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Why Generators?

• Allow studies of complex multiparticle physics

• Large flexibility in physical quantities that can be addressed

• Vehicle of ideology to disseminate ideas

Can be used to

• predict event rates and topologies ⇒ estimate feasibility

• simulate possible backgrounds ⇒ devise analysis strategies

• study detector requirements ⇒ optimize detector/trigger design

• study detector imperfections ⇒ evaluate acceptance corrections

Monte Carlo method convenient because Einstein was wrong:
God does throw dice!

Quantum mechanics: amplitudes =⇒ probabilities
Anything that possibly can happen, will! (but more or less often)



The structure of an event

Warning: schematic only, everything simplified, nothing to scale, . . .
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Incoming beams: parton densities
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Hard subprocess: described by matrix elements
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Resonance decays: correlated with hard subprocess
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Initial-state radiation: spacelike parton showers
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Final-state radiation: timelike parton showers
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Multiple parton–parton interactions . . .
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. . . with its initial- and final-state radiation



Beam remnants and other outgoing partons



Everything is connected by colour confinement strings

Recall! Not to scale: strings are of hadronic widths



The strings fragment to produce primary hadrons



Many hadrons are unstable and decay further



These are the particles that hit the detector



The Monte Carlo method

Want to generate events in as much detail as Mother Nature
=⇒ get average and fluctutations right

=⇒ make random choices, ∼ as in nature

σfinal state = σhard processPtot,hard process→final state

(appropriately summed & integrated over non-distinguished final states)

where Ptot = PresPISRPFSRPMIPremnantsPhadronization Pdecays

with Pi =
∏

j Pij =
∏

j
∏

k Pijk = . . . in its turn

=⇒ divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )

LHC: ∼ 100 charged and ∼ 200 neutral (+ intermediate stages)
=⇒ several thousand choices

(of O(100) different kinds)



Generator Landscape

Hard Processes

Resonance Decays

Parton Showers

Underlying Event

Hadronization

Ordinary Decays

General-Purpose

HERWIG

PYTHIA

SHERPA

ISAJET

Specialized

a lot

HDECAY, . . .

Ariadne/LDC, NLLjet

DPMJET

none (?)

TAUOLA, EvtGen

specialized often best at given task, but need General-Purpose core



Matrix-Elements Programs

Wide spectrum from “general-purpose” to “one-issue”, see e.g.
http://www.cedar.ac.uk/hepcode/

Free for all as long as Les-Houches-compliant output.

I) General-purpose, leading-order:
• MadGraph/MadEvent (amplitude-based, ≤ 7 outgoing partons):

http://madgraph.physics.uiuc.edu/

• CompHEP (matrix-elements-based, ∼≤ 4 outgoing partons)
• AMEGIC++: part of SHERPA (∼ MadGraph → Behrends-Giele)
• HELAC–PHEGAS (Dyson-Schwinger)

II) Special processes, leading-order:
• ALPGEN: W/Z+ ≤ 6j, nW + mZ + kH+ ≤ 3j, . . .
• AcerMC: ttbb, . . .
• VECBOS: W/Z+ ≤ 4j

III) Special processes, next-to-leading-order:
• MCFM: NLO W/Z+ ≤ 2j, WZ, WH, H+ ≤ 1j

• GRACE+Bases/Spring



Colour flow in hard processes

One Feynman graph can correspond to several possible colour flows,
e.g. for qg → qg:
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while other qg → qg graphs only admit one colour flow:
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so nontrivial mix of kinematics variables (ŝ, t̂)

and colour flow topologies I, II:

|A(ŝ, t̂)|2 = |AI(ŝ, t̂) + AII(ŝ, t̂)|
2

= |AI(ŝ, t̂)|
2 + |AII(ŝ, t̂)|

2 + 2Re
(

AI(ŝ, t̂)A
∗
II(ŝ, t̂)

)

with Re
(

AI(ŝ, t̂)A
∗
II(ŝ, t̂)

)

6= 0

⇒ indeterminate colour flow, while
• showers should know it (coherence),
• hadronization must know it (hadrons singlets).
Normal solution:

interference

total
∝

1

N2
C − 1

so split I : II according to proportions in the NC → ∞ limit, i.e.

|A(ŝ, t̂)|2 = |AI(ŝ, t̂)|
2
mod + |AII(ŝ, t̂)|

2
mod

|AI(ŝ, t̂)|
2
mod = |AI(ŝ, t̂) + AII(ŝ, t̂)|

2

(

|AI(ŝ, t̂)|
2

|AI(ŝ, t̂)|
2 + |AII(ŝ, t̂)|

2

)

NC→∞

|AII(ŝ, t̂)|
2
mod = . . .



