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The Quark-Gluon Plasma

A new state of matter

It forms at high temperatures/densities

Screening of the non-abelian charge, 
deconfined phase

Heavy ion collisions (SPS, BNL, ALICE at LHC)

TC ≈ 175MeV





The J/Psi as a QGP probe

Proposed in 1986 by Matsui and Satz

Clean leptonic decay

Hypothesis of thermal dissociation 
above the critical temperature

The study of the potential in different 
temperature regions can provide useful 
information, without resorting to models



Potentials
Potential models

Phenomenological nature

Introduced early (70’s)

Example: Cornell 

Effective field theories: modern and 
rigorous definition of the potential 
(last 15 years): NRQCD, pNRQCD

V (r) = −4
3

αs

r
+ σr



Non-relativistic treatment: possible 
due to the large mass of the heavy quarks

Hierarchy: 

Heavy quarks bound states

four spacetime dimensions as

δL(φi) =
∑

i

ci

Mdi−4
Oi, (1.22)

where Oi is an operator of dimension di > 4 and ci is the corresponding Wilson coeffi-
cient. It should be noted that even the parameters (couplings, massess, etc.) appearing
in L(φi) are not the same in the two regions, the difference given again by the matching
conditions.
Once the matching has been performed one can proceed further down in energy using
again the RG equation. It should be noted that the procedure we just sketched can
be perfectly iterated. Suppose that one of the light degrees of freedom, φj , as a mass
mj ! mi, ∀i #= j: then one can repeat the previous steps, integrating out the field φj .
From this procedure we can understand that the EFT will clearly have the same IR
behavior of the starting theory but a different UV one.

1.3 NRQCD

We now concentrate on EFTs for heavy quarkonium systems. We remark that any non-
relativistic bound state develops a hierarchy of scales m ! mv ! mv2, where m is in
this case the heavy quark mass and v the velocity. Estimates for the physical systems of
charmonium and bottomonium give v2 ≈ 0.3 for the former and v2 ≈ 0.1 for the latter:
therefore a non-relativistic treatment is viable, but relativistic corrections need to be
considered, especially for charmonium. The scale of the m is called the hard scale, the
scale of the exchanged momentum mv is called the soft scale and the scale of the kinetic
energy mv2 is called the ultrasoft scale.
NonRelativistic QCD is then obtained by integrating out the hard scale m from the
QCD Lagrangian (1.1) with the methods of the previous section. In QCD there is
of course another intrinsic scale, ΛQCD: the position of this scale with respect to the
others will play an important role in the following section. In a non-relativistic system
energy and three-momentum scale differently; however for NRQCD we define a single
UV cut-off νNR = {νp, νs} satisfying m ! νNR ! ΛQCD, E, |p|. νp is the cut-off of the
relative spacial momenta |p| of the heavy quarks, νs is the cut-off of the energy E of the
heavy quarks and of the four-momenta of gluons and light quarks. Moreover the relation
nuNR ! ΛQCD implies that the integration of the hard scale can be done perturbatively.
Once the integration has been performed heavy quark-antiquark pairs cannot be created
anymore so it is convenient to use non-relativistic Pauli spinors instead of Dirac spinors:
let then ψ(x) be the Pauli spinor field annihilating a heavy quark and χ(x) the one
creating a heavy antiquark. Furthermore if the quark-antiquark pair is of the same flavor
it can annihilate to hard gluons, which have been integrated out: in order to preserve
this physical aspects the NRQCD Lagrangian contains imaginary Wilson coefficients.
The NRQCD Lagrangian will thus be expressed as a power expansion in 1

m
2. Below the

2If the masses of the two quarks are different the expansion will be organized in powers of 1
ma

1mb
2
,

with a, b ≥ 0
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Hard scale
Soft scale

Ultrasoft scale

Another scale in QCD:  

Many scales, EFT more suitable

We consider the static limit 
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Temperature: more scales
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T ! gT ! g2T . . .
?

Debye scale
Screening scale

mD ∼ gT

We study                           and  

mv ∼ 1
r

Perturbative study

T ! mD ! 1
r

1
r
! T ! mD ! ∆V



Real-time formalism

Evolution along 
this path

Limit

Doubling of the 
degrees of 
freedom

Figure 3.1: The time path C for the real-time formalism. We call C1 the horizontal leg
from ti to −ti, C3 the vertical leg from −ti to −ti − iσ, C2 the horizontal, backward leg
from −ti − iσ to ti − iσ and finally C4 the last leg from ti − iσ to ti − iβ. It can be
shown that physical observables are independent of σ as long as 0 < σ < β. We will
choose σ = 0+ throughout this chapter.
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ti → −∞

Real particles (1)

Virtual particles (2)



Integration of the scale T: the longitudinal 
gluon propagator (Coulomb gauge) 
acquires a mass (the Debye mass):

−iV (r) =
1

1

1

1

1

1

−iδm =
1

1

1 1

1

1
+

1

1 1

11

1

Figure 3.6: Matching conditions for the potential and the self-energy in real-time.
Dashed lines represent screened (HTL) longitudinal gluons. Numerical indices label
the kind (1 or 2) of the line or vertex.

We recall that the static source propagator can be written using the principal value
prescription as

i

q0 + iε
= iP

i

q0
+ πδ(q0) (3.80)

and therefore
[
Sstatic(q0)

]
11

+
[
Sstatic(−q0)

]
11

= 2πδ(q0). The integral then becomes

δm = −ig2CF

∫
d3q

(2π)3

[
i

q2 + m2
D

+ π
T

|q|
m2

D

(q2 + m2
D)2

]
, (3.81)

recovering the result of Eq. (3.74).

