Towards a holographic description of QCD

Stefano Nicotri

Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari, & INFN Sezione di Bari

Based on hep-ph/0703316

May 15th2007

3.1

∃ ►

Introduction

QCD: a difficult theory to deal with

Two regimes of QCD and tools for theoretical analysis

Perturbative

• Perturbation theory

Non-Perturbative

Lattice

QCD sum rules

• . . .

Old dream: "QCD: a solvable theory"

Introduction

QCD: a difficult theory to deal with

Two regimes of QCD and tools for theoretical analysis

Perturbative

• Perturbation theory

Non-Perturbative

Lattice

QCD sum rules

• . . .

Old dream: "QCD: a solvable theory"

Holographic QCD \rightarrow new way of approaching QCD \rightarrow new powerful tool

What is holography?

How to construct a holographic description of QCD?

Introduction

QCD: a difficult theory to deal with

Two regimes of QCD and tools for theoretical analysis

Perturbative

• Perturbation theory

Non-Perturbative

Lattice

QCD sum rules

• . . .

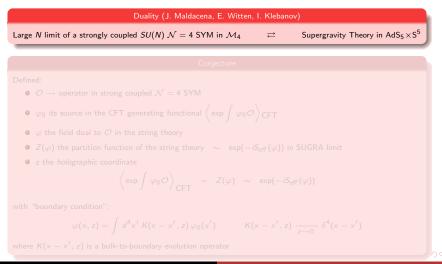
Old dream: "QCD: a solvable theory"

Holographic QCD \rightarrow new way of approaching QCD \rightarrow new powerful tool

What is holography? How to construct a holographic description of QCD?

AdS/CFT Link to QCD

AdS/CFT correspondence


• AdS₅ symmetry group isomorphic to four dimensional conformal group

• 0 -	
<i>φ</i> ₀	
● <i>φ</i> t	
• Z(4	
• z th	

AdS/CFT Link to QCD

AdS/CFT correspondence

AdS₅ symmetry group isomorphic to four dimensional conformal group

AdS/CFT Link to QCD

AdS/CFT correspondence

L

D

w

w

• AdS₅ symmetry group isomorphic to four dimensional conformal group

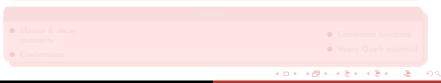
Duality (J. Maldacena, E. Witten, I. Klebanov)
arge N limit of a strongly coupled $SU(N)$ $\mathcal{N} = 4$ SYM in \mathcal{M}_4 \rightleftharpoons Supergravity Theory in $AdS_5 \times S^5$
Contraction
Conjecture
Defined:
• $\mathcal{O} \rightarrow$ operator in strong coupled $\mathcal{N} = 4$ SYM
• φ_0 its source in the CFT generating functional $\left\langle \exp \int \varphi_0 \mathcal{O} \right\rangle_{\sf CFT}$
• $arphi$ the field dual to ${\cal O}$ in the string theory
• $Z(\varphi)$ the partition function of the string theory $\sim \exp(-iS_{eff}(\varphi))$ in SUGRA limit
• z the holographic coordinate
$\left\langle \exp \int arphi_0 \mathcal{O} ight angle_{CFT} = Z(arphi) ~\sim~ \exp(-iS_{eff}(arphi))$
vith "boundary condition":
$\varphi(x,z) = \int d^4x' \mathcal{K}(x-x',z) \varphi_0(x') \qquad \qquad \mathcal{K}(x-x',z) \xrightarrow[z \to 0]{} \delta^4(x-x')$
where $K(x - x', z)$ is a bulk-to-boundary evolution operator

AdS/CFT Link to QCD

Link to QCD

Problems with QCD

- $\mathcal{N} = 4$ SYM is a conformal field theory while QCD is not
- $\mathcal{N} = 4$ SYM is a supersymmetric theory while QCD is not
- $\mathcal{N} = 4$ SYM has no S-matrix while QCD has


Proposals

QCD "nearly conformal" when all m = 0 and when α_s does not run Supposing the existence of a "gravity dual" of QCD:

Top-to-bottom approach

- Starting by string theory
- Trying to reproduce QCD

- Bottom-to-top approach
 - Starting by QCD
 - Trying to construct the dual theory

AdS/CFT Link to QCD

Link to QCD

	Problems with QCD
 N = 4 SYM is a conformal field theory while QCD is not N = 4 SYM is a supersymmetric theory while QCD is not N = 4 SYM has no S-matrix while QCD has N = 4 SYM doesn't resemble QCD [?]→ Supergravity is not a good dual for QCD 	
op-to-bottom approachStarting by string theory	Starting by QCD
• Starting by string theory	• Starting by QCD

