Lepton Flavor Violation: present and future experiments - 1

LNF- May, 11ht 2008 F.Gatti University and INFN of Genoa

-First experiment: E.P.Hincks and B. Pontecorvo (1948)

- At that time the motivation for a such searches was motivated by the general study of µ decay
 - ν_e, ν_µ and e
 spectrum not
 discoverd
- μ was supposed to decay in e + ν_e (Yukawa)

neutrino hypothesis,³ a direct experiment to test an alternative hypothesis—that the decay process consists of the emission of an electron and a photon, each of about 50 Mev has been performed.

-History and future of FLV μ decay searches

The last of a series

Exp./Lab	Year	DE _e /E e (%)	DE _g /E _g (%)	Dt _{eg} (ns)	Dq _{eg} (mrad)	Stop rate (s ⁻¹)	Duty cyc.(%)	BR (90% CL)
SIN	197 7	8.7	9.3	1.4	-	5 x 10 ⁵	100	3.6 x 10 ⁻⁹
TRIUMF	197 7	10	8.7	6.7	-	2 x 10 ⁵	100	1 x 10 ⁻⁹
LANL	197 9	8.8	8	1.9	37	2.4 x 10 ⁵	6.4	1.7 x 10 ⁻¹⁰
Crystal Box	198 6	8	8	1.3	87	4 x 10 ⁵	(69)	4.9 x 10 ⁻¹¹
MEGA	199 9	1.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	1.2 x 10 ⁻¹¹
MEG	201 0	8.0	4	0.1 5	19	2.5 x 10 ⁷	100	1 x 10 ⁻¹³

Conceptual design of MEG

Actual MEG configuration

 Liquid Xenon Calorimeter
 Drift Chambers
 Timing counters
 COBRA Magnet

PSI-beam

- The most powerful continuous machine in the world;
- Proton energy 590 MeV;Power 1.1 MW;n ominal operational current 2.0 mA.
- **27.7 MeV/c muons** from π stop at rest (surface muons);
- Provides a DC beam of $\approx 10^8$ m/s.

PSI-Beam

The beam elements:

- Wien filter for μ /e separation 0
- **Degrader to reduce the** 0 momentum stopping in a 150 μm CH2 target
- **Transport Solenoid to couple** 0 beam with COBRA spectrometer

σ ≈ 10 mm

- 1.3*108 μ⁺/s Rμ (total)
- R μ (after W.filter & Coll.) 1.1*10⁸ μ +/s 6*10⁷ μ+/s
- Rµ (stop in target)
- Beam spot (target)
- µ/e separation 7.5 σ (12 cm)
- Maximum beam stop rate $\approx 10^8 \,\mu/s$, • but we will use only 3 x 10⁷ because of accidental background (proportional to (muon rate)²)

-COnstant Bending RAdius-COBRA- magnet

COBRA spectrometer was designed to provide a graded magnetic field whose flux lines have large divergence also in the center (1.27 T at the center and 0.49 T at both ends). Positrons with the same absolute momentum follow trajectories with a constant projected bending radius, independent on the emission angles over a wide angular range

COBRA-magnet

Constant bending radius independent of emission angles

High p_T positrons quickly swept out

Target and positron tracking

Positron Tracking

- Sixteen drift chambers (ten degrees interval), each one equipped with 18 staggered wires and cathodic kapton foils.
- Wires: r, φ coordinates
- **Cathode: z coordinate**
- σ(X,Y) ~ 200 μm
- Chamber gas: He-C₂H₆ mixture
- Vernier pattern to measure z position made of 15 μm kapton foils(charge division)-
- **σ(Ζ) ~ 300** μm

Positron timing- Timing Counter

Positron timing- Timing Counter

- Two layers of scintillation counters placed at right angles with each other.
- Outer layer: scintillator bars, mainly devoted to timing measurement.
- Two sections of 15 bars each, read by PMTs, before and after DCH system.
- Inner layer: scintillating fibres, devoted to provide trigger and z information.
- 5 x 5 mm2 fibres, read by APDs.
- Measurements of TC bars timing resolution in dedicated test beams at several positions and impact angles at BTF in Frascati

Limitations due to the B field

- PMT TTS, gain as a function of magnetic field and orientation angles
- Scintillation time, attenuation length, PMT-bar coupling
- Fine-mesh PMTs show good timing properties even in magnetic field up to 1 Tesla
- Gain behaviour is related to the orientation angle best for q = 20-30°
- A high number of photoelectrons is necessary to be in a 100 ps resolution range

