

LNF Spring School "Bruno Touschek" Entering the LHC Era Frascati, Italy 12 - 16 May 2008

LUND UNIVERSITY

Event Generators for LHC

Torbjörn Sjöstrand Lund University

1. (today) Introduction and Overview; Parton Showers; Matching Issues

2. (tomorrow) Multiple Interactions; Hadronization; Generator News & Conclusions

Event Generator Position

Event Generator Position

Why Generators?

- Allow studies of *complex* multiparticle physics
- Large flexibility in physical quantities that can be addressed
 - Vehicle of ideology to disseminate ideas

Can be used to

- predict event rates and topologies \Rightarrow estimate feasibility
- \bullet simulate possible backgrounds \Rightarrow devise analysis strategies
- study detector requirements \Rightarrow optimize detector/trigger design
- \bullet study detector imperfections \Rightarrow evaluate acceptance corrections

Monte Carlo method convenient because Einstein was wrong: God does throw dice!

Quantum mechanics: amplitudes \implies probabilities Anything that possibly can happen, will! (but more or less often)

The structure of an event

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Final-state radiation: timelike parton showers

Multiple parton-parton interactions ...

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The strings fragment to produce primary hadrons

These are the particles that hit the detector

The Monte Carlo method

Want to generate events in as much detail as Mother Nature \implies get average *and* fluctutations right \implies make random choices, \sim as in nature

 $\sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process}} \rightarrow \text{final state}$ (appropriately summed & integrated over non-distinguished final states) where $\mathcal{P}_{\text{tot}} = \mathcal{P}_{\text{res}} \mathcal{P}_{\text{ISR}} \mathcal{P}_{\text{FSR}} \mathcal{P}_{\text{MI}} \mathcal{P}_{\text{remnants}} \mathcal{P}_{\text{hadronization}} \mathcal{P}_{\text{decays}}$ with $\mathcal{P}_i = \prod_j \mathcal{P}_{ij} = \prod_j \prod_k \mathcal{P}_{ijk} = \dots$ in its turn \Longrightarrow divide and conquer

an event with *n* particles involves $\mathcal{O}(10n)$ random choices, (flavour, mass, momentum, spin, production vertex, lifetime, ...) LHC: ~ 100 charged and ~ 200 neutral (+ intermediate stages) \implies several thousand choices (of $\mathcal{O}(100)$ different kinds)

Generator Landscape

specialized often best at given task, but need General-Purpose core

Matrix-Elements Programs

Wide spectrum from "general-purpose" to "one-issue", see e.g.

http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:

- MadGraph/MadEvent (amplitude-based, < 7 outgoing partons): http://madgraph.physics.uiuc.edu/
- CompHEP (matrix-elements-based, $\sim \leq$ 4 outgoing partons)
- AMEGIC++: part of SHERPA (\sim MadGraph \rightarrow Behrends-Giele)
- HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:

- ALPGEN: $W/Z + \leq 6j$, $nW + mZ + kH + \leq 3j$, ...
- AcerMC: ttbb, ...
- VECBOS: $W/Z+ \le 4j$

III) Special processes, next-to-leading-order:

- MCFM: NLO W/Z+ \leq 2j, WZ, WH, H+ \leq 1j
- GRACE+Bases/Spring

Colour flow in hard processes

One Feynman graph can correspond to several possible colour flows, e.g. for $qg \rightarrow qg$:

while other $qg \rightarrow qg$ graphs only admit one colour flow:

so nontrivial mix of kinematics variables (\hat{s}, \hat{t}) and colour flow topologies I, II:

$$\begin{aligned} |\mathcal{A}(\hat{s},\hat{t})|^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t}) + \mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2 \\ &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|^2 + |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2 + 2 \mathcal{R}e \left(\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})\mathcal{A}_{\mathrm{II}}^*(\hat{s},\hat{t})\right) \end{aligned}$$

with $\mathcal{R}e\left(\mathcal{A}_{\mathbf{I}}(\hat{s},\hat{t})\mathcal{A}_{\mathbf{II}}^{*}(\hat{s},\hat{t})\right) \neq 0$