Parton Showers

• Final-State (Timelike) Showers
• Initial-State (Spacelike) Showers
• Matching to Matrix Elements



Divergences

Emission rate q → qg diverges when
• collinear: opening angle θqg → 0

• soft: gluon energy Eg → 0

Almost identical to e → eγ

(“bremsstrahlung”),
but QCD is non-Abelian so additionally
• g → gg similarly divergent
• αs(Q2) diverges for Q2 → 0

(actually for Q2 → Λ2
QCD)

Big probability for one emission =⇒ also big for several
=⇒ with ME’s need to calculate to high order and with many loops

=⇒ extremely demanding technically (not solved!), and
involving big cancellations between positive and negative contributions.

Alternative approach: parton showers



The Parton-Shower Approach

2 → n = (2 → 2) ⊕ ISR ⊕ FSR

q

q

Q

Q

Q2

2 → 2

Q2
2

Q2
1

ISR

Q2
4

Q2
3

FSR

FSR = Final-State Rad.;

timelike shower
Q2

i ∼ m2 > 0 decreasing

ISR = Initial-State Rad.;

spacelike shower

Q2
i ∼ −m2 > 0 increasing

2 → 2 = hard scattering (on-shell):

σ =

∫∫∫

dx1 dx2 dt̂ fi(x1, Q2) fj(x2, Q2)
dσ̂ij

dt̂

Shower evolution is viewed as a probabilistic process,
which occurs with unit total probability:
the cross section is not directly affected,

but indirectly it is, via the changed event shape



Technical aside: why timelike/spacelike?

Consider four-momentum conservation in a branching a → b c

a

b

c

p⊥a = 0 ⇒ p⊥c = −p⊥b

p+ = E + pL ⇒ p+a = p+b + p+c

p− = E − pL ⇒ p−a = p−b + p−c

Define p+b = z p+a, p+c = (1 − z) p+a

Use p+p− = E2 − p2
L = m2 + p2

⊥

m2
a + p2

⊥a

p+a
=

m2
b + p2

⊥b

z p+a
+

m2
c + p2

⊥c

(1 − z) p+a

⇒ m2
a =

m2
b + p2

⊥

z
+

m2
c + p2

⊥

1 − z
=

m2
b

z
+

m2
c

1 − z
+

p2
⊥

z(1 − z)

Final-state shower: mb = mc = 0 ⇒ m2
a =

p2
⊥

z(1−z)
> 0 ⇒ timelike

Initial-state shower: ma = mc = 0 ⇒ m2
b = −

p2
⊥

1−z < 0 ⇒ spacelike



Doublecounting

A 2 → n graph can be “simplified” to 2 → 2 in different ways:

=

g → qq ⊕ qg → qg

or

g → gg ⊕ gg → qq

or deform

FSR

to

ISR

Do not doublecount: 2 → 2 = most virtual = shortest distance

Conflict: theory derivations often assume virtualities strongly ordered;
interesting physics often in regions where this is not true!



From Matrix Elements to Parton Showers

0

1 (q)

2 (q)

i
3 (g)

0

1 (q)

2 (q)

i
3 (g)

e+e− → qqg

xj = 2Ej/Ecm ⇒

x1 + x2 + x3 = 2

mq = 0 :
dσME

σ0
=

αs

2π

4

3

x2
1 + x2

2

(1 − x1)(1 − x2)
dx1 dx2

Rewrite for x2 → 1, i.e. q–g collinear limit:

1 − x2 =
m2

13

E2
cm

= Q2

E2
cm

⇒ dx2 = dQ2

E2
cm

x1 ≈ z ⇒ dx1 ≈ dz

x3 ≈ 1 − z

q

q

g

⇒ dP =
dσ

σ0
=

αs

2π

dx2

(1 − x2)

4

3

x2
2 + x2

1

(1 − x1)
dx1 ≈

αs

2π

dQ2

Q2

4

3

1 + z2

1 − z
dz



Generalizes to DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz

Pq→qg =
4

3

1 + z2

1 − z

Pg→gg = 3
(1 − z(1 − z))2

z(1 − z)

Pg→qq =
nf

2
(z2 + (1 − z)2) (nf = no. of quark flavours)

Iteration gives final-state parton showers

Need soft/collinear cut-offs
to stay away from

nonperturbative physics.

