EXPERIMENT STUDY OF THE KAONIC NUCLEAR CLUSTERS AT DAΦNE

н

Oton Vázquez Doce

INFN, Laboratori Nazionali di Frascati

on behalf of the AMADEUS Collaboration

Introduction **The AMADEUS** scientific case The framework of **Contents** the **AMADEUS Proposal** Performing AMADEUS **Conclusions**

Introduction

What is AMADEUS ?

Why to perform AMADEUS?

What has been done up to now?

What do we need?

Which is the experimental setup?

Introduction

Letter of Intent Study of deeply bound kaonic nuclear states at DAΦNE2 AMADEUS Collaboration

111 scientists from33 Institutes of13 Countriessigned the LOI

March 2006

Introduction

What is AMADEUS ?

Why to perform AMADEUS?

What has been done up to now?

What do we need?

Which is the experimental setup?

Problem

How the spontaneous and explicit chiral symmetry breaking

pattern of low energy QCD changes in the nuclear

environment

How the hadron masses and interactions change in the nuclear medium

Approach

New type of in-medium hadron mass spectroscopy

Method

Producing deeply bound states from which to deduce the hadron-nucleus potential and the in-medium hadron mass

Deeply bound kaonic nuclear state

in presence of strong KN attractive potential were firstly suggested by Wycech

S. Wycech, Nucl. Phys. A450 (1986) 399c

□ A "new paradigm" in strangeness nuclear physics can be considered the work

"Nuclear bound states in light nuclei" by Y. Akaishi and T. Yamazaki *Phys. Rev. C65 (2002) 044005*

Strong attractive I=0 KN interaction favors discrete nuclear states bound 100-200 MeV and narrow 20-30 MeV shrinkage effect of a K on core nuclei

Kaonic Nuclear Clusters contribution to fundamental physics

- MODIFICATION OF THE KAON MASS AND OF THE KN INTERACTION IN THE NUCLEAR MEDIUM (SYMMETRY BREAKING OF QCD)

- TRANSITION FROM THE HADRONIC PHASE TO A QUARK-GLUON PHASE (CHANGES OF VACUUM PROPERTIES OF QCD AND QUARK CONDENSATE)

- KAON CONDENSATION IN NUCLEAR MATTER (IMPLICATIONS IN ASTROPHYSICS: NEUTRON STARS, STRANGE STARS)

- NUCLEAR DYNAMICS UNDER EXTREME CONDITIONS COULD BE INVESTIGATED

What is AMADEUS ?

Why to perform AMADEUS?

What has been done up to now?

What do we need?

Which is the experimental setup?

Experiments

Present:
KEK
E471, E549, E570
DAΦNE
FINUDA
GSI
FOPI
FOP

others (old-Dubna...)

analyses of the recently collected data are in progress

Future: new data from FOPI, FINUDA, JPARC (-->E15), FAIR(?)

Theory

- Debate in progress, including alternative interpretations of the data so far obtained

until new complete experimental results are available

SUMMARY OF THE SEARCH FOR DEEPLY BOUND KAONIC STATES

Requirements for the setup performance imposed by the formation process

K⁻ + ⁴He -> n + (K⁻ppn); n ~ 510 MeV/c

Exotic states produced with (K⁻, N) reactions will be observed by the energy distribution of the *ejected protons and neutrons* via the **missing mass spectra** of the (K⁻, p) and (K⁻, n) reactions.

 \Rightarrow The setup should be capable to measure:

- Outgoing p up to 600 MeV/c

- Outgoing n up to 600 MeV/c

total cms energy = *invariant mass of the object*

What is AMADEUS ?

Why to perform AMADEUS?

What has been done up to now?

What do we need?

Which is the experimental setup?

AMADEUS setup within KLOE

AMADEUS inner region setup

A tracking/vertex detector (a Time Projection Chamber (TPC) with GEM-readout in this example) is surrounding the half toroidal cryogenic target cell with the (previous) kaon trigger configuration.

• Alternative, if the background rate is too high (to be checked with FINUDA inner-tracker) a multi-layer cylindrical GEM detector is in discussion: might be necessary

Preliminary MonteCarlo simulations with optimized degrader and cryotarget

40% are stopped in the cryogenic He gas target (15% liq. He density, ~ 5 cm thick) \rightarrow 12.5 × 10⁸ K⁻⁴He atoms per month

for 10⁻³ cluster formation yield:

12.5 × 10⁵ kaonic clusters formed in one month

•Efficiency of tracking & identification K^{\pm} & detection of decay products \rightarrow

~ 10⁵ events per month (~ 1000 pb⁻¹)

What is AMADEUS ?

Why to perform AMADEUS?

What has been done up to now?

What do we need?

Which is the experimental setup?

From AMADEUS LOI:

In conclusion, an initial programme based on the study of the ³He and the ⁴He targets, to investigate dibaryonic and the T=0,1 tribaryonic states, would require an integrated luminosity from 2 to 6 fb⁻¹, according to depth of the investigation.

Further requests (other targets) depend on the results of these first measurements

From AMADEUS LOI:

In conclusion, an initial programme based on the study of the ³He and the ⁴He targets, to investigate dibaryonic and the T=0,1 tribaryonic states, would require an integrated luminosity from 2 to 6 fb⁻¹, according to depth of the possible at DAONE with Luminosity upgrades.

Further requests (other targets) depend on the results of these first measurements

 The AMADEUS Collaboration aims to perform the most complete experimental effort ever done so far in searching for deeply bound kaonic nuclear clusters using, for the first time, a 4π dedicated detector capable of detecting all charged and neutral particles created in both formation and decay of kaonic clusters.