Charge asymmetry of lepton production in photon collisions

D. A. Anipko, I. F. Ginzburg, K.A. Kanishev, A. V. Pak Sobolev Inst. of Mathematics, SB RAS, Novosibirsk and University of Warsaw

> M. Cannoni, O. Panella Istituto Nazionale di Fisica Nucleare, Perugia, Italy

> > May 15, 2008

May 15, 2008 1 / 11

Motivation

- Different asymmetries are used in searches of New Physics.
- Due to P nonconservation in SM there is a charge asymmetry in processes like $\gamma\gamma \rightarrow \mu^{-}\mu^{+}\nu\bar{\nu}$ with polarized photons.
- To test such processes Photon Collider can be built as an extention of Linear Collider

Photon Collider (PC)

- The next generation of high energy e⁺e⁻ colliders will be Linear Colliders (LC).
- ⇒ Proposal to convert e^+e^- LC into Photon Colliders using laser light backscattering.
 - Now this Photon Collider mode is included in all modern projects of LC (ILC, CLIC, JLC,...)

I.F.Ginzburg, G.L.Kotkin, V.G.Serbo, V.I.Telnov. JETP Lett. **34** (1981) 514–518; NIMR **205** (1983) 47–68;+S.L.Panfil NIMR **219** (1983) 5.

Main features of Photon colliders

• Maximal photon energy $E_{\gamma}^{max} \approx 0.8 E_e$.

High energy peak of the spectrum

- Luminosity $\mathcal{L}_{\gamma\gamma} \approx \mathcal{L}_{ee}/3$, $\mathcal{L}_{e\gamma} \approx \mathcal{L}_{ee}/4$ (for ILC 200 ÷ 150 fb⁻¹/year)
- Mean energy spread $< \Delta E_{\gamma} > \approx 0.07 E_{\gamma}$.
- Mean photon helicity $<\lambda_{\gamma}>pprox$ 0.95, easily variable.

Physics at Photon colliders

- $\gamma\gamma$ cross sections are evidently higher than the corresponding e^+e^- collisions
- The $\gamma\gamma$ cross sections much slower decrease with energy
- Access to polarization provides the opportunity to know spin of produced particles

Charge asymmetry in lepton production

Charge asymmetry

- P nonconservation in the SM
- $\Rightarrow\,$ Big difference between distributions of ℓ^+ and ℓ^- in processes like

$$\gamma\gamma o \ell^+ \ell^- \nu_\ell \bar{\nu}_\ell, \ \gamma\gamma o W^\pm \ell^\mp \nu_\ell, \qquad (\ell = e \operatorname{or} \mu)$$

- For definiteness we will further use $\ell=\mu$
- Numerical calculations are done for $\gamma\gamma
 ightarrow W^{\pm}\mu^{\mp}\nu_{\mu}$, $E_{\gamma}=250 GeV$

Diagrams

Diagram Classes

- With WW pair production (DRD)
- With W exchange in t-channel SRD
- S With lepton exchange in t-channel
- With radiation of Z boson
- Multi-peripherial diagrams

Contribution

- (3),(4) and (5) are negligible in comparison with DRD (1).
- The interference of SRD with DRD is destructive.
- DRD contribution covers almost entire (98.7 %) cross section.

Both photons are left polarized $\gamma_-\gamma_-$.

$\partial^2 \sigma / \partial p_l \partial p_t$

First photon is left polarized, second is right polarized: $\gamma_-\gamma_+$.

Cascade processes

- Processes $\gamma\gamma \rightarrow W\tau\nu \rightarrow W\mu\nu\nu\nu$ give same observable final state.
- Decay $\tau \to \mu \nu_{\tau} \nu_{\mu}$ involves 3 particles, the effective mass of the $\nu \bar{\nu}$ system $m_{\nu\nu}$ varies from 0 to m_{τ} .
- The μ distribution is *contracted* in comparison with τ distribution: $E_{\mu} \leq E_{\tau}(1 - m_{\nu\nu}^2/m_{\tau}^2)$

Effects of photon non-monochromaticity

- Non-polarized low energy part of the spectrum depends strongly on the details of experiment
- Polarized high energy part $(E_{\gamma} > E_{\gamma}^{max}/\sqrt{2})$ is independent of experimental set up.
- In our sumulations we used some "realistic" photon spectrum

D. A. Anipko, I. F. Ginzburg, K.A. Kanishev Charge asymmetry of lepton production in

May 15, 2008

10 / 11

Conclusions

- Huge and easily observable effect.
- Cascade process and non-monochromaticity weakly affect the asymmetry.
- Introduced quantities (especially Δ_L) large even with large $p_{\perp\mu}^c$ cuts.
- Taking into accont same effects for $e^+ e^-$, $e^+ \mu^-$, $\mu^+ e^-$ enchance statistics by 4 times.

Plans

Consider charge asymmetry for discovery of New Physics effects.