Details model-dependent, e.g.

Q > m0 = min(mij) ≈ 1 GeV,

zmin(E, Q) < z < zmax(E, Q)

or p⊥ > p⊥min ≈ 0.5 GeV



The Sudakov Form Factor

Conservation of total probability:
P(nothing happens) = 1 − P(something happens)

“multiplicativeness” in “time” evolution:
Pnothing(0 < t ≤ T) = Pnothing(0 < t ≤ T1) Pnothing(T1 < t ≤ T)

Subdivide further, with Ti = (i/n)T , 0 ≤ i ≤ n:

Pnothing(0 < t ≤ T) = lim
n→∞

n−1∏

i=0

Pnothing(Ti < t ≤ Ti+1)

= lim
n→∞

n−1∏

i=0

(

1 − Psomething(Ti < t ≤ Ti+1)
)

= exp



− lim
n→∞

n−1∑

i=0

Psomething(Ti < t ≤ Ti+1)





= exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)

=⇒ dPfirst(T) = dPsomething(T) exp

(

−
∫ T

0

dPsomething(t)

dt
dt

)



Example: radioactive decay of nucleus

t

N(t)

N0

naively: dN
dt = −cN0 ⇒ N(t) = N0 (1 − ct)

depletion: a given nucleus can only decay once

correctly: dN
dt = −cN(t) ⇒ N(t) = N0 exp(−ct)

generalizes to: N(t) = N0 exp
(

−
∫ t
0 c(t′)dt′

)

or: dN(t)
dt = −c(t) N0 exp

(

−
∫ t
0 c(t′)dt′

)

sequence allowed: nucleus1 → nucleus2 → nucleus3 → . . .

Correspondingly, with Q ∼ 1/t (Heisenberg)

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz exp



−
∑

b,c

∫ Q2
max

Q2

dQ′2

Q′2

∫
αs

2π
Pa→bc(z

′) dz′





where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that
∑

b,c
∫ ∫

dPa→bc ≡ 1 ⇒ convenient for Monte Carlo
(≡ 1 if extended over whole phase space, else possibly nothing happens)



Q2
1

Q2
2

Q2
3

Q2
4 Q2

5

Sudakov form factor provides

“time” ordering of shower:

lower Q2 ⇐⇒ longer times

Q2
1 > Q2

2 > Q2
3

Q2
1 > Q2

4 > Q2
5

etc.

Sudakov regulates singularity for first emission . . .

Q

dP/dQ

ME

PS

?

. . . but in limit of repeated soft
emissions q → qg

(g → gg, g → qq not considered)
one obtains the same inclusive
Q emission spectrum as for ME,
i.e. divergent ME spectrum
⇐⇒ infinite number of PS emissions



Coherence

QED: Chudakov effect (mid-fifties)

e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing



The Common Showering Algorithms

Three main approaches to showering in common use:

Two are based on the standard shower language
of a → bc successive branchings:

q

q

g

g

g

g

g

q

q

HERWIG: Q2 ≈ E2(1 − cos θ) ≈ E2θ2/2

PYTHIA: Q2 = m2 (timelike) or = −m2 (spacelike)

One is based on a picture of dipole emission ab → cde:

qq

qq

g

q

q

g

g

ARIADNE: Q2 = p2
⊥; FSR mainly, ISR is primitive;

there instead LDCMC: sophisticated but complicated



Ordering variables in final-state radiation

PYTHIA: Q2 = m2

y

p2
⊥

large mass first
⇒ “hardness” ordered

coherence brute
force

covers phase space
ME merging simple

g → qq simple
not Lorentz invariant

no stop/restart
ISR: m2 → −m2

HERWIG: Q2 ∼ E2θ2

y

p2
⊥

large angle first
⇒ hardness not

ordered
coherence inherent
gaps in coverage

ME merging messy
g → qq simple

not Lorentz invariant
no stop/restart

ISR: θ → θ

ARIADNE: Q2 = p2
⊥

y

p2
⊥

large p⊥ first
⇒ “hardness” ordered

coherence inherent

covers phase space
ME merging simple
g → qq messy
Lorentz invariant
can stop/restart

