Towards a numerical solution of the "1/2 vs. 3/2" puzzle

Benoît Blossier

DESY Zeuthen

- Motivations
- Heavy Quark Effective Theory
- Theoretical expectations
- Experimental measurements
- Numerical computation of $\tau_{\frac{1}{2}}(1)$ and $\tau_{\frac{3}{2}}(1)$
- Conclusion and outlook
[D. Bećirević et al, Phys. Lett. B 609, 298 (2005)]
[B. B. et al, Phys. Lett. B 632, 319 (2006)]
[l. Bigi et al, hep-ph/0512270]

Motivations

Experimental data are well described by the CKM picture in the flavor sector.
Precision tests are made by CDF, DO, B factories and LHCb:
-() hope of detecting physics beyond the SM in the flavor sector, especially in transitions between the $2^{\text {nd }}$ and $3^{\text {rd }}$ flavor family
$-\odot$ at present the uncertainty on fundamental parameters is dominated by theoretical errors: one needs a deep understanding of the current theory before using a theory beyond the SM to analyze data

What is the composition of the hadronic final state X_{c} in $\bar{B} \rightarrow X_{c} l \bar{\nu}$?

		Mass (MeV)	Width (MeV)	J^{P}
$S: D^{(*)}$	$D^{ \pm}$	1869 ± 0.5	-	0^{-}
	$D^{* \pm}$	2010 ± 0.4	96 ± 25	1^{-}
	D_{0}^{*}	2352 ± 50	261 ± 50	0^{+}
	D_{1}^{*}	$2427 \pm 26 \pm 25$	$384_{-75}^{+107} \pm 74$	1^{+}
	D_{1}	2421.8 ± 1.3	$20.8_{-2.8}^{+3.3}$	1^{+}
	D_{2}^{*}	2461.1 ± 1.6	32 ± 4	2^{+}

$D^{* *} \rightarrow D^{(*)} \pi$ is the main decay channel: parity and orbital momentum conservation \Longrightarrow the decay occurs with the pion in a S wave or in a D wave
$D_{0,1}^{*} \rightarrow D^{(*)} \pi$: S wave $\quad D_{2}^{*} \rightarrow D^{(*)} \pi$: D wave
$D_{1} \rightarrow D^{*} \pi$: S and D wave are a priori allowed; however the S wave is forbidden by HQS
An appropriate framework to study $b \rightarrow c$ transitions is the Heavy Quark Effective Theory (HQET): it describes soft interactions between a heavy quark and the light cloud of quarks and gluons within heavy-light hadrons.

Heavy Quark Effective Theory

HQET is an effective theory whose the hard cut-off is m_{b}.

$$
\mathcal{L}_{\mathrm{HQET}}=\bar{h}_{v}(i v \cdot D) h_{v}+\mathcal{O}\left(1 / m_{Q}\right) \equiv \mathcal{L}_{\mathrm{HQET}}^{\text {stat }}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{Q}\right) \quad p_{Q}=m_{Q} v+k
$$

Symmetry $\operatorname{SU}\left(2 \mathrm{~N}_{\mathrm{h}}\right)$ for $\mathcal{L}_{\mathrm{HQET}}^{\text {stat }}$: flavor \times spin

Heavy-light meson

Atom of hydrogen

Angular momentum: $J=\frac{1}{2} \oplus j_{l}$.
Spectroscopy: heavy-light mesons are put together in doublets.

$$
H=B, D:
$$

j_{l}^{P}	J^{P}	orbital excitation
$\frac{1}{2}^{-}$	0^{-}	H
	1^{-}	H^{*}
$\frac{1}{2}^{+}$	0^{+}	H_{0}^{*}
	1^{+}	H_{1}^{*}
$\frac{3}{2}^{+}$	1^{+}	H_{1}
	H_{2}^{*}	

$$
E\left(j_{l}^{P}\right)=m_{Q}+\Lambda_{j_{l}^{P}}-\frac{\lambda_{1}\left(j_{l}^{P}\right)-2\left(J^{2}-1 / 4-j_{l}^{2}\right) \lambda_{2}\left(j_{l}^{P}\right)}{2 m_{Q}}:
$$

$\Lambda_{j_{l}^{P}}, \lambda_{1}\left(j_{l}^{P}\right)$ and $\lambda_{2}\left(j_{l}^{P}\right) \ll m_{Q}$ are defined in terms of HQET hadronic matrix elements.