- \Rightarrow indeterminate colour flow, while
- showers should know it (coherence),
- hadronization *must* know it (hadrons singlets).
 Normal solution:

$$rac{ ext{nterference}}{ ext{total}} \propto rac{1}{N_{ ext{C}}^2-1}$$

so split I : II according to proportions in the $N_{C} \rightarrow \infty$ limit, i.e.

$$\begin{aligned} |\mathcal{A}(\hat{s},\hat{t})|^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 + |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 \\ |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 &= |\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t}) + \mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2 \left(\frac{|\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|^2}{|\mathcal{A}_{\mathrm{I}}(\hat{s},\hat{t})|^2 + |\mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|^2}\right)_{N_{\mathsf{C}} \to \infty} \\ \mathcal{A}_{\mathrm{II}}(\hat{s},\hat{t})|_{\mathrm{mod}}^2 &= \ldots \end{aligned}$$

Parton Showers

- Final-State (Timelike) Showers
- Initial-State (Spacelike) Showers
 - Matching to Matrix Elements

Divergences

Big probability for one emission ⇒ also big for several ⇒ with ME's need to calculate to high order **and** with many loops ⇒ extremely demanding technically (not solved!), and involving big cancellations between positive and negative contributions. Alternative approach: **parton showers**

The Parton-Shower Approach

 $2 \rightarrow n = (2 \rightarrow 2) \oplus \text{ISR} \oplus \text{FSR}$

FSR = Final-State Rad.; timelike shower $Q_i^2 \sim m^2 > 0$ decreasing ISR = Initial-State Rad.; spacelike shower $Q_i^2 \sim -m^2 > 0$ increasing

 $2 \rightarrow 2$ = hard scattering (on-shell):

$$\sigma = \iiint \mathrm{d}x_1 \,\mathrm{d}x_2 \,\mathrm{d}\hat{t} \,f_i(x_1, Q^2) \,f_j(x_2, Q^2) \,\frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}\hat{t}}$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability: the cross section is not directly affected, but indirectly it is, via the changed event shape

Technical aside: why timelike/spacelike?

Consider four-momentum conservation in a branching $a \rightarrow b c$

Initial-state shower: $m_a = m_c = 0 \Rightarrow m_b^2 = -\frac{p_\perp^2}{1-z} < 0 \Rightarrow$ spacelike

Doublecounting

A 2 \rightarrow *n* graph can be "simplified" to 2 \rightarrow 2 in different ways:

Do not doublecount: $2 \rightarrow 2 = most virtual = shortest distance$

Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!

From Matrix Elements to Parton Showers

Rewrite for $x_2 \rightarrow 1$, i.e. q–g collinear limit:

g

q

$$\Rightarrow d\mathcal{P} = \frac{d\sigma}{\sigma_0} = \frac{\alpha_s}{2\pi} \frac{dx_2}{(1-x_2)} \frac{4}{3} \frac{x_2^2 + x_1^2}{(1-x_1)} dx_1 \approx \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} \frac{4}{3} \frac{1+z^2}{1-z} dz$$

Generalizes to DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

$$d\mathcal{P}_{a \to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{dQ^2}{Q^2} P_{a \to bc}(z) dz$$

$$P_{\rm q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$$

$$P_{\rm g \to gg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$$

$$P_{\rm g \to q\overline{q}} = \frac{n_f}{2} (z^2 + (1-z)^2) \quad (n_f = \text{no. of quark flavours})$$

Iteration gives final-state parton showers

Need soft/collinear cut-offs to stay away from nonperturbative physics. Details model-dependent, e.g. $Q > m_0 = \min(m_{ij}) \approx 1 \text{ GeV},$ $z_{\min}(E,Q) < z < z_{\max}(E,Q)$ or $p_{\perp} > p_{\perp\min} \approx 0.5 \text{ GeV}$

The Sudakov Form Factor

Conservation of total probability:

 $\mathcal{P}(\text{nothing happens}) = 1 - \mathcal{P}(\text{something happens})$

"multiplicativeness" in "time" evolution:

 $\mathcal{P}_{\text{nothing}}(0 < t \leq T) = \mathcal{P}_{\text{nothing}}(0 < t \leq T_1) \mathcal{P}_{\text{nothing}}(T_1 < t \leq T)$ Subdivide further, with $T_i = (i/n)T$, $0 \leq i \leq n$:

$$\mathcal{P}_{\text{nothing}}(0 < t \le T) = \lim_{n \to \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\text{nothing}}(T_i < t \le T_{i+1})$$

$$= \lim_{n \to \infty} \prod_{i=0}^{n-1} \left(1 - \mathcal{P}_{\text{something}}(T_i < t \le T_{i+1})\right)$$

$$= \exp\left(-\lim_{n \to \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\text{something}}(T_i < t \le T_{i+1})\right)$$

$$= \exp\left(-\int_0^T \frac{d\mathcal{P}_{\text{something}}(t)}{dt}dt\right)$$

$$\implies d\mathcal{P}_{\text{first}}(T) = d\mathcal{P}_{\text{something}}(T) \exp\left(-\int_0^T \frac{d\mathcal{P}_{\text{something}}(t)}{dt}dt\right)$$

Example: radioactive decay of nucleus

naively:
$$\frac{dN}{dt} = -cN_0 \Rightarrow N(t) = N_0 (1 - ct)$$

depletion: a given nucleus can only decay once
correctly: $\frac{dN}{dt} = -cN(t) \Rightarrow N(t) = N_0 \exp(-ct)$
generalizes to: $N(t) = N_0 \exp\left(-\int_0^t c(t')dt'\right)$
or: $\frac{dN(t)}{dt} = -c(t) N_0 \exp\left(-\int_0^t c(t')dt'\right)$

sequence allowed: nucleus_1 \rightarrow nucleus_2 \rightarrow nucleus_3 $\rightarrow \ldots$

Correspondingly, with $Q \sim 1/t$ (Heisenberg)

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z \,\exp\left(-\sum_{b,c} \int_{Q^2}^{Q_{\rm max}^2} \frac{\mathrm{d}{Q'}^2}{Q'^2} \int \frac{\alpha_{\rm S}}{2\pi} P_{a\to bc}(z') \,\mathrm{d}z'\right)$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so Note that $\sum_{b,c} \int \int d\mathcal{P}_{a \to bc} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens)

Sudakov form factor provides "time" ordering of shower: lower $Q^2 \iff$ longer times

$$Q_1^2 > Q_2^2 > Q_3^2$$

 $Q_1^2 > Q_4^2 > Q_5^2$
etc.

Sudakov regulates singularity for *first* emission ...

... but in limit of *repeated soft* emissions $q \rightarrow qg$ $(g \rightarrow gg, g \rightarrow q\overline{q} \text{ not considered})$ one obtains the same inclusive Q emission spectrum as for ME, i.e. divergent ME spectrum \iff infinite number of PS emissions

Coherence

QCD: colour coherence for soft gluon emission

- solved by requiring emission angles to be decreasing
 - or requiring transverse momenta to be decreasing

The Common Showering Algorithms

Three main approaches to showering in common use:

Two are based on the standard shower language of $a \rightarrow bc$ successive branchings:

there instead LDCMC: sophisticated but complicated

Ordering variables in final-state radiation

PYTHIA: $Q^2 = m^2$ HERWIG: $Q^2 \sim E^2 \theta^2$ ARIADNE: $Q^2 = p_{\perp}^2$

large mass first \Rightarrow "hardness" ordered **coherence brute force** covers phase space ME merging simple $g \rightarrow q\overline{q}$ simple **not Lorentz invariant** no stop/restart ISR: $m^2 \rightarrow -m^2$ large angle first \Rightarrow hardness not ordered coherence inherent gaps in coverage ME merging messy $g \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart ISR: $\theta \rightarrow \theta$

- Y

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent

covers phase space ME merging simple $g \rightarrow q\overline{q}$ messy Lorentz invariant can stop/restart ISR: more messy

Data comparisons

All three algorithms do a reasonable job of describing LEP data, but typically ARIADNE $(p_{\perp}^2) > PYTHIA (m^2) > HERWIG (\theta)$

... and programs evolve to do even better ...

Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

$$\mathcal{P}_{q \to qg} \approx \int \frac{\mathrm{d}Q^2}{Q^2} \int \mathrm{d}z \, \frac{\alpha_{\rm S}}{2\pi} \frac{4}{3} \frac{1+z^2}{1-z}$$
$$\approx \alpha_{\rm S} \, \ln\left(\frac{Q_{\rm max}^2}{Q_{\rm min}^2}\right) \, \frac{8}{3} \, \ln\left(\frac{1-z_{\rm min}}{1-z_{\rm max}}\right) \sim \alpha_{\rm S} \, \ln^2$$

Rate for n emissions is of form:

$$\mathcal{P}_{\mathsf{q}
ightarrow \mathsf{q} n \mathsf{g}} \sim (\mathcal{P}_{\mathsf{q}
ightarrow \mathsf{q} \mathsf{g}})^n \sim lpha_{\mathsf{s}}^n \, \mathsf{In}^{2n}$$

Next-to-leading log (NLL): inclusion of *all* corrections of type $\alpha_s^n \ln^{2n-1}$

No existing $pp/p\overline{p}$ generator completely NLL, but

- energy-momentum conservation (and "recoil" effects)
- coherence
- $2/(1-z) \rightarrow (1+z^2)/(1-z)$
- scale choice $\alpha_s(p_{\perp}^2)$ absorbs singular terms $\propto \ln z, \ln(1-z)$ in $\mathcal{O}(\alpha_s^2)$ splitting kernels $P_{q \to qg}$ and $P_{g \to gg}$
- . . .
- \Rightarrow far better than naive, analytical LL

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

 $f_i(x, Q^2)$ = number density of partons *i* at momentum fraction *x* and probing scale Q^2 .

Linguistics (example): $F_2(x,Q^2) = \sum_i e_i^2 x f_i(x,Q^2)$ structure function parton distributions Absolute normalization at small Q_0^2 unknown. Resolution dependence by DGLAP:

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_{\mathsf{S}}}{2\pi} P_{a\to bc} \left(z = \frac{x}{x'}\right)$$

Х

For cross section calculations NLO PDF's are combined with NLO σ 's. Gives significantly better description of data than LO can.

But NLO \Rightarrow parton model not valid, e.g $g(x, Q^2)$ can be negative. Not convenient for LO showers, nor for many LO ME's.

Recent revived interest in modified LO sets, e.g. by Thorne & Sherstnev: allow $\sum_i \int_0^1 x f_i(x, Q^2) dx > 1$; around ~ 1.15

$pp ightarrow \jmath\jmath$				
pdf type	matrix	σ (µb)	K-factor	
	element			
NLO	NLO	183.2		
LO	LO	149.8	1.22	
NLO	LO	115.7	1.58	
LO*	LO	177.5	1.03	

$$pp \to H$$

pdf type	matrix	σ (pb)	K-factor
	element		
NLO	NLO	38.0	
LO	LO	22.4	1.70
NLO	LO	20.3	1.87
LO*	LO	32.4	1.17

Initial-State Shower Basics

- Parton cascades in p are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1/Q$ before collision.
- A hard scattering at Q^2 probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

Event generation could be addressed by forwards evolution: pick a complete partonic set at low Q_0 and evolve, see what happens. Inefficient:

have to evolve and check for *all* potential collisions, but 99.9...% inert
 impossible to steer the production e.g. of a narrow resonance (Higgs)

Backwards evolution

Backwards evolution is viable and ~equivalent alternative: start at hard interaction and trace what happened "before"

