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Outline

■ Motivation:

Neutrino oscillation experiments have well established
that neutrinos have non-zero masses. The upcoming

operation of LHC will allow to test
neutrino mass models that can explain the origin of

neutrino masses at the EW scale.

■ A model for neutrino masses induced by scalar Leptoquark (LQ) interactions
◆ The model
◆ Neutrino mass generation

■ Scalar LQs accelerator phenomenology
◆ Fermionic LQ decays
◆ LQ decays to Higgs and gauge bosons final states.

■ Conclusions
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Experimental and theoretical results
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Present status of ν data

Present values of neutrino mixing angles as well as of the solar and the
atmospheric mass-squared differences are derived from global fits of current
experimental data.

M. Maltoni et. al, New J. Phys. 6, 122 (2004). Updated version V5 (2006)

parameter 3σ

∆m2
21 [10−5] eV 7.1–8.9

∆m2
31 [10−3] eV 2.0–3.2

sin2 θ12 0.24–0.40
sin2 θ23 0.34–0.68
sin2 θ13 0.040

Neutrino oscillations experiments have firmly
established that neutrinos have non-zero mass

and mixing angles among the different generations
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Neutrino mass generation
An effective dimension-five operator LΦLΦ can be added to the SM. Once the
EW symmetry breaks through the vev of Φ neutrino Majorana masses are
induced

S. Weinberg, Phys. Rev. D 22, 1694 (1980)

L L

〈Φ〉 ⊗ 〈Φ〉⊗

Several realizations of this operator exist

Seesaw mechanism

ν
×

ν
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νc νc ν ν

⊗
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∆
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h h
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Scalar LQs and neutrino masses
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LQ interactions and ν masses

LQ interactions are determined by renormalizability and gauge invariance. The
SM symmetries allow five scalar LQs.

LQ SU(3)c SU(2)L Y Qem

S0 3 1 -2/3 -1/3
eS0 3 1 -8/3 -4/3
S1/2 3

∗
2 -7/3 (-2/3,-5/3)

eS1/2 3
∗

2 -1/3 (1/3,-2/3)
S1 3 3 -2/3 (2/3,-1/3,-4/3)

Possible fermionic bilinears in the SM are: singlets, doublets or triplets.

LLQ−l−q = λ
(R)
S0

ucPRe SR†
0 + λ

(R)

S̃0
dcPRe eSR†

0 + λ
(R)
S1/2

uPLl SR†

1/2 + λ
(R)

S̃1/2

dPLl S̃†

1/2

+λ
(R)
S1/2

uPLl SR†

1/2 +λ
(L)
S1/2

qPRiτ2e SL†

1/2 + λ
(L)
S1

qcPLiτ2
bS†
1 l + h.c.

LQ fields also induce scalar interactions. The most general scalar potential is
given

V = h
(i)
S0

Hiτ2
eS1/2 Si

0 + h
(i)
S1

Hiτ2
bS1
eS1/2 + Y

(i)
S1/2

`
Hiτ2S

i
1/2

´ “eS†

1/2H
”

+ YS1

“
Hiτ2

bS†
1H
”
eS0

+κ
(i)
S

“
H† bS1H

”
Si†

0 − (M2
Φ − g

(i1i2)
Φ H†H)Φi1†Φi2 + h.c.

M. Hirsch, et. al, Phys. Lett. B 378, 17 (1996) ☞
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LQ mixing

Lepton number is explicitly broken in the scalar potential by scalar trilinear
couplings. Mass matrices for scalar LQs are non-diagonal. This induces a lepton
number violating mixing among members from different multiplets.

bSQ = RQSQ

The rotation matrix RQ diagonalize the corresponding LQ mass matrix
`
M2

Q

´
diag

= RQM2
Q(RQ)T

Leptoquark-lepton-quark Yukawa interactions and Q = 2/3, 1/3

LQ mixing induce neutrino masses at the one-loop level

U. Mahanta, Phys. Rev. D 62, 073009 (2000)
D.A.S, M. Hirsch and S. Kovalenko
arXiv:0710.5699
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Neutrino mass matrices

The neutrino mass matrix receives contributions from diagrams which involve
u-type as well as d-type quarks.

u-type quark loops

⊗

νi

(Ŝ−2/3)
†
j (Ŝ−2/3)j

νi′ukūk

×

(Mup
ν )ir ∝ mkR

2/3
j3 R

2/3
j4

h
(λR

S1/2
)ik(λL

S1
)rk + (λR

S1/2
)rk(λL

S1
)ik

i

d-type quark loops

⊗

νi

(Ŝ−1/3)j (Ŝ−1/3)
†
j

νi′dkd̄k

×

`
Mdown

ν

´
ir
∝ mkR

1/3
j3

n
R

1/3
j4

h
(λR

S̃1/2
)ik(λL

S1
)rk + (λR

S̃1/2
)rk(λL

S1
)ik

i

+ R
1/3
j1

h
(λR

S̃1/2
)ik(λL

S0
)rk + (λR

S̃1/2
)rk(λL

S0
)ik

io

Due to the hierarchy mt,b ≫ mc,s ≫ mu,d in general,

both,Mup
ν andMdown

ν are dominated by t and b loops
det(Mt,b

ν ) ≃ 0

One neutrino remain massless
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LQ fermionic decays
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Collider signals: numerical results I
Approximate correlations, based on a numerical study of the model, can be
found and can be used to test the model.
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Current 3σ range for the atmospheric
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A correlation between the observable O ≡
r

