin{aligned} \mathcal{L}_{ ext{fermion},V} &\supset V_\mu ar{\chi} \gamma^\mu (g_\chi^V - g_\chi^A \gamma_5) \chi + \sum_f V_\mu ar{t} \gamma^\mu (g_f^V - g_f^A \gamma_5) f \,, \ \mathcal{L}_{ ext{scalar},V} &\supset i g_\varphi V_\mu (\varphi^* \partial^\mu \varphi - \varphi \partial^\mu \varphi^*) + \sum_f V_\mu ar{t} \gamma^\mu (g_f^V - g_f^A \gamma_5) f \,. \end{aligned}$$

- mono-jet(s) or di-jet resonances

 \Rightarrow mediators almost more relevant than DM states

BSM physic: Anomalies Higgs EFT Top EFT DM EFT

Higgs sectors

DM sectors

(Simplified) DM models

DM-mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

$$\mathcal{L}_{\text{fermion},\phi} \supset -g_{\chi}\phi \bar{\chi}\chi - rac{\phi}{\sqrt{2}}\sum_{f}g_{f}y_{i}^{f}\bar{f}_{i}$$

mono-jet(s), mono-V, mono-Higgs [not necessarily ISR]
vector mediator, fermion/scalar DM

$$egin{aligned} \mathcal{L}_{ ext{fermion},\,V} \supset V_\mu ar{\chi} \gamma^\mu (g^V_\chi - g^A_\chi \gamma_5) \chi + \sum_f V_\mu ar{t} \gamma^\mu (g^V_f - g^A_f \gamma_5) f \,, \ \mathcal{L}_{ ext{scalar},\,V} \supset i g_\varphi V_\mu (\varphi^* \partial^\mu \varphi - \varphi \partial^\mu \varphi^*) + \sum_f V_\mu ar{t} \gamma^\mu (g^V_f - g^A_f \gamma_5) f \,. \end{aligned}$$

- mono-jet(s) or di-jet resonances
- (3) t-channel mediator, fermion DM [scalar darkoquark]

$$\mathcal{L}_{\text{fermion},\tilde{u}} \supset \sum_{f} g \tilde{f}^* \bar{\chi} P_R f + \text{h.c.}$$

- mono-jet(s), associated, pair production [mono-jet vs jet(s + MET]

BSM physic Anomalies Higgs EFT

DM EFT

Higgs sectors

DM sectors

SUSY

(Simplified) DM models

DM-mediator pairings [1506.03116, 1507.00966]

(1) scalar or pseudo-scalar mediator, fermion DM

$$\mathcal{L}_{\text{fermion},\phi} \supset -g_{\chi}\phi\bar{\chi}\chi - \frac{\phi}{\sqrt{2}}\sum_{f}g_{f}y_{i}^{f}\bar{f}_{i}$$

- mono-jet(s), mono-V, mono-Higgs [not necessarily ISR]

(2) vector mediator, fermion/scalar DM

$$\begin{split} \mathcal{L}_{\text{fermion},V} &\supset V_{\mu} \bar{\chi} \gamma^{\mu} (g_{\chi}^{V} - g_{\chi}^{A} \gamma_{5}) \chi + \sum_{f} V_{\mu} \bar{f} \gamma^{\mu} (g_{f}^{V} - g_{f}^{A} \gamma_{5}) f \,, \\ \mathcal{L}_{\text{scalar},V} &\supset i g_{\varphi} V_{\mu} (\varphi^{*} \partial^{\mu} \varphi - \varphi \partial^{\mu} \varphi^{*}) + \sum_{f} V_{\mu} \bar{t} \gamma^{\mu} (g_{f}^{V} - g_{f}^{A} \gamma_{5}) f \,, \end{split}$$

- mono-jet(s) or di-jet resonances
- (3) t-channel mediator, fermion DM [scalar darkoquark]

$$\mathcal{L}_{ ext{fermion}, \tilde{u}} \supset \sum_{f} g \tilde{f}^* ar{\chi} \mathcal{P}_{\mathcal{B}} f + ext{h.c.}$$

- mono-jet(s), associated, pair production [mono-jet vs jet(s + MET]
- scalar DM, spin-2 mediators, flavored DM, spin-17/2 DM,....
- ⇒ mediators almost more relevant than DM states

Tilman Plehn

- Anomalies
- Top EFT

- DM sectors

(Simplified) weakly interacting DM

WIMPs dark matter, classified by $SU(2)_L$ representation

- Z, H mediators known [extended Higgs sector possible]
- singlet (Majorana) fermion DM ['bino'] coupling only through mixing
- doublet fermion DM [1/2 'higgsino] charged partner, $Z\widetilde{H}^0\widetilde{H}^0$ and $h\widetilde{H}^0\widetilde{W}^0$ couplings
- triplet fermion DM ['wino'] charged partner, $W^{\pm}\widetilde{W}^{0}\widetilde{W}^{\pm}$ coupling