Stefano Nicotri Towards a holographic description of QCD

(日) (四) (王) (王)


4

AdS/CFT Link to QCD

Link to QCD

Problems with QCD		
• $\mathcal{N} = 4$ SYM is a conformal field theory while QCD is not		
• $\mathcal{N} = 4$ SYM is a supersymmetric theory while QCD is not		
• $\mathcal{N} = 4$ SYM has no S-matrix while QCD has		
$\mathcal{N}=4$ SYM doesn't resemble QCD $\xrightarrow{?}$ Supergravity is not a good dual for QCD		

Proposals		
QCD "nearly conformal" when all $m = 0$ and when α_s does not run Supposing the existence of a "gravity dual" of QCD:		
Top-to-bottom approach	Bottom-to-top approach	
 Starting by string theory 	 Starting by QCD 	
• Trying to reproduce QCD	• Trying to construct the dual theory	

AdS/CFT Link to QCD

Link to QCD

Problems with QCD		
• $\mathcal{N} = 4$ SYM is a conformal field theory while QCD is not		
• $\mathcal{N} = 4$ SYM is a supersymmetric theory while QCD is not		
• $\mathcal{N} = 4$ SYM has no S-matrix while QCD has		
$\mathcal{N}=4$ SYM doesn't resemble QCD $\xrightarrow{?}$ Supergravity is not a good dual for QCD		

Proposals		
QCD "nearly conformal" when all $m = 0$ and when α_s does not run Supposing the existence of a "gravity dual" of QCD:		
Top-to-bottom approach	Bottom-to-top approach	
 Starting by string theory 	 Starting by QCD 	
 Trying to reproduce QCD 	 Trying to construct the dual theory 	

AdS/CFT Link to QCD

Link to QCD

Problems with QCD		
• $\mathcal{N} = 4$ SYM is a conformal field theory while QCD is not		
• $\mathcal{N} = 4$ SYM is a supersymmetric theory while QCD is not		
• $\mathcal{N} = 4$ SYM has no S-matrix while QCD has		
$\mathcal{N}=4$ SYM doesn't resemble QCD $\xrightarrow{?}$ Supergravity is not a good dual for QCD		

Proposals		
QCD "nearly conformal" when all $m = 0$ and when α_s does not run Supposing the existence of a "gravity dual" of QCD:		
Top-to-bottom approach	Bottom-to-top approach	
 Starting by string theory 	 Starting by QCD 	
 Trying to reproduce QCD 	 Trying to construct the dual theory 	
• Trying to reproduce QCD	• Hying to construct the dual theory	

Results		
constants Powerful too		Correlation functionsHeavy Quark potential
		(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三

Hard wall Soft wall - Dilator

Bottom-to-top approach: hard wall model

 $\label{eq:starsest} \begin{array}{l} \mbox{Framework (J. Polchinski, M. Strassler)} \end{array}$ Bulk = AdS5 cut at $z=z_m\sim 1/\Lambda_{QCD}$ \Leftrightarrow $ds^2=rac{1}{z^2}(\eta_{\mu\nu}dx^{\mu}dx^{\nu}+dz^2)$ $0\leqslant z\leqslant z_m$

QCD lives on the boundary z = 0

How to construct the action

• QCD operator $\mathcal{O}_{\mu\nu\dots\beta}$ of order p and dim $\Delta \leftrightarrow$ free field in the bulk $B_{\mu\nu\dots\beta}$

•
$$m_5^2 = (\Delta - p)(\Delta + p - 4)$$

- Global symmetry in the boundary \leftrightarrow local (gauge) symmetry in the bulk

Example: Scalar operator ${\cal O}$.

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} \left(g^{MN} \partial_M X \partial_N X + m_5^2 X^2 \right)$$

$$\partial_M \left[\sqrt{|g|} g^{MN} \partial_N X(x, z) \right] - m_5^2 X(x, z) = 0$$

イロト 不得下 イヨト イヨト

Hard wall Soft wall - Dilator

Bottom-to-top approach: hard wall model

Framework (J. Polchinski, M. Strassler)

 $\mathsf{Bulk}=\mathsf{AdS}_5 \text{ cut at } z=z_m \sim 1/\Lambda_{\textit{QCD}}$

$$ds^{2} = \frac{1}{\tau^{2}}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dz^{2}) \quad 0 \leqslant z \leqslant z_{m}$$