ISR: more messy



Data comparisons

All three algorithms do a reasonable job of describing LEP data,
but typically ARIADNE (p2

⊥) > PYTHIA (m2) > HERWIG (θ)
de

t.
 c

or
.

statistical uncertainty

ha
d.

 c
or

.
1/

σ 
dσ

/d
T

ALEPH   Ecm = 91.2 GeV
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. . . and programs evolve to do even better . . .



Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

Pq→qg ≈
∫

dQ2

Q2

∫

dz
αs

2π

4

3

1 + z2

1 − z

≈ αs ln

(

Q2
max

Q2
min

)

8

3
ln

(
1 − zmin

1 − zmax

)

∼ αs ln2

Rate for n emissions is of form:

Pq→qng ∼ (Pq→qg)
n ∼ αn

s ln2n

Next-to-leading log (NLL): inclusion of all corrections of type αn
s ln2n−1

No existing pp/pp generator completely NLL, but
• energy-momentum conservation (and “recoil” effects)
• coherence
• 2/(1 − z) → (1 + z2)/(1 − z)

• scale choice αs(p2
⊥) absorbs singular terms ∝ ln z, ln(1 − z)

in O(α2
s) splitting kernels Pq→qg and Pg→gg

• . . .
⇒ far better than naive, analytical LL



Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i

at momentum fraction x and probing scale Q2.

Linguistics (example):

F2(x, Q2) =
∑

i

e2i xfi(x, Q2)

structure function parton distributions



Absolute normalization at small Q2
0 unknown.

Resolution dependence by DGLAP:

dfb(x, Q2)

d(lnQ2)
=
∑

a

∫ 1

x

dz

z
fa(x

′, Q2)
αs

2π
Pa→bc

(

z =
x

x′

)

Q2 = 4 GeV2
Q2 = 10000 GeV2



For cross section calculations NLO PDF’s are combined with NLO σ’s.
Gives significantly better description of data than LO can.

But NLO ⇒ parton model not valid, e.g g(x, Q2) can be negative.
Not convenient for LO showers, nor for many LO ME’s.

Recent revived interest in modified LO sets, e.g. by Thorne & Sherstnev:
allow

∑

i
∫ 1
0 xfi(x, Q2) dx > 1; around ∼ 1.15
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Drell-Yan Cross-section at LHC for 80 GeV with Different Orders
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M=80GeV

pdf type matrix σ (µb) K-factor

element

NLO NLO 183.2

LO LO 149.8 1.22

NLO LO 115.7 1.58

LO* LO 177.5 1.03

pdf type matrix σ (pb) K-factor

element

NLO NLO 38.0

LO LO 22.4 1.70

NLO LO 20.3 1.87

LO* LO 32.4 1.17

pp→ H

pp→ jj



Initial-State Shower Basics

• Parton cascades in p are continuously born and recombined.
• Structure at Q is resolved at a time t ∼ 1/Q before collision.
• A hard scattering at Q2 probes fluctuations up to that scale.
• A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:

m2 = 0

m2 < 0

Q2 = −m2 > 0
and increasing

m2 > 0

m2 = 0

m2 = 0

Event generation could be addressed by forwards evolution :
pick a complete partonic set at low Q0 and evolve, see what happens.