BSM physic

- Higgs EE1
- Top EFT
- DM EFT
- Higgs sector

DM sectors

SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by $SU(2)_L$ representation

- Z, H mediators known [extended Higgs sector possible]
- singlet (Majorana) fermion DM ['bino'] coupling only through mixing
- doublet fermion DM $_{[1/2 \text{ 'higgsino'}]}$ charged partner, $Z\widetilde{H}^0\widetilde{H}^0$ and $h\widetilde{H}^0\widetilde{W}^0$ couplings
- triplet fermion DM $_{[`wino']}$ charged partner, $W^\pm \, \widetilde{W}^0 \, \widetilde{W}^\pm$ coupling

Relic density of (simplified) electroweakinos

- DM relic density: light, mixed bino DM efficient annihilation to weak bosons co-annihilation with charged states
- pure states typically heavy [Sommerfeld enhancement]

$$\begin{split} \Omega_{\tilde{W}}h^2 &\approx 0.12 \left(\frac{m_{\tilde{\chi}^0_1}}{2.1 \text{ TeV}}\right)^2 \quad \stackrel{\text{Sommerfeld}}{\longrightarrow} 0.12 \left(\frac{m_{\tilde{\chi}^0_1}}{2.6 \text{ TeV}}\right)^2 \\ \Omega_{\tilde{H}}h^2 &\approx 0.12 \left(\frac{m_{\tilde{\chi}^0_1}}{1.13 \text{ TeV}}\right)^2 \stackrel{\text{Sommerfeld}}{\longrightarrow} 0.12 \left(\frac{m_{\tilde{\chi}^0_1}}{1.14 \text{ TeV}}\right)^2 \end{split}$$

RSM physics

- Anomalies
- Higgs EF1
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by $SU(2)_L$ representation

- Z, H mediators known [extended Higgs sector possible]
- singlet (Majorana) fermion DM ['bino'] coupling only through mixing
- doublet fermion DM $_{[1/2 \text{ 'higgsino'}]}$ charged partner, $Z\widetilde{H}^0\widetilde{H}^0$ and $h\widetilde{H}^0\widetilde{W}^0$ couplings
- triplet fermion DM $_{[`wino']}$ charged partner, $W^\pm \, \widetilde{W}^0 \, \widetilde{W}^\pm$ coupling

Relic density of (simplified) electroweakinos

- DM relic density: light, mixed bino DM efficient annihilation to weak bosons co-annihilation with charged states
- pure states typically heavy [Sommerfeld enhancement]
- pure-state WIMP electroweakinos heavy
- chargino co-annihilation crucial
- mixed bino scenario through mixing
- \Rightarrow not covered by usual simplified models

BSM physics

- Anomalies
- Higgs EF
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

(Simplified) weakly interacting DM

WIMPs dark matter, classified by $SU(2)_L$ representation

- Z, H mediators known [extended Higgs sector possible]
- singlet (Majorana) fermion DM ['bino'] coupling only through mixing
- doublet fermion DM $_{[1/2 \text{ 'higgsino'}]}$ charged partner, $Z\widetilde{H}^0\widetilde{H}^0$ and $h\widetilde{H}^0\widetilde{W}^0$ couplings
- triplet fermion DM $_{[\text{wino}]}$ charged partner, $W^{\pm} \widetilde{W}^0 \widetilde{W}^{\pm}$ coupling

BSM physic

- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs secto
- DM sectors
- SUSY

Minimal supersymmetric extension: MSSM

MSSM spectrum

- mechanism for SUSY masses unknown blind mediation: MSUGRA/CMSSM scalars: m_0 , fermions: $m_{1/2}$, tri-scalar: A_0 plus sign(μ) and tan β in Higgs sector
- gauge, anomaly, gaugino mediation ...?
- ⇒ measure spectrum at LHC [pMSSM]

		spin	d.o.f.	
fermion	f_L, f_B	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , H ⁰ , A ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	SM
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

BSM physic: Anomalies

- Higgs EFT
- Top EFT
- DM EFT
- Hiaas sectors
- DM sectors
- SUSY

Minimal supersymmetric extension: MSSM

MSSM spectrum

- mechanism for SUSY masses unknown blind mediation: MSUGRA/CMSSM scalars: m_0 , fermions: $m_{1/2}$, tri-scalar: A_0 plus sign(μ) and tan β in Higgs sector
- gauge, anomaly, gaugino mediation ...?
- ⇒ measure spectrum at LHC [pMSSM]

Search strategies at the LHC [Oliver's talk]