3

QCD lives on the boundary z = 0

 \Leftrightarrow

How to construct the action

• QCD operator $\mathcal{O}_{\mu\nu\dots\beta}$ of order p and dim $\Delta \leftrightarrow$ free field in the bulk $B_{\mu\nu\dots\beta}$

•
$$m_5^2 = (\Delta - p)(\Delta + p - 4)$$

- Global symmetry in the boundary \leftrightarrow local (gauge) symmetry in the bulk
- QFT in the boundary ↔ classical theory in the bulk

Example: Scalar operator \mathcal{O}

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|\mathbf{g}|} \left(g^{MN} \partial_M X \partial_N X + m_5^2 X^2 \right)$$

$$\partial_M \left[\sqrt{|g|} g^{MN} \partial_N X(x, z) \right] - m_5^2 X(x, z) = 0$$

Hard wall Soft wall - Dilator

Bottom-to-top approach: hard wall model

Framework (J. Polchinski, M. Strassler)

 ${\sf Bulk}={\sf AdS}_5$ cut at $z=z_m\,\sim\,1/\Lambda_{QCD}$

$$ds^{2} = \frac{1}{\tau^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}) \quad 0 \leqslant z \leqslant z_{m}$$

QCD lives on the boundary z = 0

 \Leftrightarrow

How to construct the action

• QCD operator $\mathcal{O}_{\mu\nu\dots\beta}$ of order p and dim $\Delta \leftrightarrow$ free field in the bulk $B_{\mu\nu\dots\beta}$

•
$$m_5^2 = (\Delta - p)(\Delta + p - 4)$$

- Global symmetry in the boundary \leftrightarrow local (gauge) symmetry in the bulk

Example: Scalar operator ${\cal O}$

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} \left(g^{MN} \partial_M X \partial_N X + m_5^2 X^2 \right)$$

$$\partial_M \left[\sqrt{|g|} g^{MN} \partial_N X(x, z) \right] - m_5^2 X(x, z) = 0$$

Hard wall Soft wall - Dilaton

Bottom-to-top approach: soft wall - dilaton model

Framework (A. Karch, E. Katz, D. Son, M. Stephanov)

Bulk = asymptotically AdS₅ with a background "dilaton" field $\phi(z)$

 $ds^2 = e^{2A(z)}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dz^2)$

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} e^{-\phi(z)} (g^{MN} \partial_M X \partial_N X + m_5^2 X^2)$$

$$\partial_{M}\left[\sqrt{|g|} e^{-\phi(z)}g^{MN} \partial_{N}X(x,z)\right] - m_{5}^{2}X(x,z) = 0$$

With:

- $\phi A \xrightarrow[z \to \infty]{z \to \infty} c^2 z^2$ • $\phi - A \xrightarrow[z \to 0]{z \to 0} - \ln z$
- A(z) cannot contain powers z^{β} with $\beta \ge 2$

This model reproduces Regge behaviour of vector-mesons: $m_{\pi}^2 \sim m_{\pi}^2$

Simplest choice: • $\phi = c^2 z^2$

<口> (四) (四) (王) (王)

 $A = -\ln z$

3

Hard wall Soft wall - Dilaton

Bottom-to-top approach: soft wall - dilaton model

Framework (A. Karch, E. Katz, D. Son, M. Stephanov)

Bulk = asymptotically AdS₅ with a background "dilaton" field $\phi(z)$

 $ds^2 = e^{2A(z)}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dz^2)$

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} e^{-\phi(z)} (g^{MN} \partial_M X \partial_N X + m_5^2 X^2)$$

$$\partial_M \left[\sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_N X(x,z) \right] - m_5^2 X(x,z) = 0$$

With:

- $\phi A \xrightarrow[z \to \infty]{z \to \infty} c^2 z^2$
- $\phi A \xrightarrow[z \to 0]{} \ln z$
- A(z) cannot contain powers z^{β} with $\beta \ge 2$

This model reproduces Regge behaviour of vector-mesons: $m_n^2 \sim n$

Simplest choice: • $\phi = c^2 z^2$

 $A = -\ln z$

∃ → (→ ∃ →

Masses

Example of a calculation: glueball masses

	0 ⁺ glueball
 QCD Described by tr(G²) = Tr(G_{μν} G^{μν}) Dimension Δ = 4 Scalar (p = 0) 	 AdS₅ Described by a scalar field X(x, z) Mass m₅² = (Δ - p)(Δ + p - 4) = 0

Massless free scalar field

Action & EOM

$$\begin{split} S &= -\frac{1}{2k} \int d^5 x \sqrt{|g|} \, e^{-\phi(z)} g^{MN} \, \partial_M X \, \partial_N X \\ \partial_M \left[\sqrt{|g|} \, e^{-\phi(z)} g^{MN} \, \partial_N X(x,z) \right] &= 0 \end{split}$$

How to compute masses?