$$
\begin{aligned}
& m_{B^{*}}-m_{B} \sim 46 \mathrm{MeV} \quad m_{D^{*}}-m_{D} \sim 142 \mathrm{MeV} \\
& m_{B^{*}}^{2}-m_{B}^{2} \sim 0.49 \mathrm{GeV}^{2} \quad m_{D^{*}}^{2}-m_{D}^{2} \sim 0.55 \mathrm{GeV}^{2}
\end{aligned}
$$

- With the trace formalism, transitions $H_{v}^{j_{l}, J} \rightarrow H_{v^{\prime}}^{j_{l}^{\prime}, J^{\prime}}$ are expressed in terms of universal form factors: the Isgur-Wise functions $\Xi\left(w \equiv v \cdot v^{\prime}\right)$.
- Thanks to $\mathrm{SU}\left(2 \mathrm{~N}_{\mathrm{h}}\right)$ symmetry, their number is small:
$\xi(w)$ parameterizes the elastic transition $H_{v}^{\frac{1}{2}^{-}} \rightarrow H_{v^{\prime}}^{\frac{1}{-}^{-}}: \xi(1)=1$
$\left\langle H_{v}^{0^{+}}\right| \bar{h}_{v^{\prime}} \gamma^{\mu} \gamma^{5} h_{v}\left|H_{v^{\prime}}^{0^{-}}\right\rangle \equiv \tau_{\frac{1}{2}}(\mu, w)\left(v-v^{\prime}\right)^{\mu}$
$\left\langle H_{v^{\prime}}^{2^{+}}\right| \bar{h}_{v^{\prime}} \gamma^{\mu} \gamma^{5} h_{v}\left|H_{v}^{0^{-}}\right\rangle \equiv \sqrt{3} \tau_{\frac{3}{2}}(\mu, w)\left[(w+1) \epsilon^{* \mu \alpha} v_{\alpha}-\epsilon_{\alpha \beta}^{*} v^{\alpha} v^{\beta} v^{\prime \mu}\right]$
- $\tau_{\frac{1}{2}}$ and $\tau_{\frac{3}{2}}$ are not normalised at zero recoil; however, $\tau_{\frac{1}{2}, \frac{3}{2}}(\mu, 1) \equiv \tau_{\frac{1}{2}, \frac{3}{2}}(1)$

Theoretical expectations

- Various quark models (à la Bakamijan-Thomas, null plane, harmonic oscillator wave functions in a particular frame and in the $m_{Q} \rightarrow \infty$ limit, models with approximate Lorentz boosts and using wave functions with small components) predict hierarchies

$$
\tau_{\frac{1}{2}}(1)<\tau_{\frac{3}{2}}(1) \quad \Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right) \ll \Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right)
$$

- $1 / m_{Q}$ contributions to $\bar{B} \rightarrow D^{* *} l \bar{\nu}$ do not change this picture
- Sum rules obtained by performing the heavy quark expansion of a B meson 2-pts function (Bjorken,Uraltsev, Voloshin, momenta) lead to the same hierarchy:

$$
\tau_{\frac{1}{2}}(1)<\tau_{\frac{3}{2}}(1)
$$

- Sum rules à la SVZ: $\tau_{\frac{1}{2}}(1)=0.34 \pm 0.09$ [P. Colangelo et al, Phys. Rev. D 58, 116005 (1998)]

Experimental measurements

- ALEPH and DELPHI data indicate a big component of broad states in $\bar{B} \rightarrow D^{* *} l \bar{\nu}$; the latter lead to the hierarchy

$$
\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right) \gg \Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right)
$$

In contradiction with quark models predictions and with the OPE result: '1/2 vs. 3/2' puzzle [V. Morénas et al, hep-ph/0110372, N. Uraltsev, hep-ph/0409125].
One could fit the broad $D^{(*)} \pi$ system as radial excitations or non resonant combinations.

- Measurements by BELLE are qualitatively compatible with quark models predictions ($D^{*} \pi$ states dominate $D \pi$ in the decay). States $D^{(*)}$ and $D^{* *}$ do not seem to saturate $\bar{B} \rightarrow X_{c} l \bar{\nu}(\neq \mathrm{DELPHI})$.
Theoretically this saturation is not expected as well because of radiative corrections. A recent measurement by BABAR seems to confirm that hypothesis: however, a determination of the resonant component of the invariant mass distribution is hoped.

