The **AMADEUS** experiment

study of the kaonic clusters at da Φ ne

Oton Vázquez Doce (LNF-INFN) on behalf of the AMADEUS Collaboration LNF Spring School, May 13, 2008.

Introduction

• What (and where) is AMADEUS?

AMADEUS scientific case

• Why to do it? What are the kaonic clusters?

Framework of AMADEUS

• What do we know about kaonic clusters?

Performing AMADEUS

• How are we going to do it? Which is the experimental setup?

Conclusions

• What do I have to remember?

Introduction	Scientific case	AMADEUS framework	Performing AMADEUS	Conclusions
-what?	~			
-where?				

ANTIKAONIC MATTER Ατ **Δ**ΑΦΝΕ: ΑΝ EXPERIMENT WITH **UNRAVELING S***PECTROSCOPY*

111 scientists from 33 Institutes of 13 Countries signed the LOI

March 2006

Introduction	Scientific case	AMADEUS framework	Performing AMADEUS	Conclusions
	-kaonic clusters			

A hadron physics important and unresolved topic: How the hadronic masses and interactions change in nuclear medium

Approach by means of the predicted

Deeply bound kaonic nuclear states

firstly suggested by S. Wycech (S. Wycech, Nucl. Phys. A450 (1986) 399c)

Might offer the <u>ideal condition</u> to study how the <u>low-energy QCD</u> spontaneous and splicit Chiral-simmetry breaking changes in the <u>nuclear enviroment.</u> п

₽³H

Oton Vázquez Doce

Y. Akaishi and T. Yamazaki "Nuclear bound states in light nuclei" (Phys. Rev. C65 (2002) 044005)

Prediction based on the interpretation of the s-wave, isospin I=0 Λ(1405) resonance as a K⁻p bound state
Creation of a KN potential as to similtaneously reproduce data from KN scattering lenghts and binding energy and width of kaonic hydrogen

Strong attractive I=0 KN interaction favors discrete nuclear states **bound 100-200 MeV** and **Γ≈20-30 MeV**.

Shrinkage effect of a K on core nuclei forming unusual dense nuclear medium (5-10 times nuclear density)

Kaonic Clusters contribution to fundamental physics

- Modification of the Kaon mass and of the KN interaction in the nuclear medium (symmetry breaking of QCD)

- Transition from the **hadronic phase** to a **quark-gluon phase** (changes of vacuum properties of QCD and quark condensate)

- Partial **restoration of Chiral simetry** in nuclear medium

- Behaviour of strange particles and **kaon condensation** in dense nuclear matter (astrophysics: dynamics of supernovae, neutron stars, black holes)

- Nuclear dynamics under extreme conditions

Introduction	Scientific case	AMADEUS framework	Performing AMADEUS	Conclusions
		-what do we know?	-	

Future experiments

FOPI @ GSI-SIS: Al-Al, p-d

E15 @ **J-PARC:** K⁻ induced reactions in flight $(K^-, N) (K^-, \pi^-)$

FAIR @ GSI

New data from:

FINUDA @ DAFNE

E570 @ KEK

... and AMADEUS!

"a global strategy to attack the major open problems of low-energy QCD"

Theoretical debate

- Alternative interpretations of the present data: double nucleon absorption followed by FSI of the produced particles with daughter nucleus

- Theoretical development of KN interaction in free space in the framework of SU(3) Chiral unitary model, and modification due to many-body efects in nuclear medium

- Nature of the $\Lambda(1405)$ resonance
- Bound kaon approach in the Skyrme model also predicts Kaonic Clusters
- Interpretations with not-so-strongly attractive KN potentials
- Nucleon-Nucleon repulsion
- Deeply bound states only in heavy nucleus

theoreticians demand new complete experimental results!

Introduction	Scientific case	AMADEUS framework	Performing AMADEUS		Conclusions
			-How?		

AMADEUS aims to <u>confirm or deny</u> the existance of such an exotic states by performing a good measurement in a high performance detector on a suitable accelerator using

In-medium full hadron spectroscopy

A complete determination of all **formation and decay channel** measuring, binding energies, widths, angular momenta, isospin, sizes, densities...

Detection of: - charged and neutral particles

- up to about 800 MeV/c
- high efficiency and resolution
- in 4π geometry (full acceptance)

Exotic states produced with (K^- , N) reactions will be observed by the energy distribution of the **ejected protons and neutrons** via the **missing mass spectra** of the (K^- , p) and (K^- , n) reactions.

\Rightarrow The setup should be capable to measure:

- Position of K⁻ stop: primary vertex and K⁺ tracking (trigger)
- Outgoing neutrons and protons 400 600 MeV/c

→ KLOE has an experimentally proved capability for neutron detection (KLOnE)

Invariant mass spectroscopy

 \rightarrow all decay products have to be identified, including hyperons decay products \rightarrow 4-momenta of **charged an neutral** particles must be determined

- -protons
 200 500 MeV

 -pions
 50 200 MeV

 -neutrons
 200 500 MeV
- -deuterons...

WITH AMADEUS setup

Example of Strange tribaryon formation and decay detection

AMADEUS inner region setup

Gaseous or thin solid target

Draft design of a **toroidal cryogenic cell target**:

- 2 bar
- 10 K
- 150 NTP density

- 75µm Kapton, with aluminum grid reinforcement
- 30-40% of K⁻ stopped

A tracking/vertex detector (a Multilayer cilindrical GEM or a Time Projection Chamber (TPC) with GEM-readout surrounding the half toroidal cryogenic target cell with the kaon trigger configuration.

http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=LNF-07-24(IR).pdf

Oton Vázquez Doce

Introduction Scientific case AMADEUS framework Performing AMADEUS Conclusions

LNF test of SiPM (Hamamatsu)

SiPM = Silicon Photomultipliers (array of APDs)

Characterization of SiPM detectors reading light from thin scintilliating fibers

The AMADEUS experiment

Oton Vázquez Doce

Introduction Scientific case AMADEUS framework Performing AMADEUS Conclusions

LNF test of SiPM (Hamamatsu)

- -Stabilized Power Supply realization
- -Preamplifier design
- -Test setup design and realization (mechanics, cooling, electronics...)

10⁻³ cluster formation yield \rightarrow **12.5 × 10⁵ kaonic clusters/month**

Identification & tracking efficiencies $\rightarrow 10^5$ events/month (~1000 pb⁻¹)

Introduction	Scientific case	AMADEUS framework	Performing AMADEUS	Conclusions
--------------	-----------------	-------------------	--------------------	-------------

From AMADEUS LOI:

"In conclusion, an initial programme based on the study of the **³He and the ⁴He targets, to investigate dibaryonic and tribaryonic states**, would require an integrated luminosity from 2 to 6 fb⁻¹, according to depth of the investigation"

Further requests (other targets) depend on the results of these first measurements

From AMADEUS LOI:

(before J-PARC, FOPI, FAIR)

"In conclusion, an initial programme based on the study of the **³He and the ⁴He targets, to investigate dibaryonic and tribaryonic states**, would require an integrated luminosity from 2 to 6 fb⁻¹, according to depth of the investigation"

Further requests (other targets) depend on the results of these first measurements

Full hadron spectroscopy with 4π geometry
 Target+trigger+tracking devices in existing KLOE setup

Possible at DA Φ NE with luminosity upgrade