B field and He atmosphere

Optimization of angular position of PMs

Protecting Bag with thin low diffusivity plastics (EVAL T)

PMT0415_b

Vout (V) @500Hz, R=310mm

Experimental constraints: reshaping the TC elements

Testing single element at Beam Test Facility (LNF)

Apparatus for 2-axis + longitidinal sample movements

Typical BTF beam performance

-Single element timing resolution

Timing performance with some other ToF

Scintil. type	РМТ	LxWxT (cm)	σ (ps)	Ref
BC420	R1828-01	40x7x2.2	123	1
BC408	R3478	12-48x1-1.25x1.5-2.4	80	2
BC408	H1949	200x8.5x5	110	3
BC408	XP2020	180-250x21x2.5	160	4
BC408	XP2020	280x10x5	139	5
NE110 [†]	XP2020	210-300x21x2	300	6
NE110 [†]	XP2020	300x9.3x4	170	7
BC408	XP2020	305x10x5	110	8
NE Pilot F [‡]	XP2020	317.5x15.6x5.1	170	9
BC408	XP43132B/D1	32-450x15-22x5.1	163	10
BC404	R5924	80x4x4	40	our

- 1. B. Adeva *et al., Nucl. Instr. and Meth* **A 491** (2002) 41.
- 2. G. Palla et al., Nucl. Instr. and Meth. A 451 (2000) 406.
 - 3. V. Sum *et al.*, *Nucl. Instr. and Meth. A* **326** (1993) 489.
- 4. M. Baldo-Ceolin *et al., Nucl.* Instr. and Meth. A **532** (2004) 548.
- 5. Y. Kubota *et al.*, *Nucl. Instr. and Meth. A* **320** (1992) 66.
 - 6. M. Baldo Ceolin *et al., Nuovo Cimento* **105A** (1992) 1679.
- 7. G.C. Bonazzola *et al., Nucl.* Instr. and Meth. **A 356** (1995) 270.
- 8. S. Benerjee et al., Nucl. Instr. and Meth. A 269 (1988) 121.
- 9. E.S. Smith *et al.*, *Nucl. Instr. and Meth* **A 432** (1999) 265
- 10 J.S. Brown *et al., Nucl. Instr. and Meth.* **221** (1984) 503.

Final detector, test at BTF (LNF) and run performance

-APD readout of scintillating fibers detectors

New solution with APD and scintillating fibers:

- 1. High QE of APD
- 2. Good performances, not influenced by magnetic field
- 3. Optimum matching APD-fiber
- 4. Better spatial resolution (5mm)
- 5. Lower cost per channel (total 512 channels)
- 6. Fast Low noise electronics for analog signals (ENC = 1500e) custom made
- 7. Digital output with hitmap encoding

-Avalanche Photo-Diodes (APD)

$$F = M^x$$

Excess noise factor at M=500 x= 0.5

$$i_n = \left[2 \cdot q \cdot \left(I_{DS} + I_{DB} \cdot M^2 \cdot F\right) \cdot B\right]^{0.5}$$

$$i_n = \left[2 \cdot q \cdot \left(I_{DS} + \left(I_{DB} \cdot M^2 + R_0(\lambda) \cdot M^2 \cdot P_s\right) \cdot F\right) \cdot B\right]^{0.5}$$

Total noise of illuminated APD including Shot niose, excess noise, photon noise

Detector Type	Ionization Ratio	X-Factor	Typical Gain	Excess Noise Factor (at typical gain)
	(k)	-	(M)	(F)
Silicon				
("reach-through" structure)	0.02	0.3	150	4.9
Silicon Epitaxial APDs	0.06	0.45	100	7.9
Silicon (SLiK [™] low-k structure)	0.002	0.17	500	3.0
Germanium	0.9	0.95	10	9.2
InGaAs	0.45	0.7-0.75	10	5.5

APDs production

-Fiber detector under run consitions

Liquid Xe Calorimeter -XEC

Xe + radiation

XEC

Compact

• Z=54, ρ =2.95 g/cm³ (X₀=2.7 cm), R_M=4.1 cm @ T=165 K

High light yield

• L.Y.=42000 phe/MeV ≈ 0.7 LY(NaI) for m.i.p.'s

- Fast
 - $t_1=4ns, t_3=22ns, t_{rec}=45ns$
- Particle ID
 - $o \qquad \tau_\gamma \approx 2 \ \tau_\alpha$