- 4-dim Fourier transformation of the field: $X(x,z) = \int d^4x \, e^{iq \cdot x} \widetilde{X}(q,z)$
- Fields on shell $\rightarrow q^2 = -m^2$

Eigenvalues m_p^2 of the EOM \rightarrow 0⁺ glueball spectrum

Masses

Example of a calculation: glueball masses

	0 ⁺ glueball
QCD • Described by $tr(G^2) = Tr(G_{\mu\nu}G^{\mu\nu})$ • Dimension $\Delta = 4$ • Scalar $(p = 0)$	 AdS₅ Described by a scalar field X(x, z) Mass m₅² = (Δ - p)(Δ + p - 4) = 0

Massless free scalar field

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_M X \partial_N X$$
$$\partial_M \left[\sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_N X(x, z) \right] = 0$$

How to compute masses?

• 4-dim Fourier transformation of the field:
$$X(x, z) = \int d^4x \, e^{iq \cdot x} \widetilde{X}(q, z)$$

• Fields on shell $\rightarrow q^2 = -m^2$

Eigenvalues m_n^2 of the EOM \rightarrow 0⁺ glueball spectrum

Masses

Example of a calculation: glueball masses

	0 ⁺ glueball
QCD • Described by $tr(G^2) = Tr(G_{\mu\nu}G^{\mu\nu})$ • Dimension $\Delta = 4$ • Scalar $(p = 0)$	 AdS₅ Described by a scalar field X(x, z) Mass m₅² = (Δ - p)(Δ + p - 4) = 0

Massless free scalar field

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_M X \partial_N X$$
$$\partial_M \left[\sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_N X(x, z) \right] = 0$$

How to compute masses?

• 4-dim Fourier transformation of the field:
$$X(x, z) = \int d^4x e^{iq \cdot x} \widetilde{X}(q, z)$$

• Fields on shell
$$\rightarrow q^2 = -m^2$$

Eigenvalues m_n^2 of the EOM \rightarrow 0⁺ glueball spectrum

Masses

Example of a calculation: glueball masses

	0 ⁺ glueball
QCD • Described by $tr(G^2) = Tr(G_{\mu\nu}G^{\mu\nu})$ • Dimension $\Delta = 4$ • Scalar $(p = 0)$	 AdS₅ Described by a scalar field X(x, z) Mass m₅² = (Δ - p)(Δ + p - 4) = 0

Massless free scalar field

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_M X \partial_N X$$
$$\partial_M \left[\sqrt{|g|} e^{-\phi(z)} g^{MN} \partial_N X(x, z) \right] = 0$$

How to compute masses?

• 4-dim Fourier transformation of the field:
$$X(x, z) = \int d^4x e^{iq \cdot x} \widetilde{X}(q, z)$$

• Fields on shell $\rightarrow q^2 = -m^2$

Eigenvalues m_n^2 of the EOM \rightarrow 0⁺ glueball spectrum

 $m_n^2 = 4c^2(n+2)$ $m_{0+}^2 = 2m_\rho^2$

Masses

Example of a calculation: glueball masses

	1^- glueball
 QCD Described by Tr(G(DG)G) Dimension Δ = 7 Vector (p = 1) 	 AdS₅ Described by a vector field V_M(x, z) Mass m²₅ = (Δ - p)(Δ + p - 4) = 24

Massive free vector field

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|\mathbf{g}|} e^{-\phi(z)} \left(\frac{1}{2} g^{MN} g^{ST} F_{MS} F_{NT} + 24 g^{ST} V_S V_T\right)$$

$$\partial_M \left| \sqrt{|g|} e^{-\phi(z)} g^{MN} g^{ST} F_{MS}(x, z) \right| - 24 \sqrt{|g|} e^{-\phi(z)} g^{ST} V_S(x, z) = 0$$

where:

$$F_{MN} = \partial_M V_N - \partial_M V_N$$

Masses

Example of a calculation: glueball masses

	1^- glueball
 QCD Described by Tr(G(DG)G) Dimension Δ = 7 Vector (p = 1) 	AdS ₅ • Described by a vector field $V_M(x, z)$ • Mass $m_5^2 = (\Delta - p)(\Delta + p - 4) = 24$