Inefficient :
1) have to evolve and check for all potential collisions, but 99.9. . . % inert
2) impossible to steer the production e.g. of a narrow resonance (Higgs)



Backwards evolution

Backwards evolution is viable and ∼equivalent alternative:
start at hard interaction and trace what happened “before”

u
g

ũ

g̃

g̃

Monte Carlo approach, based on conditional probability : recast

dfb(x, Q2)

dt
=
∑

a

∫ 1

x

dz

z
fa(x

′, Q2)
αs

2π
Pa→bc(z)

with t = ln(Q2/Λ2) and z = x/x′ to

dPb =
dfb
fb

= |dt|
∑

a

∫

dz
x′fa(x′, t)

xfb(x, t)

αs

2π
Pa→bc(z)

then solve for decreasing t, i.e. backwards in time,
starting at high Q2 and moving towards lower,

with Sudakov form factor exp(−
∫

dPb)



Ladder representation combines whole event:

p

p

Q2
1

Q2
3

Q2
max

Q2
2

Q2
5

Q2
4

DGLAP: Q2
max > Q2

1 > Q2
2 ∼ Q2

0

Q2
max > Q2

3 > Q2
4 > Q2

5 ∼ Q2
0

cf. previously:

One possible
Monte Carlo order:
1) Hard scattering
2) Initial-state shower

from center outwards
3) Final-state showers



Coherence in spacelike showers

1 2

3

4

5 hard
int.

z1

z3

θ2

θ4

z1 = E3/E1

z3 = E5/E3

θ2 = θ12

θ4 = θ14!!

with Q2 = −m2 = spacelike virtuality

• kinematics only:
Q2

3 > z1Q2
1, Q2

5 > z3Q2
3, . . .

i.e. Q2
i need not even be ordered

• coherence of leading collinear singularities:
Q2

5 > Q2
3 > Q2

1, i.e. Q2 ordered

• coherence of leading soft singularities (more messy):
E3θ4 > E1θ2, i.e. z1θ4 > θ2
z ≪ 1: E1θ2 ≈ p2

⊥2 ≈ Q2
3, E3θ4 ≈ p2

⊥4 ≈ Q2
5

i.e. reduces to Q2 ordering as above
z ≈ 1: θ4 > θ2, i.e. angular ordering of soft gluons

=⇒ reduced phase space



Evolution procedures

ln(1/x)

lnQ2

non-perturbative (confinement)

DGLAP

implicitly
DGLAP

CCFM

BFKL

transition
region

GLR
saturation

DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
evolution towards larger Q2 and (implicitly) towards smaller x

BFKL: Balitsky–Fadin–Kuraev–Lipatov
evolution towards smaller x (with small, unordered Q2)

CCFM: Ciafaloni–Catani–Fiorani–Marchesini
interpolation of DGLAP and BFKL

GLR: Gribov–Levin–Ryskin
nonlinear equation in dense-packing (saturation) region,
where partons recombine, not only branch



Initial-State Shower Comparison

Two(?) CCFM Generators:
(SMALLX (Marchesini, Webber))

CASCADE (Jung, Salam)
LDC (Gustafson, Lönnblad):
reformulated initial/final rad.
=⇒ eliminate non-Sudakov ln 1/x

ln ln k2
⊥ (x, k⊥)

low-k⊥ part
unordered

DGLAP-like
increasing k⊥

Test 1) forward (= p direction) jet activity at HERA
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CASCADE

RAPGAP

/d
x ) 1



2) Heavy flavour production

DPF2002                        

May 25, 2002
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Inclusive bInclusive b--quark Cross Sectionquark Cross Section

! Data on the integrated b-quark total cross section  (P
T

> PTmin,  |y| < 1) for proton-
antiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions 
of PYTHIA 6.115 (CTEQ3L) and PYTHIA 6.158 (CTEQ4L).  The  four curves 
correspond to the contribution from flavor creation, flavor excitation,  
shower/fragmentation, and the resulting total.

Integrated b-quark Cross Section for PT > PTmin
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but also explained by DGLAP with leading order pair creation
+ flavour excitation (≈ unordered chains)

+ gluon splitting (final-state radiation)

CCFM requires off-shell ME’s + unintegrated parton densities

F(x, Q2) =

∫ Q2 dk2
⊥

k2
⊥

F(x, k2
⊥) + (suppressed with k2

⊥ > Q2)

so not ready for prime time in pp



Initial- vs. final-state showers

Both controlled by same evolution equations

dPa→bc =
αs

2π

dQ2

Q2
Pa→bc(z) dz · (Sudakov)

but

Final-state showers:
Q2 timelike (∼ m2)

E0, m2
0

E1, m2
1

E2, m2
2

θ

decreasing E, m2, θ

both daughters m2 ≥ 0

physics relatively simple
⇒ “minor” variations:
Q2, shower vs. dipole, . . .