• L.Y._{$$\alpha$$} = 1.2 x LY_{mip}

- n = 1.65 (≈ n_{quartz})
 → good optical coupling with PMTs
 - No self-absorption $(\lambda_{Abs} = \infty)$
 - → position-independent energy response
 - ➔ homogeneous calorimeter

First test made in 100I prototype

- 40 x 40 x 50 cm3, 100 l LXe
- (same depth, 1/10 of the final volume)
- the world-wide largest at that time
- Equipped with 240 PMTs
 - (HAMAMATSU R6041+R9288TB)
 - - K-Cs-Sb photocathode
 - - Quartz window (suited for VUV)
- Gas purification system
- (getter+Oxysorb) to keep impurity
- content < 1ppb

100 | prototype

Demonstrated: high energy and timing resolution and absorption length >> 1m

-Calibration of position reconstruction

Alpha sources electroplated onto 50 um wire \rightarrow alpha rings

XEC

- 800 I of Liquid Xenon equipped with 846 PMTs; 9% $\Omega/4\pi$;
- Only scintillation light;

ы.

- 19 X_0 depth and $0.4X_0$ of front material.
 - PMT quartz windows to match LXe scintillation UV spectrum

TC calibration with 12 ps laser 12 ps fwhm NYVO laser for TC-XEC time calibration designed for MEG

Calibration with (p,γ)

500 KeV CW generator excite Boron or Li target at COBRA center,

Reacti on	Peak energy	σ peak	γ-lines
Li(p,γ)Β e	440 keV	5 mb	(17.6, 14.6) MeV
<i>В(р,_γ)С</i>	163 keV	2 10 ⁻¹ mb	(4.4, 11.6, 16.1) MeV

TC-DC time relative timing

TC timing resolution stable over the full run

doubles sample single bar res.

-TC – hit map before and after calibration

-XEC L.Y. increased over the RUN

 Continuous improvement of XEC L.Y. (expected value 26.000 phe at 17.5 MeV)

MC of gamma spectrum

- Red: Radiative decay
- Green: Annihilation In Flight
- Black: Cosmics
- Blue: Total (including pileup)

Data-MC

- Data (Blue Points): Beam @ 3.2 x 107 m s-1, threshold ≈ 45 MeV
- MC (Black line): full background simulation. Absolute rate reproduced
- Pile-up subtracted by charge distribution; cosmics rejected.
- Final pile-up rejection by using waveforms (not here).

-Radiative Decay in the timing sginal

Blue: no kinematical bound; Red: kinematical bound applied.

Kinematical bound has no effect on signal and a factor 2.5 reduction on bck

MEG expectations

Detector parameters

Signal

Single Event Sensitivity

Backgrounds

Upper Limit at 90% CL

Discovery

 $\varepsilon_{e} \approx 0.9$ $\varepsilon_{sel} \approx (0.9)^{3} = 0.7$ $\varepsilon_{\gamma} \approx 0.6$ $T = 2.6 \cdot 10^{7} \text{ s} \quad R_{\mu} = 0.3 \cdot 10^{8} \frac{\mu}{s} \qquad \frac{\Omega}{4\pi} = 0.09$ $\mathcal{N}_{\text{sig}} = \mathcal{BR} \cdot \mathcal{T} \cdot \mathcal{R}_{\mu} \cdot \frac{\Omega}{4\pi} \cdot \mathcal{E}_{e} \cdot \mathcal{E}_{\gamma} \cdot \mathcal{E}_{\text{sel}}$ $\mathcal{C}_{\text{uts at 1,4} \times \text{FWHM}}$ $SES = \left(T \cdot R_{\mu} \cdot \frac{\Omega}{4\pi} \cdot \varepsilon_{e} \cdot \varepsilon_{\gamma} \cdot \varepsilon_{sel} \right)^{-1} \approx 4 \times 10^{-14}$ $BR_{acc} \propto R_{\mu}^2 \times \Delta E_e \times \Delta E_v^2 \times \Delta \theta_{ev}^2 \times \Delta t_{ev}^2 = 3 \times 10^{-14}$ $BR_{corr} \approx 3 \times 10^{-15}$ $BR(\mu \rightarrow e\gamma) \approx 1 \times 10^{-13}$

4 events (P = 2×10^{-3}) correspond *BR* = 2×10^{-13}