LNF SPRING SCHOOL "Bruno Touschek" In Nuclear, Subnuclear and Astroparticle Physics

Kaonic atom measurements at DAONE

Frascati (Italy) May 14th – 18th, 2007

Florin Sirghi on behalf of DEAR/SIDDHARTA Collaboration

SIDDHARTA

SIlicon Drift Detector for Hadronic Atom Research by Timing Applications

represents the natural development, from scientific and technical point of view, of the

DEAR

DAFNE Exotic Atom Research

along the line of research dedicated to exotic atoms at DAFNE

The scientific aim

the determination of the *isospin dependent KN scattering lengths* through a

> ~ eV measurement of the shift and of the width

of the K_{α} line of kaonic hydrogen

and

the first (similar) measurement of kaonic deuterium

Exotic Atom

Kaonic cascade and the strong interaction

 $\epsilon = E2p-1s(meas.) - E2p-1s(e.m.)$

Florin Sirghi, LNF SPRING SCHOOL, Frascati 2007

finite lifetime of the state corresponding to an increase in the observed level width

Results on Kaonic Hydrogen

A strong motivation for the community working on the low-energy kaon-nucleon interactions Florin Sirghi, LNF SPRING SCHOOL, Frascati 2007

Experimental requirements

• Kaon Beam at DAΦNE with unique performance

- Slow, nearly monochromatic kaons (E~16 MeV)
- ✓ Kaon pair emitted back-to-back
- ✓ Low hadronic background

Target System

- Cryogenic gas target, pure hydrogen gas
- Thin windows, light-weight construction

X-ray Detector

- ✓ Large active area
- ✓ Superior energy resolution
- Background suppression capability

Calibration

"online" calbration – fluorescence lines

The choice of the detector

A good X-ray detector, which preserves

all good features of the CCD (no timing)

- ✓ large active area
- ✓ quantum efficiency
- ✓ energy resolution
- ✓ linearity and stability
- ✓ performance in accelerator environment
- □ Trigger capability (fast shaping times 1µs) for background rejection by using the kaon X ray time correlation

Principle of the Semiconductor Drift Detector

The electrons are collected by the **small anode**, characterized by a low output capacitance.

Advantages: very high energy resolution at fast shaping times, due to the small anode capacitance, independent of the active area of the detector

The Silicon Drift Detector with on-chip JFET

Anode

JFET integrated on the detector

- capacitive **'matching'**: $C_{gate} = C_{detector}$
- minimization of the parasitic capacitances
- reduction of the **microphonic noise**
- **simple solution** for the connection detector-electronics in monolithic **arrays of several units**

SDD readout side, cell center

bond pads 150µm x 150µm

7 internal contacts

- source
- drain
- ring_1
- inner guard ring
- inner substrate
- reset diode

Special chip design for SIDDHARTA

BTF test setup March 2007

Florin Sirghi, LNF SPkin

SDD energy resolution

W49S06 cell3

W01S01 cell1

SDD linearity test

Background rejection

The SIDDHARTA Setup

Florin Sirghi, LNF SPRING SCHOOL, Frascati 2007

APD Cryo Cooler for target cell CryoTiger for SDD Cooling Turbo Molecular Pump LV and HV power supply Vacuum Chamber

Cryogenic target cell

SDD arrangement

CHIP card & transfer card

SIDDHARTA setup in DAΦNE

Expected results for K⁻p

Expected results for K⁻d

Summary

- Tests of all subsystems done
 - characterization of large area SDDs under beam conditions
 - front-end electronics production
 - data acquisition production
 - construction of the experimental setup
 - slow-controls system
- The assembling at LNF in progress

• ready for installation at DAΦNE fall of 2007

SIDDHARTA future plans

Kaonic helium measurement towards the study of deeply bound nuclear kaonic state.

Other light kaonic atoms measurement (Li, Be...).

Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic atoms).

Charged kaon mass precision measurement.

DEAR results on the shift and width for kaonic hydrogen

Motivation

- Exotic (kaonic) atoms probes for strong interaction
 - > hadronic shift ε_{1s} and width Γ_{1s} directly observable
 - > experimental study of low energy QCD
- Kaonic hydrogen
 - ≻ K⁻p simplest exotic atom with strangeness
 - kaonic hydrogen "puzzle" solved but still: precision data missing
 - kaonic deuterium never measured before
- Information on $\Lambda(1405)$ sub-threshold resonance

> important for research on deeply bound kaonic states

• Determination of the isospin dependent KN scattering lengths