As $\bar{B} \rightarrow D^{* *} l \bar{\nu}$ is mainly governed by $\tau_{\frac{1}{2}}(1)$ and $\tau_{\frac{3}{2}}(1)$, their computation on the lattice can confirm (infirm) theoretical expectations of the hierarchy between $\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right)$ and $\Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right)$.

Numerical computation of $\tau_{\frac{1}{2}}(1)$ and $\tau_{\frac{3}{2}}(1)$

- One can not extract the required form factors from the computation of $\lim _{v \rightarrow v^{\prime}}\left\langle v^{*}\left\langle H^{* *}\left[\bar{h}_{v^{\prime}} \Gamma_{l} h_{v}\right](x) \mid H^{(*)}\right\rangle_{v}\right.$ (linear cancellation in $v-v^{\prime}$)
- However, thanks to HQET equation of motion, one can extract $\tau_{\frac{1}{2}}(1)$ and $\tau_{\frac{3}{2}}(1)$ from the computation of ${ }_{v}\left\langle H^{* *}\right|\left[\bar{h}_{v} \Gamma_{l} D^{m} h_{v}\right](x)\left|H^{(*)}\right\rangle_{v} \equiv t_{l}^{m} \tau_{j}(1)\left(M_{H^{* *}}-M_{H}\right)$ [A. K. Leibovich et al, Phys. Rev. D 57, 308 (1998)]
- Extraction of $M_{H_{0}^{*}}-M_{H}$ and $M_{H_{2}^{*}}-M_{H}$ (no $1 / a$ divergence) by the computation of $C_{J J}^{(2)}(t)=\langle 0| O_{0^{-}}(t) O_{0^{-}}^{\dagger}(0)|0\rangle,\langle 0| O_{P^{ \pm}}(t) O_{P^{ \pm}}^{\dagger}(0)|0\rangle$
- Computation of $C_{P^{ \pm}, 0^{-}, O_{\Gamma}}^{(3)}\left(t_{1}, t_{2}\right)=\langle 0| O_{P^{ \pm}}\left(t_{2}\right) O_{\Gamma, j_{l}=1 \pm 1 / 2}\left(t_{1}\right) O_{0^{-}}^{\dagger}(0)|0\rangle$ and the ratios $\left(M_{H_{J}^{j_{l}=1 \pm 1 / 2}}-M_{H}\right) \sqrt{2 j_{l}} \tau_{j_{l}=1 \pm 1 / 2}(1)=\frac{\mathcal{Z}_{0^{-}} \mathcal{Z}_{P \pm} C_{P \pm, 0^{-}, O_{\Gamma}^{(3)}}{ }^{\left(t_{1}, t_{2}\right)}}{C_{0-0^{-}}^{\left({ }^{(2)}\right) C_{P \pm}^{(2)}}{ }^{\left(t_{2}-t_{1}\right)}}$
- Renormalisation of the operator $O_{\Gamma, j_{l}=1 \pm 1 / 2}:\langle O\rangle^{\mathrm{DR}, \overline{\mathrm{MS}}}=Z(a)\langle O\rangle^{\text {lat }}{ }_{(a)}$

$$
\begin{gathered}
\left\langle 2^{+}, F \mid 2^{+}, G\right\rangle=\left\langle\frac{1}{3} \sum_{i} A_{i}(t, F) A_{i}^{\dagger}(0, G)-\frac{1}{6} \sum_{i \neq j} A_{i}(t, F) A_{j}^{\dagger}(0, G)\right\rangle \\
\left\langle 0^{+}, F \mid 0^{+}, G\right\rangle=\left\langle\frac{1}{3} \sum_{i} A_{i}(t, F) A_{i}^{\dagger}(0, G)+\frac{1}{3} \sum_{i \neq j} A_{i}(t, F) A_{j}^{\dagger}(0, G)\right\rangle \\
\left\langle 2^{+}, F\right| O_{j_{l}=3 / 2}\left|0^{-}\right\rangle=\left\langle\frac{1}{3} \sum_{i} A_{i}\left(t_{2}, F\right) B_{i}\left(t_{1}\right) C(0)-\frac{1}{6} \sum_{i \neq j} A_{i}\left(t_{2}, F\right) B_{j}\left(t_{1}\right) C(0)\right\rangle \\
\left\langle 0^{+}, F\right| O_{j_{l}=1 / 2}\left|0^{-}\right\rangle=\left\langle\frac{1}{3} \sum_{i} A_{i}\left(t_{2}, F\right) B_{i}\left(t_{1}\right) C(0)+\frac{1}{3} \sum_{i \neq j} A_{i}\left(t_{2}, F\right) B_{j}\left(t_{1}\right) C(0)\right\rangle \\
A_{i}(t, O)=\left[\bar{q} \gamma_{i} \hat{r}_{i} h\right](t) \quad A_{i}(t, E)=[\bar{q} h](t) \quad B_{i}(t)=\left[\bar{h} \gamma_{i} D_{i} h\right](t) \quad C(t)=\left[\bar{h} \gamma^{5} q\right](0)
\end{gathered}
$$