Brte
5/3

Brbe
4/3r

Br
tµ
5/3

Br
bµ
4/3

+

r
Brtτ

5/3
Brbτ

4/3

and

R = ∆m2
12/∆m2

23 exist⇒ upper bound on O

0.01 0.02 0.05 0.1 0.2 0.5
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

√
B

rt
e

5
/3

B
rb

e
4
/3

√
B

rtµ 5
/3

B
rbµ 4

/3
+

√
B

rt
τ

5
/3

B
rb

τ
4
/3

∆m2
12/∆m2

23

q
Brte

5/3
Brbe

4/3r
Br

tµ
5/3

Br
bµ
4/3

+
q

Brtτ
5/3

Brbτ
4/3

. 9× 10−2
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Collider signals: numerical results II

The smallness of Brte
5/3Brbe

4/3 is due to

the smallness of either Brte
5/3 or Brbe

4/3

For one of the decaying LQs e− final states

could be sizeable
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−
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+
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P
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Neglecting e− final states BRs this observable

is predicted to lie [7.5× 10−3,2.9× 10−2]
with an spread of ∼ 25%
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Higgs and gauge bosons final states
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Higgs + LQ final states

The interactions given in the scalar potential are responsible for the processes

(bSQ)j → h0 + (bSQ)i ☞

Γ[(bSQ)j → h0 + (bSQ)i] = 1
16π
eg2

Q mSj λ1/2(1, rij , rh)

rij ≡ m2
Si

/m2
Sj

rh ≡ m2
h0/m2

Sj

The effective coupling egQ involve LQ rotation matrices RQ as well as the same
parameters which induce neutrino masses due to LQ mixing (off-diagonal
elements of LQs mass matrices):

eg−4/3 =
YS1√

2

v

mSj

R
4/3
j1 R

4/3
i2 M2

−4/3 =

 
M

2
S̃0

√
2YS1

v2

· M
2
S1

!

h0 final states are possible
for non-zero LQ mixing



● Outline

Experimental and theoretical

results

Scalar LQs and neutrino

masses

LQ fermionic decays

Higgs and gauge bosons final

states

● Higgs + LQ final states

●W + LQ final states

●Z + LQ final states

● Numerical estimates

Conclusions

Diego Aristizabal, Frascati–Italy, May 15th, 2008 XIII Frascati summer school “Bruno Touschek” - p. 15/19

W + LQ final states

These processes are determined by the kinematic terms for the different LQ
states.

W± + LQ

These processes SQ →W + SQ′ involve transitions from members of the same
doublet (triplet). These processes exist even in the absence of LQ mixing.
Possible decays are:

(bS−5/3)j →W− + (bS−2/3)i| {z }
Y =−7/3 doublet, S1/2

, (bS−2/3)j →W− + (bS−1/3)
†
i| {z }

Y =−1/3 doublet, eS1/2

, (bS−4/3)j →W− + (bS−1/3)i| {z }
Triplet, bS1

Γ[(bSQ)j →W± + (bSQ′)i] =
g2θQ

2

32π

m3
Sj

M2
W

λ3/2(1, rij , rW ) rW ≡M2
W /m2

Sj

The mixing factors θQ are determined by the rotation matrices that relate the
interaction and mass LQ eigenstate bases.

Higgs + LQ final states kinematically allowed
do not necessarily imply W + LQ final states open
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Z + LQ final states

For any given set of LQs of charge Q the couplings with the Z0 can be written as

ig

cos θW
Zµ
X

l

“
T l

3 −Q sin2 θW

”
Sl

Q

←→
∂ µ(Sl

Q)†

Non-diagonal couplings of the Z0 gauge boson to different LQ states of the same
Q, but different T3 appear, after rotation to the mass eigenstate basis.

S−5/3 = ( SL
1/2|{z}

T3=−1/2

, SR
1/2|{z}

T3=−1/2

)
Q = −5/3 LQs-Z0 interactions are diagonal

S−4/3 = ( eS0|{z}
T3=0

, S1|{z}
T3=−1

)
Q = −4/3 LQs-Z0 interactions are non-diagonal

Γ[(bSQ)j → Z0 + (bSQ)i] = 1
16π

g2

cos θ2
W

θQ
2

M3
Sj

M2
Z

λ3/2(1, rij , rZ) rZ ≡M2
Z/m2

Sj

Decays to Z0 states can occur only if LQ mixing is non-zero

Observation of Z0 states
will be a prove of LQ mixing
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Numerical estimates

For LQs with Q = 4/3, assuming the decay to Q = 1/3 LQs plus W± is
kinematically closed and fixing m

Q=4/3
1 = 250 GeV and mh0 = 115 GeV

YS1
= 10−2

m
Q=4/3
2 = 400 GeV

YS1
= 10−1

m
Q=4/3
2 = 800 GeV

10-4 10-3 10-2
10-4

10-3

10-2

10-1

100

λ =
√∑

i
λ2

i3

10-4 10-3 10-2
10-4

10-3

10-2

10-1

100

λ =
√∑

i
λ2

i3

For Yukawa couplings O(λ) ∼ 10−3 values of YS1
as small as

YS1
≃ 10−2 can lead to observable BRs into bosonic final states
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Conclusions
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Final remarks

✍ LQ fields with baryon number conserving Yukawa interactions can have
masses at or near the electro-weak scale. If these LQ fields couple to the SM
Higgs, the resulting model generates neutrino masses at the one-loop level.

✍ In this work we have explored the phenomenological consequences of LQs as
the origin of the observed neutrino masses for future accelerator experiments,
such as the LHC.

✍ Certain ratios of fermionic decay branching ratios can be predicted from
current neutrino data. If LQs are pair produced at LHC they are expected to
decay with sizeable flavour violation.

✍ Heavy LQs can also decay to light LQs + h0(Z0 or W±), if kinematically
possible. An important test of the hypothesis that LQs can generate Majorana
neutrino masses, is the observation of these decays.

✍ Experiments at the LHC might be able to exclude the LQ mechanism as
explanation of neutrino data.
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