Plan

(in logical order)

0. Introduction and preliminaries 1. Higgsless: a "conservative" view 2. The "naturalness" problem of the Fermi scale a. Supersymmetry b. Goldstone symmetry c. Gauge symmetry in extraD 3. Dark Matter 4. The Planck/Fermi hierarchy ⇔ extraD

> (No flavour for reasons of time) Bs mixing and decays

Dark matter

1. Why at LHC: a numerical coincidence

2. Illustrative model 13. Illustrative model 2

Dark matter: a numerical coincidence

Suppose you have a stable particle χ that decouples from the hot primordial plasma by $\chi\chi \rightarrow ff$ with a cross section σ . Then, for its relic density Ω

$$\Omega h^2 = \frac{688\pi^{5/2}T_{\gamma}^3(n+1)x_f^{n+1}}{99\sqrt{5g_*}(H_0/h)^2 M_{\rm Pl}^3\sigma} \approx 0.2\frac{pb}{\sigma} \qquad \Leftarrow$$

and $\sigma \approx pb$ is a typical weak interaction cross section for a particle of mass $m_{\chi} \approx G_F^{-1/2}$

against the observed $\Omega_{\rm DM}h^2 = 0.113 \pm 0.009$

2 minimal illustrative models (unlike the susy case)

3. $H_2 \rightarrow -H_2$ is exact, and not spontaneously broken

Lightest Inert Particle (LIP) is stable and could be Dark Matter

Shouldn't one have seen S and A at LEP2 via $e^+e^- \rightarrow A + S \rightarrow (Z^* + S) + S$ $\sigma \approx 0.1 \ pb$ What about direct DM detection

$$\sigma_h(Lp \to Lp) \approx 2 \times 10^{-9} \text{ pb } \left(\frac{\lambda_L}{0.5}\right)^2 \left(\frac{70 \text{ GeV}}{m_L}\right)^2 \left(\frac{500 \text{ GeV}}{m_h}\right)^4$$

currently $\sigma_h < 10^{-7} \div 10^{-8} \text{ pb}$

Collider Signals (not easy)

1.
$$m_h = 400 \div 600 \ GeV$$

A standard Higgs boson?
 $h \rightarrow SS, AA, H^+H^-$
 $\Gamma_h = 68 \ GeV$ at
 $m_h = 500 \ GeV$
2. $pp \rightarrow W^* \rightarrow HA \ or HS$
 $m_h = 400 \div 600 \ GeV$
 $m_h = 500 \ GeV$
 $m_h = 500 \ GeV$
 $m_h = 600 \ GeV$
 $m_h = 500 \ GeV$

 $H \to AW \text{ or } SW$ $A \to SZ^{(*)}$

for the DM parameters, looking for 3 charged leptons $\sigma_{signal}\approx 3.5~fb \qquad \sigma_{bg}\approx 20~fb$

2 A neutrino-type model

Direct DM detection versus LHC

$$pp \rightarrow E^{\pm} \mathbf{v}_{2,3} \rightarrow W^{\pm} Z \mathbf{v}_1 \mathbf{v}_1 \rightarrow 3l + \mathbf{E}_T$$

Supersymmetry

1. A (very fast) supersymmetry primer

2. An orientation on the signals

3. The Higgs system

A fast supersymmetry primer

1. The general Lagrangian

 $\mathcal{L} = i\bar{\psi} \not D\psi - (m\psi\psi + h.c.) + |D_{\mu}\phi|^2 - m^2 |\phi|^2$ has a supersymmetry, under which $\psi \Leftrightarrow \phi$ which can be extended to include gauge inv. int.s

$$V^{\alpha} = (A^{\alpha}_{\mu}, \lambda^{\alpha}) \qquad \hat{\phi}_{a} = (\psi_{a}, \phi_{a})$$
$$\mathcal{L} = \mathcal{L}^{gauge} + \mathcal{L}^{f}$$
$$\mathcal{L}^{f} = \sum_{a} |f_{a}|^{2} + (f_{ab}\psi_{a}\psi_{b} + h.c.)$$
(R-symmetry)
$$\Rightarrow \operatorname{NoA^{2} div.s, even after inclusion of appropriate "soft" breaking terms$$

$$\mathcal{L} = \mathcal{L}^{gauge} + \mathcal{L}^{f} + \mathcal{L}^{soft}$$

2. The general MSSM

Standard particles into supermultiplets + \hat{H}_1, \hat{H}_2

$$f = \lambda_U Q u H_2 + \lambda_D Q d H_1 + \lambda_E L e H_1 + \mu H_1 H_2$$

$$\mathcal{L}^{soft} = \Sigma_{\alpha} m_{\alpha}^2 |\phi_{\alpha}|^2 + (\Sigma_{\beta} A_{\beta}^0 f_{\beta} + \Sigma_i m_{1/2i} \tilde{g}_i \tilde{g}_i + h.c.)$$

