The ATLAS Pixel Detector Calibration Procedure

Nicoletta Garelli

Large Hadronic Collider

MOTIVATION: Find Higgs Boson and New Physics Beyond the Standard Model

SM Higgs Boson

Higgs Mass Range – Detector Requirements

114.5 < M_H < 130 \ GeV Golden channel: $H \rightarrow \gamma \gamma$ But small decay rate! QCD background. **130 < M_H < 800** *GeV* Golden channel: H→ZZ/ZZ^{*}→4I Huge Background 800 < M_H < 1000 GeV H \rightarrow WW \rightarrow Ivjj E_T missing

• **Powerful inner tracking systems** in magnetic field with high granularity and secondary vertex reconstruction capability. Crucial for background rejection.

• High granularity hadronic calorimeter with full coverage for good missing E_T resolution, jet trigger and reconstruction.

• Electromagnetic calorimeter with good energy and spatial resolution, capability to separate γ/π^0 .

• Efficient muon spectrometer for identification, trigger, and momentum measurement of high energetic muons.

5/12/2008

Nicoletta Garelli

ATLAS

A Thoroidal LHC ApparatuS

The ATLAS Inner Detector

TRT

PIXEL

Technique: high granularity + low occupancy + 2D track measurement **Geometry**:3 Barrel layers (r = 5, 9, 12 cm)

+ 2 End-Caps with 3 Disks each

3 space points for η < 2.5 with resolution 16 μm – 115 μm

The Pixel Detector

High multiplicity tracking detector:

~ 1200 tracks per bunch crossing \Rightarrow high granularity (80 million channels!)

High impact parameter resolution:

~ 12 μm vertex resolution – secondary vertex reconstrution

High time resolution: 40 *MHz* bunch crossing rate

Low interaction length: $\sim 10\% \chi_0$

High radiation dose tolerance: ~50 *Mrad*

The Readout System

Module Tuning

Motivation: Mean energy loss in pixels changes in time due to irradiation **Calibration source**: Directly inject charge (*VCal*) - No sensor involved (except dedicated scans)

Calibration procedures: Many! Vary VCal and determine distribution for

- discriminator threshold
- noise (slope of signal rise)
- Time-Over-Threshold (ToT) indirect charge deposit measurement

for all pixels in modules scan histo chip 6 col 6 row 84

Threshold

Noise

Optical Communication Tuning

Tune link between on-detector Optoboards and offdetector Back-Of-Crate cards:

- 1. Laser Power for the Optoboard (ViSet)
- 2. Threshold at the BOC
- 3. Delays at the BOC

Find optimal values for individual module by varying the three parameters

Calibration Procedures

(1): Fill = LHC beam injection. A fill lasts ~10h

5/12/20 Need efficient on-line histogram dispatching system

Histogram Dispatching

Currently in use during commissioning

Nicoletta Garelli

Summary

Pixel Detector Challenge: read out and calibrate 80 million pixels!

- Calibration Procedure: read out electronic response, optimized for on-line use
- Histogram Dispatching: developed fast calibration result dispatching system within a highly distributed environment