3.3 The potential for 1/|r|" T

We now assume the scales to obey 1/|r| " T " mD, still considering the system in
perturbation theory. Then the first thermal scale that contributes to the potential is the
temperature T and since now 1/|r| ∼ |k| " mD (and thus |k| " mD) the free thermal
propagator is to be used for gluons. However static quarks couple only to longitudinal
gluons and, as we saw in Eq. (3.34), their free Coulomb gauge real-time propagator
does not acquire a thermal part. Then in the real-time formalism the order-g2 diagram
(Fig. 3.6) we computed in the previous section, leading to the potential (3.77), does
not depend on the temperature. In order to obtain the leading T -dependence of the
potential we thus need to move to the next order in the coupling, namely g4.
At this order we encounter again the set of diagrams we analyzed in the T = 0 case in

72

and thus the self-energies take this form:

ΠHTL
E (−i(q0 + iε),q) = g2T 2

(
NC

3
+

Nf

6

) [
1− (q0)2

q2

] [
1− q0

2|q| log
q0 + |q| + iε

q0 − |q| + iε

]

(3.40)

ΠHTL
T (−i(q0+iε),q) =

g2T 2

2

(
NC

3
+

Nf

6

) [
(q0)2

q2
+

q0

2|q|

(
1− (q0)2

q2

)
log

q0 + |q| + iε

q0 − |q| + iε

]
.

(3.41)
It is important to notice that for |q| > |q0|, i.e. for spacelike momenta, the logarithms in
these expressions acquire an imaginary part, contrary to the T = 0 situation, where the
self-energy has an imaginary part for timelike momenta, corresponding to the decay into
real particles (quarks and gluons). The imaginary part in this case corresponds instead
to the scattering of the virtual gluon with physical gluons and quarks in the thermal
bath: this phenomenon is called Landau damping.
As we saw in Chapter 2 the computation of a potential is done in the q0 → 0 limit: we
thus analyze the behavior of Eqs. (3.40) and (3.41) for |q0|# |q|:

ΠHTL
E (|q0|# |q|) ≈ m2

D

[
1 + iπ

q0

2|q| − 2
(q0)2

q2

]
(3.42)

ΠHTL
T (|q0|# |q|) ≈ m2

D

2

[
−iπ

q0

2|q| + 2
(q0)2

q2

]
, (3.43)

where we have introduced the Debye mass mD, which is defined as

m2
D = g2T 2

(
NC

3
+

Nf

6

)
. (3.44)

We thus notice that for q0 = 0 ΠE = m2
D, ΠT = 0: turning back to Eq. (3.36) we

see that the thermal self-energy has given to longitudinal spacelike gluons a mass. The
Fourier transform of the longitudinal HTL propagator thus yields a Yukawa potential
∝ exp(−mDr)/r: longitudinal gluons are screened, with a screening radius rD (the Debye
radius) corresponding to the inverse of the Debye (or screening) mass. In the following
section we will show that such a term indeed appears in the static QQ potential.
Let us now move to the real-time formalism: the bare gluon propagators of Eqs. (3.34)
and (3.35) have to be replaced by the HTL-resummed propagators. A full treatment of
resummation in real-time in the HTL approximation can be found in [57]; here we quote
only the longitudinal resummed propagator in the q0 → 0 limit, which is our kinematic
region of interest for the potential. The propagator in this limit is

DHTL
00 (q0 → 0) =





i

q2 + m2
D

+ π
T

|q|
m2

D

(q2 + m2
D)2

π
T

|q|
m2

D

(q2 + m2
D)2

π
T

|q|
m2

D

(q2 + m2
D)2

− i

q2 + m2
D

+ π
T

|q|
m2

D

(q2 + m2
D)2





(3.45)
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Potential for

i

q2
→ i

q2 + m2
D

T ! 1
r
∼ mD

Integration of the scale     : we obtain the 
potential

1
r



Potential for

Real part:
Debye potential

screening

Imaginary part:
decay

Landau damping

V (r) = −g2CF

4π

(
e−mDr

r
− 2iT

mDr

∫ ∞

0
dz

sin(mDr z)
(z2 + 1)2

)

T ! 1
r
∼ mD

We have obtained the result of
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Figure 3.6: Matching conditions for the potential and the self-energy in real-time.
Dashed lines represent screened (HTL) longitudinal gluons. Numerical indices label
the kind (1 or 2) of the line or vertex.
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It is necessary to compute the vacuum polarizations 
at finite temperature

The computation is carried out without any hierarchy 
assumption

Only at the end of the computation we can consider 
the contribution from the various momentum regions

mD ∼ gT ⇒ 1
r
# T # mD

1
r
! T ! mD ! ∆V



Contributions from the scale

Contributions from the scale

Contributions from the scale

Imaginary part

Singlet->octet thermal dissociation

Potential for

k ∼ 1
r

k ∼ T

k ∼ mD

V (r) = −CF
αVs(1/r)

r

+
πCF CAα2

sT
2r

9
− 3

2
ζ(3)CF

αs

π
r2Tm2

D +
2
3
ζ(3)CACF α2

sr
2T 3 +

CF

6
αsr

2m3
D + . . .

+i

[
−C2

ACF

6
α3

sT +
CF

6
αsr

2Tm2
D

(
2γE − log

T 2

m2
D

− 1− 4 log 2− 2
ζ ′(2)
ζ(2)

)

+
4π

9
log 2CACF α2

sr
2T 3
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+ . . .

1
r
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Singlet to octet thermal dissociation
Energetically forbidden at T=0



Conclusions

Rigorous QCD study of the potential

New results in the regime

New thermal dissociation process

Possible predictions on J/Psi and     
phenomenology in the QGP

1
r
! T
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