3. mSUGRA

 $m_{\alpha} = m_0, \ m_{1/2i} = m_{1/2}$ universal at the GUT scale LSP = lightest neutralino = χ^0 stable

4. LSP and the susy breaking scale \sqrt{F}

The gravitino mass
$$m_{3/2} = \frac{F}{k\sqrt{3}M_P} = \frac{1}{k} \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^2 2.4 \text{ eV}$$

 $m_V = gv$

 $b = F/F_{a}$

In mSUGRA $\sqrt{F} \approx 10^8 \ TeV \Rightarrow m_{3/2} \approx TeV$

In other schemes $\tilde{G} = \text{stable LSP}$

$$\Gamma(\chi_1^0 \to \gamma \tilde{G}) = \frac{k^2 \kappa_{\gamma} m_{\chi_1^0}^5}{16\pi F^2} = k^2 \kappa_{\gamma} \left(\frac{m_{\chi_1^0}}{100 \text{ GeV}}\right)^5 \left(\frac{100 \text{ TeV}}{\sqrt{F}}\right)^4 \ 2 \times 10^{-3} \text{ eV}$$

$$L = \frac{1}{\kappa_{\gamma}} \left(\frac{100 \text{ GeV}}{m}\right)^5 \left(\frac{\sqrt{F/k}}{100 \text{ TeV}}\right)^4 \sqrt{\frac{E^2}{m^2} - 1} \times 10^{-2} \text{ cm}$$

If phase space available

 $\Gamma(\chi_1^0 \to h\tilde{G})$ and $\Gamma(\chi_1^0 \to Z\tilde{G})$ can be comparable to $\Gamma(\chi_1^0 \to \gamma\tilde{G})$

Supersymmetry at the LHC

(if you care of the prediction!)

Pros

 \Rightarrow Neatly solves the naturalness problem of the Fermi scale \Rightarrow Gauge coupling unification \Rightarrow Alternatives in worse shape (EWPT) Contras (none decisive) \checkmark \Rightarrow No Higgs boson \checkmark \Rightarrow No flavour effects (but follow $\mu \rightarrow e + \gamma$ at PSI) \Rightarrow No superpartners

mSUGRA: gluinos, squarks decaying into lighter

a much studied case

 $m^2(\tilde{q}) \approx m_0^2 + 5m_{1/2}^2$ $m(\tilde{g}) \approx 2.7 m_{1/2}$ $m(\tilde{w}) \approx 0.8 m_{1/2}$ $m(\tilde{b}) \approx 0.4 m_{1/2}$

 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow /E_T + jets \; (+\mu^{\pm}/l^+l^-/Z/t)$

mSUGRA discovery potential: Easy (?)

other "useful" Susy searches

 \Rightarrow gluino/stop decays (simple and motivated by naturalness)

 \Rightarrow light gravitino

mSUGRA or above $\oplus \chi^0 \rightarrow gravitino + \gamma, gravitino + \phi$

1 TeV gluino reachable with 1 fb⁻¹

Where is the supersymmetric Higgs boson?

 \Rightarrow Swallow, e.g. in SUGRA, $\Delta M_Z^2 \approx (2 \div 3) m_{\tilde{t}}^2 \ge 100 M_Z^2$

 \Rightarrow h just around the corner and quasi-standard

Where is the supersymmetric Higgs boson?

1. Even assuming, for good reasons, that supersymmetry is relevant to nature, <u>NO theorem</u> that requires it to be visible at the LHC

2. For supersymmetry to be visible at the LHC, need a <u>maximally natural</u> solution of the hierarchy problem

3. Since the top, and so the stop, are the particles with the strongest coupling to the Higgs boson, insist on <u>a moderate stop mass</u>

 \Rightarrow *Motivates search of (reasonably simple) alternatives*

 \Rightarrow h not standard and not even light?

A simple concrete possibility (others have been considered)

$$f = \mu H_1 H_2 \Rightarrow f = \lambda S H_1 H_2$$
$$\Delta V = |f_S|^2 = \lambda^2 |H_1 H_2|^2$$

$$(2x4 + 2) - (2+1) = 7 = 2 + 3 + 2$$

 $H^{\pm} h_i^{CP+} A_k^{CP-}$

Out of the 3 CP even states, take the only one coupled to ZZ, WW

$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \log \frac{m_{\tilde{t}}^2}{m_t^2}$$

before mixing with the other 2 states

1. What about λ ?

2. What about mixing effects?

 $min[m(h_i^{CP+})] < m_h$

What about λ ?