- squarks, gluinos strongly interacting $p\bar{p} \rightarrow \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ decays to jets and DM state
- $\tilde{g} \rightarrow \tilde{q}\bar{q}, \tilde{q}_L \rightarrow q\tilde{\chi}_2^0, \tilde{q}_R \rightarrow q\tilde{\chi}_1^0$ additional jets and leptons possible
- \Rightarrow jets plus missing energy
- strongly interacting Majorana gluinos final-state leptons with both charges
- \Rightarrow like-sign dileptons

		spin	d.o.f.	
fermion	f_L, f_B	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	4 · 2	SM
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	\tilde{x}_i^{\pm}	1/2	2 · 4	

Tilman Plehn

- BSM physics Anomalies
- Anomalies
- Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Supersymmetric Hooperon

Spirit of ambulance chasing: Hooperon \longleftrightarrow LHC $_{[Butter \mbox{ etal}]}$

- MSSM pushing error bars $[\chi\chi \rightarrow ww]$ linked to $\chi^0\chi^{\pm}$ production
- NMSSM dark matter
- simplified model: pseudo-scalar mediator Majorana fermion DM
- MSSM-like DM composition $[\tilde{B} \tilde{H}]$ mixed singlino DM
- \Rightarrow linked to LHC signatures?

		spin	d.o.f.	
fermion	f_L, f_R	1/2	1+1	
\rightarrow sfermion	\tilde{t}_L, \tilde{t}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
complex singlet	Н ⁰ , А ⁰	0	2	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	5 · 2	DM
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	$\tilde{\chi}_i^{\pm}$	1/2	2 · 4	

Tilman Plehn

- BSM physic: Anomalies Higgs EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Supersymmetric Hooperon

Spirit of ambulance chasing: Hooperon \longleftrightarrow LHC [Butter etal]

- MSSM pushing error bars $_{[\chi\chi \ \rightarrow \ ww]}$ linked to $\chi^0\chi^\pm$ production
- NMSSM dark matter
- simplified model: pseudo-scalar mediator Majorana fermion DM
- MSSM-like DM composition $[\widetilde{B} \widetilde{H}]$ mixed singlino DM
- ⇒ linked to LHC signatures?

LHC signatures [Butter etal]

- requiring relic density
- requiring GCE rate
- passing Xenon limits
- ⇒ chargino-neutralino rate [Cao, Zurek,...]

		spin	d.o.f.	
fermion	f_L, f_R	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
complex singlet	H ⁰ , A ⁰	0	2	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	5 · 2	DM
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	\tilde{x}_i^{\pm}	1/2	2 · 4	

Tilman Plehn

- BSM physic Anomalies
- Hiaas EFT
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Supersymmetric Hooperon

Spirit of ambulance chasing: Hooperon \longleftrightarrow LHC [Butter etal]

- MSSM pushing error bars $[\chi\chi \to ww]$ linked to $\chi^0\chi^\pm$ production
- NMSSM dark matter
- simplified model: pseudo-scalar mediator Majorana fermion DM
- MSSM-like DM composition $[\widetilde{B} \widetilde{H}]$ mixed singlino DM
- ⇒ linked to LHC signatures?

LHC signatures [Butter etal]

- requiring relic density
- requiring GCE rate
- passing Xenon limits
- ⇒ chargino-neutralino rate [Cao, Zurek,...]
- \Rightarrow BR_{inv} up to 40%

		spin	d.o.f.	
fermion	f_L, f_B	1/2	1+1	
\rightarrow sfermion	\tilde{f}_L, \tilde{f}_R	0	1+1	
gluon	G_{μ}	1	n-2	
\rightarrow gluino	ĝ	1/2	2	Majorana
gauge bosons	γ, Z	1	2+3	
Higgs bosons	h ⁰ , Н ⁰ , А ⁰	0	3	
complex singlet	H ^o , A ^o	0	2	
\rightarrow neutralinos	$\tilde{\chi}_{i}^{o}$	1/2	5 · 2	DM
gauge bosons	w±	1	2 · 3	
Higgs bosons	н±	0	2	
\rightarrow charginos	\tilde{x}_i^{\pm}	1/2	2 · 4	

BSM physics Anomalies

- Anomalies
- Higgs EF
- Top EFT
- DM EFT
- Higgs sectors
- DM sectors
- SUSY

Questions

Questions waiting

- is it really the Standard Model Higgs?
- is there WIMP dark matter?
- is there TeV-scale physics beyond the Standard Model?
- should I become a particle physicist? yes!
- is our experimental/theoretical program exciting? yes!

Lectures on LHC Physics and dark matter updated under www.thphys.uni-heidelberg.de/-plehn/

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

New	PI	hy:	sics
at th	ıe	Lł	HC

Tilman Plehn

BSM physics

Anomalies

Higgs EFT

Top EFT

DM EFT

Higgs sectors

DM sectors

SUSY