The mass splitting $0^{+}-2^{+}$comes from a spin-orbit coupling:

$$
\begin{array}{rlll}
\left\langle l \cdot s_{l}\right\rangle=\frac{1}{2}\left(j_{l}\left(j_{l}+1\right)-l(l+1)-s_{l}\left(s_{l}+1\right)\right) & & 1 / 2 & \left(j_{l}=3 / 2\right) \\
& = & -1 & \left(j_{l}=1 / 2\right)
\end{array}
$$

(-) Plateaux of the 2^{+}state effective mass and of $\tau_{\frac{1}{2}, \frac{3}{2}}(1)$ are very short despite the use of HYP links and smeared interpolating fields. Further improvements are needed.

- Smearing of the interpolating field $O_{\Gamma}: O_{\Gamma, r}=\bar{h}(\overrightarrow{0}) \Gamma \Phi(r) q(\vec{r})$
- $\psi^{n}(r)=\langle 0| O_{\Gamma, r}|n\rangle: C_{r, r^{\prime}}^{(2)}(t)=\left\langle O_{\Gamma, r}(t) \mid O_{\Gamma, r^{\prime}}(0)\right\rangle=\sum_{n} \psi^{n}(r) \psi^{n}\left(r^{\prime}\right) e^{-E_{n} t}$
- $O_{\Gamma, r}^{(0)}=\psi^{\perp}(r) O_{\Gamma, r} \quad \sum_{r} \psi^{\perp}(r) \psi^{n}(r)=A \delta_{n 0}$

Plateaux are still very short.

Preliminary results: $\tau_{\frac{1}{2}}(1) \lesssim \tau_{\frac{3}{2}}(1) \tau_{\frac{1}{2}}(1)=0.44(9) \quad \tau_{\frac{3}{2}}(1)=0.59(9)$

Conclusion and outlook

- The composition of the final state X_{c} in $\bar{B} \rightarrow X_{c} l \bar{\nu}$ has received some attention since 10 years.
- Theoretically it is expected that states D, D^{*} and the 4 P wave states $D^{* *}$ do not saturate the total width. Moreover, covariant quark models and sum rules extracted from the OPE in the heavy quark limit lead to the hierarchies

$$
\left[\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right) \ll \Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right) \text { and } \tau_{\frac{1}{2}}(1)<\tau_{\frac{3}{2}}(1)\right]^{\mathrm{TH}} .
$$

- Experimentally it was found at LEP that the total width is saturated by $D, D^{*}, D^{* *}$ ano the measured branching ratios read $\left[\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right) \gg \Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right)\right]^{\operatorname{EXP}}$.
- We have proposed a method to compute $\tau_{\frac{1}{2}}(1)$ and $\tau_{\frac{3}{2}}(1)$ on the lattice. We obtained as a preliminary result $\left[\tau_{\frac{1}{2}}(1)<\tau_{\frac{3}{2}}(1)\right]^{\text {LAT }}$. Unfortunately the noise pollutes significantly correlation functions of heavy-light meson orbital excitations and the coupling of radial excitations to the vacuum is important.
- Improvements to reduce them have been implemented but they are not sufficient yet.
- The search of methods to highly increase statistics is underway: one possibility is to compute economically the entire light propagator $S(x, y)$ instead of a part $S(x, 0)$.
- To take account of all $1 / m_{c}$ corrections, we plan to compute form factors associated with $\bar{B} \rightarrow D^{(*, * *)} l \bar{\nu}$: the c quark is described by QCD and $a \sim 0.05 \mathrm{fm}$ to reduce $\mathcal{O}\left(a m_{c}\right)$ discretisation effects.