Initial-state showers:
Q2 spacelike (≈ −m2)

E0, Q2
0

E1, Q2
1

E2, m2
2

θ

decreasing E, increasing Q2, θ

one daughter m2 ≥ 0, one m2 < 0

physics more complicated
⇒ more formalisms:
DGLAP, BFKL, CCFM, GLR, . . .



Future of showers

Showers still evolving:

HERWIG has new evolution variable better suited for heavy particles

q̃2 =
q
2

z2(1 − z)2
+

m2

z2
for q → qg

Gives smooth coverage of soft-gluon region, no overlapping regions in
FSR phase space, but larger dead region.

PYTHIA has moved (but not yet users?) to p⊥-ordered showers
(borrowing some of ARIADNE dipole approach, but still showers)

p2
⊥evol = z(1 − z)Q2 = z(1 − z)M2 for FSR

p2
⊥evol = (1 − z)Q2 = (1 − z)(−M2) for ISR

Guarantees better coherence for FSR, hopefully also better for ISR.

SHERPA moves from mass-ordered (∼PYTHIA) showers to p⊥-ordered
(Catani-Seymour) dipoles

However, main evolution is matching to matrix elements



Matrix Elements vs. Parton Showers

ME : Matrix Elements
+ systematic expansion in αs (‘exact ’)
+ powerful for multiparton Born level
+ flexible phase space cuts
− loop calculations very tough
− negative cross section in collinear regions

⇒ unpredictive jet/event structure
− no easy match to hadronization p2

⊥,θ2,m2

dσ
dp2

⊥

, dσ
dθ2, dσ

dm2

real

virtual

PS : Parton Showers
− approximate, to LL (or NLL)
− main topology not predetermined

⇒ inefficient for exclusive states
+ process-generic ⇒ simple multiparton
+ Sudakov form factors/resummation

⇒ sensible jet/event structure
+ easy to match to hadronization p2

⊥,θ2,m2

dσ
dp2

⊥

, dσ
dθ2, dσ

dm2

real×Sudakov



p⊥(1 jet) pmax
⊥ (2 jets) pmin

⊥ (2 jets)
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            pT
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(T. Plehn, D. Rainwater, P. Skands)



Matrix Elements and Parton Showers

Recall complementary strengths:

• ME’s good for well separated jets

• PS’s good for structure inside jets

Marriage desirable! But how?

Problems: • gaps in coverage?
• doublecounting of radiation?
• Sudakov?
• NLO consistency?

Much work ongoing =⇒ no established orthodoxy

Three main areas, in ascending order of complication:

1) Match to lowest-order nontrivial process — merging

2) Combine leading-order multiparton process — vetoed parton showers

3) Match to next-to-leading order process — MC@NLO



Merging

= cover full phase space with smooth transition ME/PS

Want to reproduce WME =
1

σ(LO)

dσ(LO + g)

d(phasespace)

by shower generation + correction procedure

wanted
︷ ︸︸ ︷

WME =

generated
︷ ︸︸ ︷

WPS

correction
︷ ︸︸ ︷

WME

WPS

• Exponentiate ME correction by shower Sudakov form factor:

WPS
actual(Q

2) = WME(Q2) exp

(

−
∫ Q2

max

Q2
WME(Q′2) dQ′2

)

• Do not normalize WME to σ(NLO) (error O(α2
s ) either way)

≈
⊗

dσ = K σ0 dWPS

1 + O(αs)
∫

= 1

• Normally several shower histories ⇒ ∼equivalent approaches



Final-State Shower Merging

Merging with γ∗/Z0 → qqg for mq = 0 since long
(M. Bengtsson & TS, PLB185 (1987) 435, NPB289 (1987) 810)

For mq > 0 pick Q2
i = m2

i − m2
i,onshell as evolution variable since

WME =
(. . .)

Q2
1Q2

2

−
(. . .)

Q4
1

−
(. . .)

