14 May 2009, XIV Frascati Spring School -YRW

Kaonic atoms at DAFNE

INFN-LNF Shinji Okada on behalf of SIDDHARTA collaboration

Slicon Drift Detector for Hadronic Atom Research by Timing Application

SIDDHARTA

SIDDHARTA Collaboration

LNF-INFN, Frascati, Italy SMI-ÖAW, Vienna, Austria IFIN –HH, Bucharest, Romania Politecnico, Milano, Italy MPE, Garching, Germany PNSensors, Munich, Germany **RIKEN**, Japan Univ. Tokyo, Japan Victoria Univ., Canada

Introduction

Spectroscopy of Kaonic atom x-ray

Fundamental study of strong interaction between anti-K & nucleus at low energy limit

What is Kaonic atom?

Kaonic atom formation

n ~ sqrt(M*/m_e) n' ~ 25 (for K-p) (M* : K-p reduced mass)

highly-excited state

1) Initial capture

K-

stopped in a target medium

Nucleus

of last orbit

e.g. • **1s** for K-p, K-d • **2p** for K-He

The strong int. width > Radiative trans. width

The strong int. width > Radiative trans. width

The simplest Kaonic atom Kaonic Hydrogen

Last orbit = 1s ~ Kaonic hydrogen ~

Last orbit = 1s ~ Kaonic hydrogen ~

Last orbit = 1s ~ Kaonic hydrogen ~

Deser Formula

$$a_{K^{-}p} = \frac{a_0(I=0) + a_1(I=1)}{2}$$

One of the most important observable on the physics of the KN interaction ~ together with the values of K-d (for "а к-n") ~

Difficulty of KH Kα X-ray

Density-dependent yield due to Stark mixing

→ Low density gaseous hydrogen target
→ Low energy Kaon with small energy spread

DAFNE e⁻ e⁺ collider

• Φ → K⁻ K⁺ (49.1%) • Monochromatic low-energy K⁻ (~127MeV/c) • No (beam) hadronic background (compare to hadron beam line : e.g. KEK)

DAFNE

e⁻ e⁺ collider

Suitable for Kaonic atom exp.

History of Kaonic hydrogen measurement

70-80's : Kaonic hydrogen puzzle

98': solving K-p puzzle

Repulsive

Attractive

Width [eV]

*Si(Li) as x-ray detector *Hadron beamline M.Iwasaki, PRL78(1997)3067

05': confirming repulsive shift

Repulsive

Attractive

DEAR @ DAFNE

α

*Gas target *CCD as x-ray detector

G. Beer et.al., PRL94(2005)212302

09': Present experiment

SIDDHARTA experiment

Kaonic Hydrogen : 2p->1s (~6.4 keV)
 --- simplest kaonic atom -> K-p scattering length -- Significant improvement over previous measurements

Kaonic Deuterium : 2p->1s (~7.8 keV)
 --- extract K-n scat. length (three body int. of K-d) --- First measurement !

• Kaonic Helium : 3d->2p (~6.4 keV) First measurement with gaseous helium target

with thin depletion layer

Suppress a background due to Compton scattering inside the detector

	KEK, 1998	DEAR, 2005	SIDDHARTA	
Detector	Si(Li)	CCD	SDD	
Energy Resolution	360 eV	<u>180 eV</u>	<u>180 eV</u>	
Thickness	sub 10 mm	<u>sub mm</u>	<u>sub mm</u>	
Effective area	120 cm ²	116 cm ²	114 cm ²	Same order
Time resolution	sub <u>µ</u> sec	~ 30 sec	sub <u>µ</u> sec	

Final testing and assembling at SMI

Gluing and bonding at Fraunhofer Institut - Berlin

0

.

1Chip: 1 cm^2

V

target chamber & SDDs inside

K-

Triple coincidence Trigger

SIDDHARTA setup

SDDs & Target (inside vacuum)

Kaon detector

TIN

Kaon detector

a)

Silicon Drift Detectors

1 cm² x 144 SDD

Target cell

Kaonic helium Result

~ Estimation of statistical accuracy of KH shift value ~

Good for the test of KH Kα measurement

	Energy (EM)	Yield rate* (per stopK)
K ⁴ He Lα	6.4 keV	~10 -1
ΚΗ Κα	6.5 keV	~10 -2

similar value of each transition energies
 ~10 times faster than the KH Kα yield rate

* At ~ 10 ρ_{STP} of helium gas, x ray event per stopped kaon

Calibration with X ray tube

Typical calibration spectrum for one SDD

In-beam
X ray tube
Ti, Cu foils

ADC channel

Energy resolution : FWHM (@6.4keV) ~ 170 eV

Kaon correlated event timing

Timing spectrum

Energy spectrum of KHe

K-⁴He 3d->2p : Gaussian fit

Estimated precision of KH Kα

Summary

✓ SIDDHARTA setup with 144 SDDs in operation ✓ KHe L_α line mean value consistent with previous value ✓ KH K_α precision ~ 10 eV for 400 pbarn⁻¹

Further tuning for hydrogen target run in progress.