Monte Carlo approach, based on conditional probability: recast

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}t} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_s}{2\pi} P_{a\to bc}(z)$$
with $t = \ln(Q^2/\Lambda^2)$ and $z = x/x'$ to
$$\mathrm{d}\mathcal{P}_b = \frac{\mathrm{d}f_b}{f_b} = |\mathrm{d}t| \sum_a \int \mathrm{d}z \frac{x'f_a(x',t)}{xf_b(x,t)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z)$$
then solve for *de*creasing *t*, i.e. backwards in time, starting at high Q^2 and moving towards lower,

with Sudakov form factor $\exp(-\int d\mathcal{P}_b)$

Ladder representation combines whole event:

cf. previously:

One possible
Monte Carlo order:
1) Hard scattering
2) Initial-state shower
from center outwards
3) Final-state showers

Coherence in spacelike showers

- $Q_3^2 > z_1 Q_1^2, Q_5^2 > z_3 Q_3^2, \dots$ i.e. Q_i^2 need not even be ordered
- coherence of leading collinear singularities: $Q_5^2 > Q_3^2 > Q_1^2$, i.e. Q^2 ordered
- coherence of leading soft singularities (more messy):

$$\begin{array}{ll} E_{3}\theta_{4} > E_{1}\theta_{2}, \text{ i.e. } z_{1}\theta_{4} > \theta_{2} \\ z \ll 1: & E_{1}\theta_{2} \approx p_{\perp 2}^{2} \approx Q_{3}^{2}, E_{3}\theta_{4} \approx p_{\perp 4}^{2} \approx Q_{5}^{2} \\ & \text{ i.e. reduces to } Q^{2} \text{ ordering as above} \\ z \approx 1: & \theta_{4} > \theta_{2}, \text{ i.e. angular ordering of soft gluons} \\ \implies \text{ reduced phase space} \end{array}$$

Evolution procedures

DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution towards larger Q^2 and (implicitly) towards smaller x

```
BFKL: Balitsky–Fadin–Kuraev–Lipatov
```

evolution towards smaller x (with small, unordered Q^2)

CCFM: Ciafaloni–Catani–Fiorani–Marchesini interpolation of DGLAP and BFKL

GLR: Gribov–Levin–Ryskin

nonlinear equation in dense-packing (saturation) region, where partons recombine, not only branch

Initial-State Shower Comparison

Two(?) CCFM Generators: (SMALLX (Marchesini, Webber)) CASCADE (Jung, Salam) LDC (Gustafson, Lönnblad): reformulated initial/final rad. ⇒ eliminate non-Sudakov

Χ

Test 1) forward (= p direction) jet activity at HERA

Χ

2) Heavy flavour production

but also explained by DGLAP with leading order pair creation + flavour excitation (\approx unordered chains) + gluon splitting (final-state radiation)

CCFM requires off-shell ME's + unintegrated parton densities

$$F(x,Q^2) = \int^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \mathcal{F}(x,k_{\perp}^2) + (\text{suppressed with } k_{\perp}^2 > Q^2)$$

so not ready for prime time in pp

Initial- vs. final-state showers

Both controlled by same evolution equations

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\rm S}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z \,\cdot\, (\text{Sudakov})$$

but

decreasing E, m^2, θ both daughters $m^2 \ge 0$ physics relatively simple \Rightarrow "minor" variations: Q^2 , shower vs. dipole, ...

decreasing E, increasing Q^2 , θ one daughter $m^2 \ge 0$, one $m^2 < 0$ physics more complicated \Rightarrow more formalisms: DGLAP, BFKL, CCFM, GLR, ...

Future of showers

Showers still evolving:

HERWIG has new evolution variable better suited for heavy particles

$$\tilde{q}^2 = rac{\mathbf{q}^2}{z^2(1-z)^2} + rac{m^2}{z^2}$$
 for $\mathbf{q}
ightarrow \mathbf{qg}$

Gives smooth coverage of soft-gluon region, no overlapping regions in FSR phase space, but larger dead region.

