Parton Density Functions at the LHC: prospects for measurement from W and Z inclusive production

Sara Diglio

UNIVERSITÀ DEGLI STUDI ROMA TRE

LNFSS08 - Sara Diglio

Summary

- Introduction to Parton Density Function
- Kinematic regime at LHC
- W and Z inclusive productions
- 1. Impact of PDFs uncertainties on Z and W measurements
- 2. How can the LHC contribute to provide input for the PDFs using W and Z?

Parton-Parton interactions

hadron collision

interaction between the partons which constitute the hadrons: not well defined parton energy but energy distribution

At LHC pp collision

PDFs are parameterizations of the partonic content of the proton; at Hadron Colliders cross-section calculation is a convolution of the cross-section at parton level and PDFs:

Parton density functions (PDFs)

 $\label{eq:f_i_space_state} \textbf{f}_{i}(\textbf{x},\textbf{Q^2}) \left\{ \begin{array}{l} i = u_v, \, d_v, \, g \text{ and sea} \\ x = p_{parton} \, / \, E_{beam} \ \text{ parton momentum fraction} \\ Q^2 = \textbf{momentum transfer} \end{array} \right.$

How are PDF's determined?

QCD predicts the scale dependence of $f_i(x,Q^2)$ through DGLAP evolution equations BUT does not accurately predict the x-dependence which has non perturbative origin

- **1.** the x-dependence is parameterised at a fixed scale Q_0^2 :
 - valence quarks: $\mathbf{f} \sim \mathbf{x}^{\lambda} (1-\mathbf{x})^{\eta} \mathbf{P}(\mathbf{x})$ different parameterisations and
 - sea/gluon: $\mathbf{f} \sim \mathbf{x}^{-\lambda} (\mathbf{1} \mathbf{x})^{\eta} \mathbf{P}(\mathbf{x})$ no.of free parameters used
- f_i(x,Q²) is evolved from Q₀² to any other Q² by numerically solving the DGLAP equations to various orders (LO,NLO, NNLO)
- 3. the free parameters are determined by fit to data from experimental observables (data from HERA experiments H1, ZEUS, fixed target DIS experiments, CDF, D0)

Parton density functions (PDFs)

$$\label{eq:figure} \textbf{f}_{\textbf{i}}(\textbf{x},\textbf{Q}^{2}) ~ \begin{cases} i = u_{v}, \, d_{v}, \, g \text{ and sea} \\ x = p_{parton} \, / \, E_{beam} \, \text{ parton momentum fraction} \\ Q^{2} = \textbf{momentum transfer} \end{cases}$$

Three major groups provide semi regular updates to parton distributions when new data/theory become available:

- 1. MRST
- 2. CTEQ
- 3. HERA collaboration H1, ZEUS

PDF uncertainties:

- Th: perturbative calculations (i.e DGLAP approx., higher order truncation...)
- *Th:* non-perturbative parameterisations (x-dependence)

Exp: statistical and systematic uncertainties on experimental data inputs

Exp: correlated systematic uncertainties on data points16/05/2008LNFSS08 - Sara Diglio

The LHC region

W and Z cross sections

Z production: $\begin{cases} u\overline{u} \to Z \\ d\overline{d} \to Z \end{cases}$ **W production:** $\begin{cases} u\overline{d} \to W^+ \\ d\overline{u} \to W^- \end{cases}$

W/Z production have been considered as good standard candle processes with small theoretical uncertainty:

PDF Set	$\sigma(W^+).B(W^+ \to l^+\nu_l)$	$\sigma(W^-).B(W^- \to l^- \bar{\nu}_l)$	$\sigma(Z).B(Z\to l^+l^-)$
ZEUS-S no HERA	$10.63\pm1.73~\mathrm{nb}$	$7.80 \pm 1.18~\mathrm{nb}$	$1.69\pm0.23~\mathrm{nb}$
ZEUS-S	12.07 ± 0.41 nb	$8.76\pm0.30~\mathrm{nb}$	$1.89\pm0.06~\rm{nb}$
CTEQ6.1	$11.66\pm0.56~\rm{nb}$	$8.58\pm0.43~\mathrm{nb}$	$1.92\pm0.08~\mathrm{nb}$
MRST01	$11.72\pm0.23~\mathrm{nb}$	$8.72\pm0.16~\rm{nb}$	$1.96\pm0.03~\mathrm{nb}$

PDFs uncertainty dominant contribution. Most PDFs groups quote uncertainties <~5%

16/05/2008

Tevatror

LO calculation

PDF=CTEQ5L

↑ LHC

10 √s (TeV)

 $Q^2 = M^2$

o(nb)

10

1

10

10⁻²

LNFSS08 - Sara Diglio

Impact of PDFs uncertainties on distributions

Monte Carlo W production and decay into lepton channel

Generation using CTEQ6.1M , ZEUS-S, MRST2001 PDFs

At y=0 the total uncertainty is

~ ±6% from ZEUS-S

~ ±4% from MRST01

~ ±8% from CTEQ6.1

Lepton asymmetry : $A_I = (I^+ - I^-)/(I^+ + I^-)$

In the Ratios there is a partial cancellation of the experimental PDF uncertainties: A_1 ratio is ~1%

PDFs constraining potential

How much can we reduce the PDF errors when LHC is up and running?

GLUON

Simulate real experimental conditions: simulated <u>W Rapidity</u> pseudo data included in the global ZEUS PDF fit

Central value of ZEUS-PDF prediction shifts and uncertainty is reduced: low-x gluon shape parameter λ ,

 $\underline{xg(x)} \sim x^{-\lambda}$

HEAVY QUARKS

Measurement of the Q-quark PDF (Q=s,c,b) \rightarrow Process sensitive to Q content of the proton

9

Conclusions

- At LHC we are dominated by gluon/sea interaction at low-x: regions never accessed before will be covered
- Since HERA data largely improved our knowledge of PDFs, we expect that also LHC will improve this knowledge
- Current PDFs uncertainties on W/Z:
 - cross sections: <~ 5%
 - rapidity spectra: <~ 8%
 - Ratio and asymmetries: <~ 1%
- Many studies are ongoing to understand how LHC can improve the precision in the PDFs determination