Two interesting alternatives:

$$(1) \quad (\frac{\lambda}{4\pi})^2 (10TeV) \le 0.1 \quad \Rightarrow \quad \lambda(G_F^{-1/2}) \le 2$$

To respect the EWPT (unification?)

(2)
$$(\frac{\lambda}{4\pi})^2 (M_{GUT}) \le 0.1 \implies$$
 See below

To maintain manifest perturbative unification

The Higgs boson spectrum

 $\begin{array}{ll} h \to ZZ \to l^+ l^- \ l^+ l^- & \text{easy, } \underline{but \ very \ much \ NON-susy} \\ H \to hh \to 4V \to l^+ l^- \ 6j \\ A \to hZ \to VV \ Z \to l^+ l^- \ 4j & \text{possible with } 100 \ fb^{-1} \\ & \text{(see below)} \end{array}$

ElectroWeak Precision Tests in λ SUSY $\lambda(G_F^{-1/2}) \approx 2$

S and T from Higgs's

(an example of how we could be fouled by the EWPT)

to what happens above 10 TeV

 $\left(\frac{\kappa}{4\pi}\right)^2 (M_{GUT}) \le 0.1$

 $\left(\frac{\kappa}{4\pi}\right)^2 (M_{GUT}) \le 0.1$

$n_5 = 0$		$n_5 = 3$		
$\alpha_S(M_Z)$	α_G	$\alpha_S(M_Z)$	α_G	
0.117	0.041	0.117	0.103	1-loop
0.130	0.043	0.123	0.154	2-loop

 $\alpha_S(M_Z)|_{exp} = 0.1176(20)$

The NMSSM with extra matter and a light stop

can rather easily be made compatible with the LEP bounds while keeping manifest perturbative unification

In an explicit NMSSM quasi-PQ symmetric (hence with a light pseudo-Goldstone G) $f = \lambda S H_1 H_2 + \kappa/3 S^3$ $\lambda \approx 0.7 \div 0.8, \ \kappa \leq 0.1$ $(\lambda_G \approx 1 \div 3, \kappa_G < 1)$ parameter counting: $m_1^2, m_2^2, m_S^2, A_\lambda, A_k$ $\kappa \to 0, A_{\kappa} \to 0 \Rightarrow a PQ$ -symmetry $\Rightarrow v, \tan \beta, m_S^2, A_{\lambda}; m_G$ $\tan\beta = 2, A_{\lambda} = 400 \ GeV$ 140 130 $\Rightarrow v, \tan\beta, m_S^2, A_{\lambda}$ $S_2 \rightarrow GG, \chi_1 \chi_1$ $m(S_i)$ [GeV 120 $GG \rightarrow b\bar{b}, \ \tau\bar{\tau}$ 110 100 A pretty non-standard $S_1 \rightarrow GG$ 90 Higgs-boson phenomenology 80 10 20 30 40 50 0 m_S [GeV] $S_3 \approx 300 \ GeV \rightarrow GG, \ \chi\chi, \ t\bar{t}$

$pp \to Wh \to l\nu \ GG \to l\nu \ 4b$ $\sigma \ BR \approx 50 \ fb$

 $m_h = 120 \; GeV \qquad m_G = 30 \; GeV$

The road map again

(my own vote)

1. Higgsless: a "conservative" view	
2. The "naturalness" problem of the Fermi scale	
a. Supersymmetry	
b. Goldstone symmetry	
c. Gauge symmetry in extraD	
3. Dark Matter	☺ ☺
4. The Planck/Fermi hierarchy ⇔ extraD	
a. Gravity weak by flux in extraD	\odot
b. $G_F^{-1/2}/M_{Pl}$ as a red shift effect	\odot
c. Symmetry breaking by boundary conditions	\odot \odot

Final Summary of signalsTENTATIVE and biased
(and obviously not all
compatible with each other)1. mSUGRA3. "stable" R-hadrons2. gluino/stop decays4. light gravitino
$$\int Ldt = 1 \div 30 fb^{-1}$$
 $B_s \rightarrow l^+ l^-$

5. SM-like Higgs boson 6. KK quarks (a 15-20% consistency check between m_h and the EWPT)

$$\int Ldt \ge 30 f b^{-1}$$

7. ew gauge/higgs-ino decays 8. extra-Susy Higgs bosons 9. Minimal Dark Matter

10. KK gluons11. KK W, Z12. Heavy vectors

The central question of particle physics

The LHC should shed some light here

The key to the economy of equations (the merit of space-time and internal symmetries)

Supersymmetry as the most interesting theoretical candidate

not unique, however