Massive free vector field

Action & EOM:

$$S = -\frac{1}{2k} \int d^5 x \sqrt{|\mathbf{g}|} e^{-\phi(z)} \left(\frac{1}{2} g^{MN} g^{ST} F_{MS} F_{NT} + 24 g^{ST} V_S V_T\right)$$

$$\partial_M \left[\sqrt{|g|} e^{-\phi(z)} g^{MN} g^{ST} F_{MS}(x,z) \right] - 24 \sqrt{|g|} e^{-\phi(z)} g^{ST} V_S(x,z) = 0$$

where:

$$F_{MN} = \partial_M V_N - \partial_M V_N$$

Masses $m_n^2 = 4c^2(n+3)$ $m_{1-}^2 = 3m_\rho^2$

Masses

Example of a calculation: glueball masses

	1^- glueball
 QCD Described by Tr(G(DG)G) Dimension Δ = 7 Vector (p = 1) 	AdS ₅ • Described by a vector field $V_M(x, z)$ • Mass $m_5^2 = (\Delta - p)(\Delta + p - 4) = 24$

Massive free vector field

Action & EOM:

$$\begin{split} S &= -\frac{1}{2k} \int d^5 x \sqrt{|g|} \, e^{-\phi(z)} \left(\frac{1}{2} g^{MN} g^{ST} F_{MS} F_{NT} + 24 g^{ST} V_S V_T \right) \\ \partial_M \left[\sqrt{|g|} \, e^{-\phi(z)} g^{MN} g^{ST} F_{MS}(x,z) \right] &- 24 \sqrt{|g|} \, e^{-\phi(z)} g^{ST} V_S(x,z) = 0 \end{split}$$

$$F_{MN} = \partial_M V_N - \partial_M V_N$$

Masses						
	$m_n^2 = 4c^2(n+3)$	$m_{1-}^2 = 3m_{ ho}^2$				
		< D				

Conclusions & remarks

- $\textcircled{\ } \textbf{0} \textbf{ New approach to QCD} \rightarrow \textbf{Holographic description}$
- @ Modification of the standard AdS/CFT correspondence \rightarrow QCD
- Olifferent approaches
- In Dilaton approach:
 - 0⁺ glueball mass spectrum
 - 1⁻ glueball mass spectrum

Conclusions & remarks

- $\textcircled{O} New approach to QCD \rightarrow Holographic description$
- $\textbf{@} \ \ \text{Modification of the standard AdS/CFT correspondence} \rightarrow \text{QCD}$
- Oifferent approaches
- In Dilaton approach:
 - 0⁺ glueball mass spectrum
 - \bullet 1⁻ glueball mass spectrum

AdS/QCD seems to be very interesting and powerful in investigating QCD

Conclusions & remarks

- $\textcircled{O} New approach to QCD \rightarrow Holographic description$
- $\textbf{@} \ \ \text{Modification of the standard AdS/CFT correspondence} \rightarrow \text{QCD}$
- Olifferent approaches
- In Dilaton approach:
 - 0⁺ glueball mass spectrum
 - \bullet 1⁻ glueball mass spectrum

AdS/QCD seems to be very interesting and powerful in investigating QCD

but there is still a lot of work to do.

Thanks to

Conclusions & remarks

- $\textcircled{O} New approach to QCD \rightarrow Holographic description$
- $\textbf{@} \ \ \text{Modification of the standard AdS/CFT correspondence} \rightarrow \text{QCD}$
- Olifferent approaches
- In Dilaton approach:
 - 0⁺ glueball mass spectrum
 - \bullet 1⁻ glueball mass spectrum

AdS/QCD seems to be very interesting and powerful in investigating QCD

. but there is still a lot of work to do.

Thanks to

Conclusions & remarks

- $\textcircled{O} New approach to QCD \rightarrow Holographic description$
- $\textbf{@} \ \ \text{Modification of the standard AdS/CFT correspondence} \rightarrow \text{QCD}$
- Olifferent approaches
- In Dilaton approach:
 - 0⁺ glueball mass spectrum
 - 1⁻ glueball mass spectrum

AdS/QCD seems to be very interesting and powerful in investigating QCD

. but there is still a lot of work to do. .

Thanks to

Conclusions & remarks

- $\textcircled{O} New approach to QCD \rightarrow Holographic description$
- $\textbf{@} \ \ \text{Modification of the standard AdS/CFT correspondence} \rightarrow \text{QCD}$
- Olifferent approaches
- In Dilaton approach:
 - 0⁺ glueball mass spectrum
 - 1⁻ glueball mass spectrum

AdS/QCD seems to be very interesting and powerful in investigating QCD

... but there is still a lot of work to do...

Thanks to