Q4
2

Coloured decaying particle also radiates:

0 (t)

1 (b)

2 (W+)

i

3 (g)

0 (t)

1 (b)

2 (W+)

i 3 (g)

ME 1
Q2

0Q2
1

matches

PS b → bg

⇒ can merge PS with generic a → bcg ME

(E. Norrbin & TS, NPB603 (2001) 297)

Subsequent branchings q → qg: also matched
to ME, with reduced energy of system



PYTHIA performs merging with generic FSR a → bcg ME,
in SM: γ∗/Z0/W± → qq, t → bW+, H0 → qq,
and MSSM: t → bH+, Z0 → q̃q̃, q̃ → q̃′W+, H0 → q̃q̃, q̃ → q̃′H+,
χ → qq̃, χ → qq̃, q̃ → qχ, t → t̃χ, g̃ → qq̃, q̃ → qg̃, t → t̃g̃

g emission for different Rbl
3 (yc): mass effects

colour, spin and parity: in Higgs decay:
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Initial-State Shower Merging

p⊥Z

dσ/dp⊥Z

physical

Z + 1 jet ‘exact’

LO
‘exact’

NLO
virtual

resummation:
physical p⊥Z spectrum

shower: ditto
+ accompanying

jets (exclusive)

Merged with matrix elements for
qq → (γ∗/Z0/W±)g and qg → (γ∗/Z0/W±)q′:

(G. Miu & TS, PLB449 (1999) 313)

(

WME

WPS

)

qq′→gW

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 + m4
W

≤ 1

(

WME

WPS

)

qg→q′W

=
ŝ2 + û2 + 2m2

Wt̂

(ŝ − m2
W)2 + m4

W

< 3

with Q2 = −m2

and z = m2
W/ŝ



Merging in HERWIG

HERWIG also contains
merging, for
• Z0 → qq

• t → bW+

• qq → Z0

and some more

Special problem:
angular ordering does not
cover full phase space; so
(1) fill in “dead zone” with ME
(2) apply ME correction

in allowed region

Important for agreement
with data:



Vetoed Parton Showers
S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 0111 (2001) 063; L. Lönnblad, JHEP0205 (2002) 046;

F. Krauss, JHEP 0208 (2002) 015; S. Mrenna, P. Richardson, JHEP0405 (2004) 040;

S. Höche et al., hep-ph/0602031

Generic method to combine ME’s of several different orders
to NLL accuracy; will be a ‘standard tool’ in the future

Basic idea:
• consider (differential) cross sections σ0, σ1, σ2, σ3, . . .,

corresponding to a lowest-order process (e.g. W or H production),
with more jets added to describe more complicated topologies,
in each case to the respective leading order

• σi, i ≥ 1, are divergent in soft/collinear limits
• absent virtual corrections would have ensured “detailed balance”,

i.e. an emission that adds to σi+1 subtracts from σi

• such virtual corrections correspond (approximately)
to the Sudakov form factors of parton showers

• so use shower routines to provide missing virtual corrections
⇒ rejection of events (especially) in soft/collinear regions



Veto scheme:
1) Pick hard process, mixing according to σ0 : σ1 : σ2 : . . .,
above some ME cutoff (e.g. all p⊥i > p⊥0, all Rij > R0),

with large fixed αs0

2) Reconstruct imagined shower history (in different ways)
3) Weight Wα =

∏

branchings(αs(k2
⊥i)/αs0) ⇒ accept/reject

CKKW-L:
4) Sudakov factor for non-emission

on all lines above ME cutoff
WSud =

∏

“propagators′′

Sudakov(k2
⊥beg, k2

⊥end)

4a) CKKW : use NLL Sudakovs
4b) L: use trial showers
5) WSud ⇒ accept/reject
6) do shower,

vetoing emissions above cutoff

MLM:
4) do parton showers
5) (cone-)cluster

showered event
6) match partons and jets
7) if all partons are matched,

and njet = nparton,
keep the event,
else discard it



CKKW mix of W + (0,1,2,3,4) partons,
hadronized and clustered to jets:

(S.Mrenna, P. Richardson)
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Spread of W + jets rate for different
matching schemes + showers,
top: Tevatron,
bottom: LHC.

ALPGEN: MLM + HERWIG

ARIADNE: CKKW-L + ARIADNE

HELAC: MLM + PYTHIA

MADEVENT: MLM/CKKW + PYTHIA

SHERPA: CKKW + SHERPA

model varation: αs, cuts, . . .

arXiv0706.2569 (Alwall et al.)