PYTHIA has moved (but not yet users?) to p_{\perp} -ordered showers (borrowing some of ARIADNE dipole approach, but still showers) $p_{\perp evol}^2 = z(1-z)Q^2 = z(1-z)M^2$ for FSR $p_{\perp evol}^2 = (1-z)Q^2 = (1-z)(-M^2)$ for ISR Guarantees better coherence for FSR, hopefully also better for ISR.

SHERPA moves from mass-ordered (\sim PYTHIA) showers to p_{\perp} -ordered (Catani-Seymour) dipoles

However, main evolution is matching to matrix elements

Matrix Elements vs. Parton Showers

- + systematic expansion in α_{s} ('*exact*')
- + powerful for multiparton Born level
- + flexible phase space cuts
- loop calculations very tough
- negative cross section in collinear regions
 ⇒ unpredictive jet/event structure
- no easy match to hadronization

PS : Parton Showers

- approximate, to LL (or NLL)
- $\begin{array}{ll} & \text{main topology not predetermined} \\ \Rightarrow & \text{inefficient for exclusive states} \end{array}$
- + process-generic \Rightarrow simple multiparton
- + Sudakov form factors/resummation
 ⇒ sensible jet/event structure
- + easy to match to hadronization

(T. Plehn, D. Rainwater, P. Skands)

Matrix Elements and Parton Showers

Recall complementary strengths:

- ME's good for well separated jets
- PS's good for structure inside jets

Marriage desirable! But how?

Problems: • gaps in coverage?

- doublecounting of radiation?
- Sudakov?
- NLO consistency?

Much work ongoing \implies no established orthodoxy

Three main areas, in ascending order of complication:

1) Match to lowest-order nontrivial process — merging

2) Combine leading-order multiparton process — vetoed parton showers

3) Match to next-to-leading order process — MC@NLO

Merging

= cover full phase space with smooth transition ME/PS Want to reproduce $W^{ME} = \frac{1}{\sigma(LO)} \frac{d\sigma(LO+g)}{d(phasespace)}$ by shower generation + correction procedure $W^{ME} = W^{PS} \frac{W^{ME}}{W^{ME}}$

• Exponentiate ME correction by shower Sudakov form factor:

$$W_{\text{actual}}^{\text{PS}}(Q^2) = W^{\text{ME}}(Q^2) \exp\left(-\int_{Q^2}^{Q_{\text{max}}^2} W^{\text{ME}}(Q'^2) dQ'^2\right)$$

• Do not normalize W^{ME} to $\sigma(NLO)$ (error $\mathcal{O}(\alpha_s^2)$ either way)

• Normally several shower histories \Rightarrow \sim equivalent approaches

Final-State Shower Merging

Merging with $\gamma^*/Z^0 \rightarrow q\overline{q}g$ for $m_q = 0$ since long (M. Bengtsson & TS, PLB185 (1987) 435, NPB289 (1987) 810)

For $m_q > 0$ pick $Q_i^2 = m_i^2 - m_{i,\text{onshell}}^2$ as evolution variable since $W^{\text{ME}} = \frac{(\dots)}{Q_1^2 Q_2^2} - \frac{(\dots)}{Q_1^4} - \frac{(\dots)}{Q_2^4}$

Coloured decaying particle also radiates:

to ME, with reduced energy of system

PYTHIA performs merging with generic FSR $a \rightarrow bcg$ ME, in SM: $\gamma^*/Z^0/W^{\pm} \rightarrow q\overline{q}, t \rightarrow bW^+, H^0 \rightarrow q\overline{q},$ and MSSM: $t \rightarrow bH^+, Z^0 \rightarrow \tilde{q}\overline{\tilde{q}}, \tilde{q} \rightarrow \tilde{q}'W^+, H^0 \rightarrow \tilde{q}\overline{\tilde{q}}, \tilde{q} \rightarrow \tilde{q}'H^+,$ $\chi \rightarrow q\overline{\tilde{q}}, \chi \rightarrow q\overline{\tilde{q}}, \tilde{q} \rightarrow q\chi, t \rightarrow \tilde{t}\chi, \tilde{g} \rightarrow q\overline{\tilde{q}}, \tilde{q} \rightarrow q\tilde{g}, t \rightarrow \tilde{t}\tilde{g}$

g emission for different colour, spin and parity:

 $R_3^{bl}(y_c)$: mass effects in Higgs decay:

Initial-State Shower Merging

Merging in HERWIG

HERWIG also contains merging, for

- $\bullet \ Z^0 \to q \overline{q}$
- t \rightarrow bW+
- $\bullet \; q \overline{q} \to Z^0$

and some more

Special problem: angular ordering does not cover full phase space; so (1) fill in "dead zone" with ME (2) apply ME correction in allowed region

Important for agreement with data:

Vetoed Parton Showers

S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111 (2001) 063; L. Lönnblad, JHEP0205 (2002) 046;

F. Krauss, JHEP 0208 (2002) 015; S. Mrenna, P. Richardson, JHEP0405 (2004) 040;

S. Höche et al., hep-ph/0602031

Generic method to combine ME's of several different orders to NLL accuracy; will be a 'standard tool' in the future

Basic idea:

- consider (differential) cross sections $\sigma_0, \sigma_1, \sigma_2, \sigma_3, \ldots$, corresponding to a lowest-order process (e.g. W or H production), with more jets added to describe more complicated topologies, in each case to the respective leading order
- σ_i , $i \ge 1$, are divergent in soft/collinear limits
- absent virtual corrections would have ensured "detailed balance", i.e. an emission that adds to σ_{i+1} subtracts from σ_i
- such virtual corrections correspond (approximately) to the Sudakov form factors of parton showers
- so use shower routines to provide missing virtual corrections
 ⇒ rejection of events (especially) in soft/collinear regions

Veto scheme:

1) Pick hard process, mixing according to $\sigma_0 : \sigma_1 : \sigma_2 : ...,$ above some ME cutoff (e.g. all $p_{\perp i} > p_{\perp 0}$, all $R_{ij} > R_0$), with large fixed α_{s0}

2) Reconstruct imagined shower history (in different ways) 3) Weight $W_{\alpha} = \prod_{\text{branchings}} (\alpha_{s}(k_{\perp i}^{2}) / \alpha_{s0}) \Rightarrow \text{accept/reject}$

CKKW-L:

4) Sudakov factor for non-emission on all lines above ME cutoff W_{Sud} = Π "propagators" Sudakov(k²_{⊥beg}, k²_{⊥end})
4a) CKKW : use NLL Sudakovs
4b) L: use trial showers
5) W_{Sud} ⇒ accept/reject
6) do shower, vetoing emissions above cutoff

MLM:

- 4) do parton showers
- 5) (cone-)cluster showered event
- 6) match partons and jets
- 7) if all partons are matched, and $n_{jet} = n_{parton}$, keep the event, else discard it

CKKW mix of W + (0, 1, 2, 3, 4) partons, hadronized and clustered to jets:

(S.Mrenna, P. Richardson)

Spread of W + jets rate for different matching schemes + showers, top: Tevatron, bottom: LHC.

ALPGEN: MLM + HERWIG ARIADNE: CKKW-L + ARIADNE HELAC: MLM + PYTHIA MADEVENT: MLM/CKKW + PYTHIA SHERPA: CKKW + SHERPA model varation: α_{s} , cuts, ...

arXiv0706.2569 (Alwall et al.)

MC@NLO

Objectives:

- Total rate should be accurate to NLO.
- NLO results are obtained for all observables when (formally) expanded in powers of α_s .
- Hard emissions are treated as in the NLO computations.
- Soft/collinear emissions are treated as in shower MC.
- The matching between hard and soft emissions is smooth.
- The outcome is a set of "normal" events, that can be processed further.

Basic scheme (simplified!):

- 1) Calculate the NLO matrix element corrections to an *n*-body process (using the subtraction approach).
- 2) Calculate analytically (no Sudakov!) how the first shower emission off an *n*-body topology populates (n + 1)-body phase space.
- 3) Subtract the shower expression from the (n + 1) ME to get the "true" (n + 1) events, and consider the rest of σ_{NLO} as n-body.
 4) Add showers to both kinds of events.

MC@NLO in comparison:

- Superior with respect to "total" cross sections.
- Equivalent to merging for event shapes (differences higher order).
- Inferior to CKKW–L for multijet topologies.
- \Rightarrow pick according to current task and availability.

MC@NLO 2.31 [hep-ph/0402116]

IPROC	Process
-1350-IL	$H_1H_2 \to (Z/\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1360-IL	$H_1H_2 \to (Z \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1370-IL	$H_1H_2 \to (\gamma^* \to) l_{\rm IL}\bar{l}_{\rm IL} + X$
-1460-IL	$H_1H_2 \to (W^+ \to) l_{\rm IL}^+ \nu_{\rm IL} + X$
-1470-IL	$H_1H_2 \to (W^- \to) l_{\rm IL}^- \bar{\nu}_{\rm IL} + X$
-1396	$H_1H_2 \to \gamma^* (\to \sum_i f_i \bar{f}_i) + X$
-1397	$H_1 H_2 \to Z^0 + X$
-1497	$H_1H_2 \to W^+ + X$
-1498	$H_1 H_2 \to W^- + X$
-1600-ID	$H_1 H_2 \to H^0 + X$
-1705	$H_1H_2 \to b\bar{b} + X$
-1706	$H_1H_2 \to t\bar{t} + X$
-2850	$H_1H_2 \to W^+W^- + X$
-2860	$H_1 H_2 \to Z^0 Z^0 + X$
-2870	$H_1H_2 \to W^+Z^0 + X$
-2880	$H_1 H_2 \to W^- Z^0 + X$

(Frixione, Webber)

- Works identically to HERWIG: the very same analysis routines can be used
- Reads shower initial conditions from an event file (as in ME corrections)
- Exploits Les Houches accord for process information and common blocks
- Features a self contained library of PDFs with old and new sets alike
- LHAPDF will also be implemented

Later additions: single top, $H^0 W^{\pm}$, $H^0 Z^0$

 W^+W^- Observables

These correlations are problematic: the soft and hard emissions are both relevant. MC@NLO does well, resumming large logarithms, and yet handling the large-scale physics correctly

Solid: MC@NLO Dashed: HERWIG $\times \frac{\sigma_{NLO}}{\sigma_{LO}}$ Dotted: NLO

POWHEG

Nason; Frixione, Oleari, Ridolfi (e.g. JHEP **0711** (2007) 070) Alternative to MC@NLO:

$$d\sigma = \bar{B}(v)d\Phi_v \left[\frac{R(v,r)}{B(v)}\exp\left(-\int_{p_{\perp}}\frac{R(v,r')}{B(v)}d\Phi_r'\right)d\Phi_r\right]$$

where

$$\overline{B}(v) = B(v) + V(v) + \int \mathrm{d}\Phi_r [R(v,r) - C(v,r)] \,.$$

and

 $v, d\Phi_v$ Born-level *n*-body variables and differential phase space

r, $d\Phi_r$ extra n + 1-body variables and differential phase space

B(v) Born-level cross section

V(v) Virtual corrections

R(v,r) Real-emission cross section

C(v,r) Conterterms for collinear factorization of parton densities.

Basic idea:

- Pick the real emission with largest p_{\perp} according to complete ME's, with NLO normalization.
- Let showers do subsequent evolution downwards from this p_{\perp} scale.

Relative to MC@NLO:

+ no negative weights (except in regions with extreme virtual corrections)

- + clean separation to shower stage
- \pm optimal for $p_{\perp}\text{-}\mathrm{ordered}$ showers, messy for others
- \pm different higher-order terms
- as of yet fewer processes than MC@NLO