MC@NLO

Objectives:
• Total rate should be accurate to NLO.
• NLO results are obtained for all observables when (formally)

expanded in powers of αs.
• Hard emissions are treated as in the NLO computations.
• Soft/collinear emissions are treated as in shower MC.
• The matching between hard and soft emissions is smooth.
• The outcome is a set of “normal” events, that can be processed further.

Basic scheme (simplified!):
1) Calculate the NLO matrix element corrections to an n-body process

(using the subtraction approach).
2) Calculate analytically (no Sudakov!) how the first shower emission

off an n-body topology populates (n + 1)-body phase space.
3) Subtract the shower expression from the (n + 1) ME to get the

“true” (n + 1) events, and consider the rest of σNLO as n-body.
4) Add showers to both kinds of events.



p⊥Z

dσ/dp⊥Z simplified example

Z + 1 jet ‘exact’

generate as Z + 1 jet + shower

Z + 1 jet according to shower
(first emission, without Sudakov)

generate as Z + shower

Disadvantage: not perfect match everywhere,
so can lead to events with negative weight,
∼ 10% when normalized to ±1.

LO
‘exact’

NLO
virtual

MC@NLO in comparison:
• Superior with respect to “total” cross sections.
• Equivalent to merging for event shapes (differences higher order).
• Inferior to CKKW–L for multijet topologies.
⇒ pick according to current task and availability.



(Frixione, Webber)

Later additions: single top, H0W±, H0Z0

MC@NLO 2.31 [hep-ph/0402116]

IPROC Process

–1350–IL H1H2 → (Z/γ∗
→)lIL l̄IL + X

–1360–IL H1H2 → (Z →)lIL l̄IL + X

–1370–IL H1H2 → (γ∗
→)lIL l̄IL + X

–1460–IL H1H2 → (W+
→)l+

IL
νIL + X

–1470–IL H1H2 → (W−
→)l−

IL
ν̄IL + X

–1396 H1H2 → γ∗(→
∑

i
fif̄i) + X

–1397 H1H2 → Z0 + X

–1497 H1H2 → W+ + X

–1498 H1H2 → W− + X

–1600–ID H1H2 → H0 + X

–1705 H1H2 → bb̄ + X

–1706 H1H2 → tt̄ + X

–2850 H1H2 → W+W− + X

–2860 H1H2 → Z0Z0 + X

–2870 H1H2 → W+Z0 + X

–2880 H1H2 → W−Z0 + X

• Works identically to HERWIG:

the very same analysis routines

can be used

• Reads shower initial conditions

from an event file (as in ME cor-

rections)

• Exploits Les Houches accord for

process information and com-

mon blocks

• Features a self contained library

of PDFs with old and new sets

alike

• LHAPDF will also be imple-

mented



W
+
W

−
Observables

These correlations are problem-

atic: the soft and hard emissions

are both relevant. MC@NLO

does well, resumming large log-

arithms, and yet handling the

large-scale physics correctly

Solid: MC@NLO

Dashed: HERWIG×
σNLO

σLO

Dotted: NLO
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POWHEG

Nason; Frixione, Oleari, Ridolfi (e.g. JHEP 0711 (2007) 070)
Alternative to MC@NLO:

dσ = B̄(v)dΦv

[

R(v, r)

B(v)
exp

(

−
∫

p⊥

R(v, r′)

B(v)
dΦ′

r

)

dΦr

]

where

B̄(v) = B(v) + V (v) +

∫

dΦr[R(v, r) − C(v, r)] .

and
v,dΦv Born-level n-body variables and differential phase space
r,dΦr extra n + 1-body variables and differential phase space
B(v) Born-level cross section
V (v) Virtual corrections
R(v, r) Real-emission cross section
C(v, r) Conterterms for collinear factorization of parton densities.

Basic idea:
• Pick the real emission with largest p⊥ according to complete ME’s,

with NLO normalization.
• Let showers do subsequent evolution downwards from this p⊥ scale.



Relative to MC@NLO:
+ no negative weights (except in regions with extreme virtual corrections)
+ clean separation to shower stage
± optimal for p⊥-ordered showers, messy for others
± different higher-order terms
− as of yet fewer processes than MC@NLO

p⊥ spectrum of individual t quark and of tt pair:


