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HQE theories: basics

• we have seen that it is impossible to discretize the bottom fermion because its 
Compton wavelength (1/mB ~ 0.04 fm) is smaller than present day  lattice spacings

• formulate a theory which separates this degree of freedom from low-energy ones

• light quark action is as before

• heavy quark action is the static one (describing a heavy hadron at rest) + 
corrections in powers of 1/mB

• in the static limit we distinguish the heavy quark degrees of freedom from the 
antiquark ones; the former travel forwards in time, the latter backwards

In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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HQE theories: basics

• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• static terms: lowest order terms in heavy quark mass expansion
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• they describe a static quark which only moves forward in time without movement in 
space (do spatial derivatives)

• eventually the heavy mass “factors out” through a redefinition of the fermion field

• the quark propagator is a Wilson (Polyakov) line

• the “static” B-meson (heavy-light quark particle) propagates as follows:

[ !x ; 0 ] [ !x ; t ]
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• the 1/m correction has terms like

The Lagrangian then reads
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relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
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We note again that the essential assumption is eq. (III.1.5), namely the spatial
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derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
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local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• two distinct physical situations: the physics of a heavy-light quark meson and that of 
the bottonium (heavy quark-antiquark pair)
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• heavy quark almost at rest, with motion 
suppressed as ΛQCD/mQ

• described by HQET: systematic 
expansion in ΛQCD/mQ
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(1 − γ5)q b̄γµ(1 − γ5)q, and its rate is proportional to a matrix element
〈B̄|O"B=2|B〉, which is parameterized by the B meson decay constant fB and
the B parameter BB . This matrix element represents the probability of finding the
heavy quark and the light antiquark at the same spatial point in the B meson to
annihilate it and to create a B̄ meson from that point. This is a problem of bound-
state formation in QCD, which is nonperturbative. The lattice calculation offers the
best tool to solve such problems, but one needs a special treatment of heavy quark
fields on the lattice, since the Compton wavelength of the heavy quark, ∼1/mQ ,
could be smaller than the typical lattice spacing a.

The typical energy or momentum scale that governs the dynamics of quarks and
gluons inside the usual light hadrons is the QCD scale #QCD, which characterizes
the energy scale where the QCD coupling αs becomes large. Because the heavy
quark introduces a new energy scale to the system, the QCD dynamics inside heavy
hadrons is quite different from that of light hadrons.

In the heavy-light meson, which is a bound state composed of a heavy quark Q
and light degrees of freedom (a light antiquark q̄ and gluons g), the motion of the
heavy quark of mass mQ is hardly affected by the light degrees of freedom with a
typical momentum #QCD, if mQ % #QCD. Thus, the heavy quark stays almost at
rest at the center of the bound state, surrounded by the light degrees of freedom, as
shown in the left panel of Figure 1. The motion of the heavy quark is suppressed by
#QCD/mQ . This system is described by the heavy quark effective theory (HQET)
(3–5), which is discussed in Section 2.

The dynamics of quarkonium, which is a bound state ofQ and Q̄, is governed by
different energy scales. In the classical picture, the nonrelativistic kinetic energy
〈p2〉/2mQ and the potential energy − 4

3αs〈 1
r
〉 have to be balanced, and the heavy

quarks move around each other, in contrast to the heavy-light dynamics, as depicted

Figure 1 Typical momentum scales in the heavy-light (left) and heavy-
heavy (right) mesons.
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fields on the lattice, since the Compton wavelength of the heavy quark, ∼1/mQ ,
could be smaller than the typical lattice spacing a.

The typical energy or momentum scale that governs the dynamics of quarks and
gluons inside the usual light hadrons is the QCD scale #QCD, which characterizes
the energy scale where the QCD coupling αs becomes large. Because the heavy
quark introduces a new energy scale to the system, the QCD dynamics inside heavy
hadrons is quite different from that of light hadrons.

In the heavy-light meson, which is a bound state composed of a heavy quark Q
and light degrees of freedom (a light antiquark q̄ and gluons g), the motion of the
heavy quark of mass mQ is hardly affected by the light degrees of freedom with a
typical momentum #QCD, if mQ % #QCD. Thus, the heavy quark stays almost at
rest at the center of the bound state, surrounded by the light degrees of freedom, as
shown in the left panel of Figure 1. The motion of the heavy quark is suppressed by
#QCD/mQ . This system is described by the heavy quark effective theory (HQET)
(3–5), which is discussed in Section 2.

The dynamics of quarkonium, which is a bound state ofQ and Q̄, is governed by
different energy scales. In the classical picture, the nonrelativistic kinetic energy
〈p2〉/2mQ and the potential energy − 4

3αs〈 1
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quarks move around each other, in contrast to the heavy-light dynamics, as depicted

Figure 1 Typical momentum scales in the heavy-light (left) and heavy-
heavy (right) mesons.
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〈B̄|O"B=2|B〉, which is parameterized by the B meson decay constant fB and
the B parameter BB . This matrix element represents the probability of finding the
heavy quark and the light antiquark at the same spatial point in the B meson to
annihilate it and to create a B̄ meson from that point. This is a problem of bound-
state formation in QCD, which is nonperturbative. The lattice calculation offers the
best tool to solve such problems, but one needs a special treatment of heavy quark
fields on the lattice, since the Compton wavelength of the heavy quark, ∼1/mQ ,
could be smaller than the typical lattice spacing a.

The typical energy or momentum scale that governs the dynamics of quarks and
gluons inside the usual light hadrons is the QCD scale #QCD, which characterizes
the energy scale where the QCD coupling αs becomes large. Because the heavy
quark introduces a new energy scale to the system, the QCD dynamics inside heavy
hadrons is quite different from that of light hadrons.

In the heavy-light meson, which is a bound state composed of a heavy quark Q
and light degrees of freedom (a light antiquark q̄ and gluons g), the motion of the
heavy quark of mass mQ is hardly affected by the light degrees of freedom with a
typical momentum #QCD, if mQ % #QCD. Thus, the heavy quark stays almost at
rest at the center of the bound state, surrounded by the light degrees of freedom, as
shown in the left panel of Figure 1. The motion of the heavy quark is suppressed by
#QCD/mQ . This system is described by the heavy quark effective theory (HQET)
(3–5), which is discussed in Section 2.

The dynamics of quarkonium, which is a bound state ofQ and Q̄, is governed by
different energy scales. In the classical picture, the nonrelativistic kinetic energy
〈p2〉/2mQ and the potential energy − 4

3αs〈 1
r
〉 have to be balanced, and the heavy

quarks move around each other, in contrast to the heavy-light dynamics, as depicted

Figure 1 Typical momentum scales in the heavy-light (left) and heavy-
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(1 − γ5)q b̄γµ(1 − γ5)q, and its rate is proportional to a matrix element
〈B̄|O"B=2|B〉, which is parameterized by the B meson decay constant fB and
the B parameter BB . This matrix element represents the probability of finding the
heavy quark and the light antiquark at the same spatial point in the B meson to
annihilate it and to create a B̄ meson from that point. This is a problem of bound-
state formation in QCD, which is nonperturbative. The lattice calculation offers the
best tool to solve such problems, but one needs a special treatment of heavy quark
fields on the lattice, since the Compton wavelength of the heavy quark, ∼1/mQ ,
could be smaller than the typical lattice spacing a.

The typical energy or momentum scale that governs the dynamics of quarks and
gluons inside the usual light hadrons is the QCD scale #QCD, which characterizes
the energy scale where the QCD coupling αs becomes large. Because the heavy
quark introduces a new energy scale to the system, the QCD dynamics inside heavy
hadrons is quite different from that of light hadrons.

In the heavy-light meson, which is a bound state composed of a heavy quark Q
and light degrees of freedom (a light antiquark q̄ and gluons g), the motion of the
heavy quark of mass mQ is hardly affected by the light degrees of freedom with a
typical momentum #QCD, if mQ % #QCD. Thus, the heavy quark stays almost at
rest at the center of the bound state, surrounded by the light degrees of freedom, as
shown in the left panel of Figure 1. The motion of the heavy quark is suppressed by
#QCD/mQ . This system is described by the heavy quark effective theory (HQET)
(3–5), which is discussed in Section 2.

The dynamics of quarkonium, which is a bound state ofQ and Q̄, is governed by
different energy scales. In the classical picture, the nonrelativistic kinetic energy
〈p2〉/2mQ and the potential energy − 4

3αs〈 1
r
〉 have to be balanced, and the heavy

quarks move around each other, in contrast to the heavy-light dynamics, as depicted

Figure 1 Typical momentum scales in the heavy-light (left) and heavy-
heavy (right) mesons.
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〈B̄|O"B=2|B〉, which is parameterized by the B meson decay constant fB and
the B parameter BB . This matrix element represents the probability of finding the
heavy quark and the light antiquark at the same spatial point in the B meson to
annihilate it and to create a B̄ meson from that point. This is a problem of bound-
state formation in QCD, which is nonperturbative. The lattice calculation offers the
best tool to solve such problems, but one needs a special treatment of heavy quark
fields on the lattice, since the Compton wavelength of the heavy quark, ∼1/mQ ,
could be smaller than the typical lattice spacing a.

The typical energy or momentum scale that governs the dynamics of quarks and
gluons inside the usual light hadrons is the QCD scale #QCD, which characterizes
the energy scale where the QCD coupling αs becomes large. Because the heavy
quark introduces a new energy scale to the system, the QCD dynamics inside heavy
hadrons is quite different from that of light hadrons.

In the heavy-light meson, which is a bound state composed of a heavy quark Q
and light degrees of freedom (a light antiquark q̄ and gluons g), the motion of the
heavy quark of mass mQ is hardly affected by the light degrees of freedom with a
typical momentum #QCD, if mQ % #QCD. Thus, the heavy quark stays almost at
rest at the center of the bound state, surrounded by the light degrees of freedom, as
shown in the left panel of Figure 1. The motion of the heavy quark is suppressed by
#QCD/mQ . This system is described by the heavy quark effective theory (HQET)
(3–5), which is discussed in Section 2.

The dynamics of quarkonium, which is a bound state ofQ and Q̄, is governed by
different energy scales. In the classical picture, the nonrelativistic kinetic energy
〈p2〉/2mQ and the potential energy − 4

3αs〈 1
r
〉 have to be balanced, and the heavy

quarks move around each other, in contrast to the heavy-light dynamics, as depicted

Figure 1 Typical momentum scales in the heavy-light (left) and heavy-
heavy (right) mesons.
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• heavy quarks move around each other 
in the meson rest frame

• NRQCD: three well separated scales

• quark mass mQ

• spatial momentum <p> ~ mQ v

• binding energy <p2>/mQ ~ mQ v2
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the B parameter BB . This matrix element represents the probability of finding the
heavy quark and the light antiquark at the same spatial point in the B meson to
annihilate it and to create a B̄ meson from that point. This is a problem of bound-
state formation in QCD, which is nonperturbative. The lattice calculation offers the
best tool to solve such problems, but one needs a special treatment of heavy quark
fields on the lattice, since the Compton wavelength of the heavy quark, ∼1/mQ ,
could be smaller than the typical lattice spacing a.

The typical energy or momentum scale that governs the dynamics of quarks and
gluons inside the usual light hadrons is the QCD scale #QCD, which characterizes
the energy scale where the QCD coupling αs becomes large. Because the heavy
quark introduces a new energy scale to the system, the QCD dynamics inside heavy
hadrons is quite different from that of light hadrons.

In the heavy-light meson, which is a bound state composed of a heavy quark Q
and light degrees of freedom (a light antiquark q̄ and gluons g), the motion of the
heavy quark of mass mQ is hardly affected by the light degrees of freedom with a
typical momentum #QCD, if mQ % #QCD. Thus, the heavy quark stays almost at
rest at the center of the bound state, surrounded by the light degrees of freedom, as
shown in the left panel of Figure 1. The motion of the heavy quark is suppressed by
#QCD/mQ . This system is described by the heavy quark effective theory (HQET)
(3–5), which is discussed in Section 2.

The dynamics of quarkonium, which is a bound state ofQ and Q̄, is governed by
different energy scales. In the classical picture, the nonrelativistic kinetic energy
〈p2〉/2mQ and the potential energy − 4

3αs〈 1
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• heavy quarks move around each other 
in the meson rest frame

• NRQCD: systematic expansion in

•  v
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• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• the 1/m correction has terms like

The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)
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• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• the 1/m correction has terms like

The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)

HQET leading order terms are O(1) and subleading are O(1/m)
 
NRQCD leading order terms are O(1) and subleading are O(v2)
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• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .

59

In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• the 1/m correction has terms like

The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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HQET leading order terms are O(1) and subleading are O(1/m)
 
NRQCD leading order terms are O(1) and subleading are O(v2)

• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)



HQE theories: basics

• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• the 1/m correction has terms like

The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)

HQET leading order terms are O(1) and subleading are O(1/m)
 
NRQCD leading order terms are O(1) and subleading are O(v2)



HQE theories: basics

• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.

60

• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)

In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• the 1/m correction has terms like

The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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HQET leading order terms are O(1) and subleading are O(1/m)
 
NRQCD leading order terms are O(1) and subleading are O(v2)



HQE theories: quantum theory

• in terms of these fields we have the tree level action:The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)
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containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
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connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,
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D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly
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m2 )
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The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• beyond  classical level we regularize the theory on the lattice (e.g. Wilson fermions)

• the static (LO) contribution acquires a mass counterterm

• the HQET terms (NLO) have less trivial O(1/m) coefficients

• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)



• in terms of these fields we have the tree level action:The Lagrangian then reads
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double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
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For later convenience we introduce the short hand
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Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
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We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
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correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1
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m2 )

= γ0
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γ0D0 + m + 1

2m(−DkDk −
1
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Fklσkl) + 1
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The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• beyond  classical level we regularize the theory on the lattice (e.g. Wilson fermions)

• the static (LO) contribution acquires a mass counterterm

• the HQET terms (NLO) have less trivial O(1/m) coefficients

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)



• in terms of these fields we have the tree level action:The Lagrangian then reads
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We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat
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where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,
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L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
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h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
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= γ0

{
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1
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}
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• NB: the O(1/m) terms are dim=5 operators; thus both HQET & NRQCD are non-
renormalizable theories, while the static theory is OK

• they have no continuum limitThe 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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HQE theories: quantum theory

• some lattice calculations adopt a “phenomenological approach”, working at fixed 
lattice spacing, with ma not too small

• way out: since static theory is renormalizable, you can consider the static term as 
the “theory’s action” and expand the O(1/m) terms as part of the “observable”:

The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)



• in terms of these fields we have the tree level action:The Lagrangian then reads
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For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
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For later convenience we introduce the short hand
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1
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We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .

59

In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• NB: the O(1/m) terms are dim=5 operators; thus both HQET & NRQCD are non-
renormalizable theories, while the static theory is OK

• they have no continuum limitThe 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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HQE theories: quantum theory
The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• expand the action exponential to O(1/m)

• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)

renormalizable
action

part of the observale

exp [−S
stat

− S
(1) ] = exp [−S

stat ] [ 1 − S
(1) ]



• in terms of these fields we have the tree level action:The Lagrangian then reads
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For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1
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Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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In this section, we keep the dependence of the fields on the space-time coordinates
implicit and also drop the label b on the quark field and its mass. We start from the
Dirac-Lagrangian of a b-quark with a large mass, m, in the continuum,

L = ψ(Dµγµ + m)ψ (III.1.3)

= ψ†Dψ , D = mγ0 + D0 + γ0Dkγk . (III.1.4)

The light quark fields and gauge fields are not touched by our considerations. We
write ψ†, but it is just another independent Grassmann integration variable in the path
integral. Since we are considering the classical theory, we can assume that the fields
are smooth. We can therefore perform an expansion in Dµ. More precisely, we have to
refer to a special kinematical situation. We want to describe the dynamics of a hadron
containing one heavy quark, where the hadron is at rest. For infinite mass, the heavy
quark propagates only in time. Denoting the expansion parameter by ε, the dynamics
thus dictates

D0/m = O(1) , Dk/m = O(ε) , (III.1.5)

when these derivatives act on the heavy quark fields. This is often called a power count-
ing scheme. In the quantum theory we will have ε = ΛQCD/m. Obviously quantities
such as Fµν = O(1) are not touched by this consideration. At the lowest order in this
expansion the (“large components”) quark field (P± = 1±γ0

2 )

ψh = P+ψ , ψh = ψP+, , (III.1.6)

propagates forward in time, while the anti-quark field,

ψh̄ = P−ψ , ψh̄ = ψP− , (III.1.7)

propagates backward. In a somewhat sloppy notation we will often write O(1/m) instead
of O(ε). The O(1/m) terms in the Lagrangian

L = Lstat
h + Lstat

h̄ + O( 1
m) (III.1.8)

Lstat
h = ψh(D0 + m)ψh , Lstat

h̄ = ψh̄(−D0 + m)ψh̄ , (III.1.9)

connect quark and anti-quark fields. They can be decoupled through a Foldy-Wouthuysen
rotation,

L = φ†D′φ , φ = eSψ , φ† = ψ†e−S (III.1.10)

D′ = eSDe−S , S = 1
2mDkγk = −S† = O( 1

m) , (III.1.11)

which yields explicitly

D′ = D + 1
2m [Dkγk,D] + 1

8m2 [Dlγl, [Dkγk,D]] + O( 1
m2 ) (III.1.12)

= D + 1
2m [Dkγk,D] − 1

4m [Dlγl, γ0Dkγk] + O( 1
m2 )

= γ0

{
γ0D0 + m + 1

2m(−DkDk −
1

2i
Fklσkl) + 1

2mFk0γ0γk

}
+ O( 1

m2 ) .
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• NB: the O(1/m) terms are dim=5 operators; thus both HQET & NRQCD are non-
renormalizable theories, while the static theory is OK

• they have no continuum limitThe 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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HQE theories: quantum theory
The Lagrangian then reads

L = Lstat
h + Lstat

h̄ +
{
L(1)

h + L(1)
h̄

+ L(1)
hh̄

}
+ O( 1

m2 ) (III.1.13)

L(1)
h = 1

2mψh(−DkDk −
1

2i
Fkl σkl)ψh , (III.1.14)

σµν =
i

2
[γµ, γν ] , Fkl = [Dk,Dl] . (III.1.15)

For hadrons (or correlation functions) with a single b-quark (or anti-b-quark) only

double insertions of L(1)
hh̄

contribute. These are of order 1/m2 and may be dropped at
the order written explicitly.

For later convenience we introduce the short hand

L(1)
h = − 1

2m(Okin + Ospin) , (III.1.16)

Okin = ψh DkDk ψh = ψh D2 ψh , (III.1.17)

Ospin = ψh
1

2i
Fkl σkl ψh = ψh σ ·Bψh . (III.1.18)

We note that L, eq. (III.1.13) is a low energy effective Lagrangian [142–144]. It describes
the long wave length modes of the fields accurately and makes truncation errors, which
are of increasing relevance for shorter wave lengths. This becomes particularly apparent
when we remove the mass terms from the static Lagrangian and define

Lstat
h = ψh(D0 + ε)ψh , Lstat

h̄ = ψh̄(−D0 + ε)ψh̄ , (III.1.19)

where the limit ε → 0+ is to be understood in order to select the proper propagation in
time. Replacing eq. (III.1.9) by eq. (III.1.19) corresponds exactly to an energy shift by
an amount m of all states containing a single heavy quark or anti-quark. For Euclidean
correlation functions it just leads to an additional factor of exp(−m (y0 − x0)) for cor-
relation functions where a quark propagates from x0 to y0 ≥ x0. (For the anti-quark
there is a factor exp(+m (y0 − x0)) with y0 ≤ x0).

We note again that the essential assumption is eq. (III.1.5), namely the spatial
covariant derivatives are counted as small compared to the mass term and the time
derivative. This is the correct physical situation in a frame where the hadron is at rest
and therefore at lowest order also the quark is at rest.

Instead of carrying out the expansion of the action, one could also expand the heavy
quark propagator in terms of 1/m.

Quantum fluctuations are not smooth and invalidate the above “derivation”. How-
ever, one expects that they do not modify the structure of the effective Lagrangian, but
rather only modify the coefficients of the various terms by non-trivial renormalizations
due to these short distance fluctuations. After all, arguing heuristically, long wavelength
terms have been identified correctly and are described by local interaction terms. In
local quantum field theory, also effective local quantum field theory, such terms are
renormalized by a renormalization of the coefficients of the local fields. Below, we will
discuss this in some detail.
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• expand the action exponential to O(1/m)

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• static terms: lowest order terms in heavy quark mass expansion (m factors out !!)

exp [−S
stat

− S
(1) ] = exp [−S

stat ] [ 1 − S
(1) ]



HQE theories: quantum theory

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• example I: B-meson mass:

are known as a function of the bare coupling g0 and the quark mass mb. Their non-
perturbative determination will be discussed later.

The rules of the 1/mb-expansion are illustrated for of CAA(x0), eq. (III.2.9). One
uses eq. (III.2.14) and the HQET representation of the composite field eq. (III.2.16).
Then the expectation value is expanded consistently in 1/mb, counting powers of 1/mb

as in eq. (III.2.18). At order 1/mb, terms proportional to ωkin × cHQET
A etc. are to be

dropped. As a last step, we have to take the energy shift between HQET and QCD
into account. Therefore the correlation function obtains an extra factor exp(−x0mb),
where the scheme dependence of mb is compensated by a corresponding one in δm. One
arrives at the expansion

CAA(x0) = e−mbx0(ZHQET
A )2

[
Cstat

AA (x0) + cHQET
A Cstat

δAA(x0) (III.2.19)

+ ωkin Ckin
AA(x0) + ωspin Cspin

AA (x0)
]

with (remember the definitions in eq. (III.2.14))

Cstat
δAA(x0) = 〈Astat

0 (x)(δAstat
0 (0))†〉stat + 〈δAstat

0 (x)(Astat
0 (0))†〉stat ,

Ckin
AA(x0) = 〈Astat

0 (x)(Astat
0 (0))†〉kin , (III.2.20)

Cspin
AA (x0) = 〈Astat

0 (x)(Astat
0 (0))†〉spin .

It is now a straight forward exercise to obtain the expansion of the B-meson mass22

mB = mb + δ̂m + Estat + ωkinEkin + ωspinEspin , (III.2.21)

Estat = − lim
x0→∞

∂̃0 ln Cstat
AA (x0)

∣∣∣∣
δm=0

, (III.2.22)

Ekin = − lim
x0→∞

∂̃0 ρkin(x0) , ρkin(x0) =
Ckin

AA(x0)

Cstat
AA (x0)

, (III.2.23)

Espin = − lim
x0→∞

∂̃0 ρspin(x0) , ρspin(x0) =
Cspin

AA (x0)

Cstat
AA (x0)

, (III.2.24)

and its decay constant

FB
√

mB = lim
x0→∞

{2 exp(mBx0)CAA(x0)}1/2 , (III.2.25)

= ZHQET
A lim

x0→∞
Φstat {1 + 1

2x0[ωkinEkin + ωspinEkin]

+1
2cHQET

A ρδA(x0) + 1
2ωkinρkin(x0) + 1

2ωspinρspin(x0)} , (III.2.26)

Φstat = lim
x0→∞

{2 exp(Estatx0)Cstat
AA (x0)}1/2 , ρδA(x0) =

Cstat
δAA(x0)

Cstat
AA (x0)

.

22It follows from the simple form of the static propagator that there is no dependence on δm except
for the explicitly shown energy shift δ̂m.
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Using the transfer matrix formalism (with normalization 〈B|B〉 = 1), one further ob-
serves that

Ekin = −〈B|a3
∑

z

Okin(0, z)|B〉stat ,

(III.2.27)
Espin = −〈B|a3

∑

z

Ospin(0, z)|B〉stat .

As expected, only the parameters of the action are relevant in the expansion of hadron
masses.

A correct split of the terms in eq. (III.2.21) and eq. (III.2.26) into leading order
and next to leading order pieces which separately have a continuum limit requires more
thought on the renormalization of the 1/mb-expansion. We turn to this now.

III.2.2.2 Renormalization and continuum limit

For illustration we first check the self consistency of eq. (III.2.19). The relevant question
concerns renormalization, namely: are the “free” parameters δm . . . cHQET

A sufficient to
absorb all divergences on the r.h.s.? We consider the most difficult term, Ckin

AA(x0).
According to the standard rules, it is renormalized as

(
Ckin

AA

)

R
(x0) = (Zstat

A )2 × (III.2.28)

a7
∑

x, z

〈
Astat

0 (x) (Astat
0 (0))† (Okin)R(z)

〉

stat
+ C.T. ,

where C.T. denotes contact terms to be discussed shortly. The operator (Okin)R(z)
involves a subtraction of lower dimensional ones,

(Okin)R(z) = ZOkin(Okin(z) +
c1

a
ψh(z)D0ψh(z) +

c2

a2
ψh(z)ψh(z)) ,

(III.2.29)

written here in terms of dimensionless ci. Since we are interested in on-shell observables
(x0 > 0 in eq. (III.2.19)), we may use the equation of motion D0ψh(z) = 0 to eliminate
the second term. The third one, c2

a2 ψh(z)ψh(z), is equivalent to a mass shift and only
changes δm, which is hence quadratically divergent 23. Thus all terms which are needed
for the renormalization of Okin are present in eq. (III.2.19).

It remains to consider the contact terms in eq. (III.2.28). They originate from sin-
gularities in the operator products Okin(z)Astat

0 (x) as z → x (and Okin(z)(Astat
0 )†(0) as

z → 0), in complete analogy to the discussion in Sect. I.2.2.3. Using the operator prod-
uct expansion they can be represented as linear combinations of Astat

0 (x) and δAstat
0 (x).

23Using the explicit form of the static propagator, eq. (III.2.8), one can check that indeed

a3
∑

x

〈
Astat

0 (x) (Astat
0 (0))†a4

∑
z
ψh(z)ψh(z)

〉

stat
= x0Cstat

AA (x0), which can be absorbed by a 1/mb

correction to δm.
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• example II: B-meson decay constant from the WME <B| A0HQET|0> :

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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HQE theories: quantum theory

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• example I: B-meson mass:

are known as a function of the bare coupling g0 and the quark mass mb. Their non-
perturbative determination will be discussed later.

The rules of the 1/mb-expansion are illustrated for of CAA(x0), eq. (III.2.9). One
uses eq. (III.2.14) and the HQET representation of the composite field eq. (III.2.16).
Then the expectation value is expanded consistently in 1/mb, counting powers of 1/mb

as in eq. (III.2.18). At order 1/mb, terms proportional to ωkin × cHQET
A etc. are to be

dropped. As a last step, we have to take the energy shift between HQET and QCD
into account. Therefore the correlation function obtains an extra factor exp(−x0mb),
where the scheme dependence of mb is compensated by a corresponding one in δm. One
arrives at the expansion

CAA(x0) = e−mbx0(ZHQET
A )2

[
Cstat

AA (x0) + cHQET
A Cstat

δAA(x0) (III.2.19)

+ ωkin Ckin
AA(x0) + ωspin Cspin

AA (x0)
]

with (remember the definitions in eq. (III.2.14))

Cstat
δAA(x0) = 〈Astat

0 (x)(δAstat
0 (0))†〉stat + 〈δAstat

0 (x)(Astat
0 (0))†〉stat ,

Ckin
AA(x0) = 〈Astat

0 (x)(Astat
0 (0))†〉kin , (III.2.20)

Cspin
AA (x0) = 〈Astat

0 (x)(Astat
0 (0))†〉spin .

It is now a straight forward exercise to obtain the expansion of the B-meson mass22

mB = mb + δ̂m + Estat + ωkinEkin + ωspinEspin , (III.2.21)

Estat = − lim
x0→∞

∂̃0 ln Cstat
AA (x0)

∣∣∣∣
δm=0

, (III.2.22)

Ekin = − lim
x0→∞

∂̃0 ρkin(x0) , ρkin(x0) =
Ckin

AA(x0)

Cstat
AA (x0)

, (III.2.23)

Espin = − lim
x0→∞

∂̃0 ρspin(x0) , ρspin(x0) =
Cspin

AA (x0)

Cstat
AA (x0)

, (III.2.24)

and its decay constant

FB
√

mB = lim
x0→∞

{2 exp(mBx0)CAA(x0)}1/2 , (III.2.25)

= ZHQET
A lim

x0→∞
Φstat {1 + 1

2x0[ωkinEkin + ωspinEkin]

+1
2cHQET

A ρδA(x0) + 1
2ωkinρkin(x0) + 1

2ωspinρspin(x0)} , (III.2.26)

Φstat = lim
x0→∞

{2 exp(Estatx0)Cstat
AA (x0)}1/2 , ρδA(x0) =

Cstat
δAA(x0)

Cstat
AA (x0)

.

22It follows from the simple form of the static propagator that there is no dependence on δm except
for the explicitly shown energy shift δ̂m.
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Using the transfer matrix formalism (with normalization 〈B|B〉 = 1), one further ob-
serves that

Ekin = −〈B|a3
∑

z

Okin(0, z)|B〉stat ,

(III.2.27)
Espin = −〈B|a3

∑

z

Ospin(0, z)|B〉stat .

As expected, only the parameters of the action are relevant in the expansion of hadron
masses.

A correct split of the terms in eq. (III.2.21) and eq. (III.2.26) into leading order
and next to leading order pieces which separately have a continuum limit requires more
thought on the renormalization of the 1/mb-expansion. We turn to this now.

III.2.2.2 Renormalization and continuum limit

For illustration we first check the self consistency of eq. (III.2.19). The relevant question
concerns renormalization, namely: are the “free” parameters δm . . . cHQET

A sufficient to
absorb all divergences on the r.h.s.? We consider the most difficult term, Ckin

AA(x0).
According to the standard rules, it is renormalized as

(
Ckin

AA

)

R
(x0) = (Zstat

A )2 × (III.2.28)

a7
∑

x, z

〈
Astat

0 (x) (Astat
0 (0))† (Okin)R(z)

〉

stat
+ C.T. ,

where C.T. denotes contact terms to be discussed shortly. The operator (Okin)R(z)
involves a subtraction of lower dimensional ones,

(Okin)R(z) = ZOkin(Okin(z) +
c1

a
ψh(z)D0ψh(z) +

c2

a2
ψh(z)ψh(z)) ,

(III.2.29)

written here in terms of dimensionless ci. Since we are interested in on-shell observables
(x0 > 0 in eq. (III.2.19)), we may use the equation of motion D0ψh(z) = 0 to eliminate
the second term. The third one, c2

a2 ψh(z)ψh(z), is equivalent to a mass shift and only
changes δm, which is hence quadratically divergent 23. Thus all terms which are needed
for the renormalization of Okin are present in eq. (III.2.19).

It remains to consider the contact terms in eq. (III.2.28). They originate from sin-
gularities in the operator products Okin(z)Astat

0 (x) as z → x (and Okin(z)(Astat
0 )†(0) as

z → 0), in complete analogy to the discussion in Sect. I.2.2.3. Using the operator prod-
uct expansion they can be represented as linear combinations of Astat

0 (x) and δAstat
0 (x).

23Using the explicit form of the static propagator, eq. (III.2.8), one can check that indeed

a3
∑

x

〈
Astat

0 (x) (Astat
0 (0))†a4

∑
z
ψh(z)ψh(z)

〉

stat
= x0Cstat

AA (x0), which can be absorbed by a 1/mb

correction to δm.
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• example II: B-meson decay constant from the WME <B| A0HQET|0> :

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,

64

• leading O(1) terms

• NB: ZAHQET may be computed either in PT or NP (better NP)



HQE theories: quantum theory

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• example I: B-meson mass:

are known as a function of the bare coupling g0 and the quark mass mb. Their non-
perturbative determination will be discussed later.

The rules of the 1/mb-expansion are illustrated for of CAA(x0), eq. (III.2.9). One
uses eq. (III.2.14) and the HQET representation of the composite field eq. (III.2.16).
Then the expectation value is expanded consistently in 1/mb, counting powers of 1/mb

as in eq. (III.2.18). At order 1/mb, terms proportional to ωkin × cHQET
A etc. are to be

dropped. As a last step, we have to take the energy shift between HQET and QCD
into account. Therefore the correlation function obtains an extra factor exp(−x0mb),
where the scheme dependence of mb is compensated by a corresponding one in δm. One
arrives at the expansion

CAA(x0) = e−mbx0(ZHQET
A )2

[
Cstat

AA (x0) + cHQET
A Cstat

δAA(x0) (III.2.19)

+ ωkin Ckin
AA(x0) + ωspin Cspin

AA (x0)
]

with (remember the definitions in eq. (III.2.14))

Cstat
δAA(x0) = 〈Astat

0 (x)(δAstat
0 (0))†〉stat + 〈δAstat

0 (x)(Astat
0 (0))†〉stat ,

Ckin
AA(x0) = 〈Astat

0 (x)(Astat
0 (0))†〉kin , (III.2.20)

Cspin
AA (x0) = 〈Astat

0 (x)(Astat
0 (0))†〉spin .

It is now a straight forward exercise to obtain the expansion of the B-meson mass22

mB = mb + δ̂m + Estat + ωkinEkin + ωspinEspin , (III.2.21)

Estat = − lim
x0→∞

∂̃0 ln Cstat
AA (x0)

∣∣∣∣
δm=0

, (III.2.22)

Ekin = − lim
x0→∞

∂̃0 ρkin(x0) , ρkin(x0) =
Ckin

AA(x0)

Cstat
AA (x0)

, (III.2.23)

Espin = − lim
x0→∞

∂̃0 ρspin(x0) , ρspin(x0) =
Cspin

AA (x0)

Cstat
AA (x0)

, (III.2.24)

and its decay constant

FB
√

mB = lim
x0→∞

{2 exp(mBx0)CAA(x0)}1/2 , (III.2.25)

= ZHQET
A lim

x0→∞
Φstat {1 + 1

2x0[ωkinEkin + ωspinEkin]

+1
2cHQET

A ρδA(x0) + 1
2ωkinρkin(x0) + 1

2ωspinρspin(x0)} , (III.2.26)

Φstat = lim
x0→∞

{2 exp(Estatx0)Cstat
AA (x0)}1/2 , ρδA(x0) =

Cstat
δAA(x0)

Cstat
AA (x0)

.

22It follows from the simple form of the static propagator that there is no dependence on δm except
for the explicitly shown energy shift δ̂m.
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Using the transfer matrix formalism (with normalization 〈B|B〉 = 1), one further ob-
serves that

Ekin = −〈B|a3
∑

z

Okin(0, z)|B〉stat ,

(III.2.27)
Espin = −〈B|a3

∑

z

Ospin(0, z)|B〉stat .

As expected, only the parameters of the action are relevant in the expansion of hadron
masses.

A correct split of the terms in eq. (III.2.21) and eq. (III.2.26) into leading order
and next to leading order pieces which separately have a continuum limit requires more
thought on the renormalization of the 1/mb-expansion. We turn to this now.

III.2.2.2 Renormalization and continuum limit

For illustration we first check the self consistency of eq. (III.2.19). The relevant question
concerns renormalization, namely: are the “free” parameters δm . . . cHQET

A sufficient to
absorb all divergences on the r.h.s.? We consider the most difficult term, Ckin

AA(x0).
According to the standard rules, it is renormalized as

(
Ckin

AA

)

R
(x0) = (Zstat

A )2 × (III.2.28)

a7
∑

x, z

〈
Astat

0 (x) (Astat
0 (0))† (Okin)R(z)

〉

stat
+ C.T. ,

where C.T. denotes contact terms to be discussed shortly. The operator (Okin)R(z)
involves a subtraction of lower dimensional ones,

(Okin)R(z) = ZOkin(Okin(z) +
c1

a
ψh(z)D0ψh(z) +

c2

a2
ψh(z)ψh(z)) ,

(III.2.29)

written here in terms of dimensionless ci. Since we are interested in on-shell observables
(x0 > 0 in eq. (III.2.19)), we may use the equation of motion D0ψh(z) = 0 to eliminate
the second term. The third one, c2

a2 ψh(z)ψh(z), is equivalent to a mass shift and only
changes δm, which is hence quadratically divergent 23. Thus all terms which are needed
for the renormalization of Okin are present in eq. (III.2.19).

It remains to consider the contact terms in eq. (III.2.28). They originate from sin-
gularities in the operator products Okin(z)Astat

0 (x) as z → x (and Okin(z)(Astat
0 )†(0) as

z → 0), in complete analogy to the discussion in Sect. I.2.2.3. Using the operator prod-
uct expansion they can be represented as linear combinations of Astat

0 (x) and δAstat
0 (x).

23Using the explicit form of the static propagator, eq. (III.2.8), one can check that indeed

a3
∑

x

〈
Astat

0 (x) (Astat
0 (0))†a4

∑
z
ψh(z)ψh(z)

〉

stat
= x0Cstat

AA (x0), which can be absorbed by a 1/mb

correction to δm.
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• example II: B-meson decay constant from the WME <B| A0HQET|0> :

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• subleading O(1/m) terms

• once these terms are included, everything must be computed  NP-ly !!



HQE theories: quantum theory

The 1/mb Lagrangian then reads

L(1)
h (x) = −(ωkin Okin(x) + ωspin Ospin(x)) . (III.2.13)

Since these terms are fields of dimension five, the theory defined with a path integral
weight P ∝ exp(−a4 ∑

x[Llight(x) + Lstat
h (x) + L(1)

h (x)]) is not renormalizable. In per-
turbation theory, new divergences will occur at each order in the loop expansion, which
necessitate to introduce new counter-terms. The continuum limit of the lattice theory
will then not exist. However, that effective theory is NRQCD not HQET. Since the effec-
tive theory is “only” supposed to reproduce the 1/mb expansion of the observables order
by order in 1/mb, we expand the weight P in 1/mb, counting ωkin = O(1/mb) = ωspin.
This defines HQET. The same step has already been used in Symanzik’s effective theory.

Up to and including O(1/mb), expectation values in HQET are defined as

〈O〉 = 〈O〉stat + ωkina
4
∑

x

〈OOkin(x)〉stat + ωspina
4
∑

x

〈OOspin(x)〉stat

≡ 〈O〉stat + ωkin〈O〉kin + ωspin〈O〉spin , (III.2.14)

where

〈O〉stat =
1

Z

∫

fields
O exp(−a4

∑

x

[Llight(x) + Lstat
h (x)]) (III.2.15)

is defined with respect to the lowest order action, which is power counting renormaliz-
able. The path integral defining the average extends over all fields and the normalization
Z is fixed by 〈1〉stat = 1.

In order to compute matrix elements or correlation functions in the effective theory,
we also need the effective composite fields. At the classical level they can again be
obtained from the Foldy-Wouthuysen rotation. In the quantum theory one adds all
local fields with the proper quantum numbers and dimensions. For example the effective
axial current (time component) is given by

AHQET
0 (x) = ZHQET

A [Astat
0 (x) + cHQET

A δAstat
0 (x)] , (III.2.16)

δAstat
0 (x) = ψl(x)

1

2
(
←−∇ i+

←−∇∗
i)γiγ5ψh(x) . (III.2.17)

Before entering into more details on the renormalization, we show some examples how
the 1/mb-expansion works.

III.2.2.1 1/mb-expansion of correlation functions and matrix elements

For now we assume that the coefficients

O(1) : δm , ZHQET
A ,

(III.2.18)
O(1/mb) : ωkin , ωspin , cHQET

A ,
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• suppose ZAHQET is known from 1-loop PT; this estimate has an error:

• if the power correction, i.e. the subleading O(1/m) term is also known:

∆ZHQET
A

∝ g4
R(mb) ∼

1

ln(mb/ΛQCD)

• as mb is increased, the LO error dominates the power correction

• several lattice HQET computations adopt this phenomenological approach, where it 
is assumed that the LO correction comes with a coefficient which is small compared 
to the power subtraction, in the mass interval of the simulation

• the only theoretically consistent approach is the NP one

c
HQET
A

∝

ΛQCD

mb



Step scaling functions for HQET

• we need to determine several HQET renormalization constants; e.g. for the HQET 
determination of the decay constant fB (which involves the axial current) we need to 
know :

• LO δm, ZAHQET

• NLO  δm, ωkin, ωkin, cA

• their determination goes through matching of  several correlations, involving the 
axial current, in lattice QCD and in HQET

• if the matching could be done in physical regimes (e.g. large volumes), there would 
be no point in doing HQET in the first place

• can do matching in small volumes L1

• ALPHA: at small volumes, match HQET to QCD and compute renormalization 
constants, define a SSF (a new one!), compute it at several a/L, extrapolate it in the 
continuum and use matching and iterative techniques to scale up to physical volumes

!"
0.4 fm
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Figure 28: The strategy for a non-perturbative determination of the HQET-parameters from QCD
simulations in a small volume. Steps indicated by arrows are to be repeated at smaller lattice spacings
to reach a continuum limit.

HQET expansion is very accurate. So for the matching step we impose

ΦHQET
k (L1,Mb) = ΦQCD

k (L1,Mb) , k = 1, . . . , Neff . (III.5.1)

to determine the Neff parameters in the effective theory (right hand side of Fig. 28). We
assume that the observables Φk(L,Mb) have been made dimensionless by multiplication
with appropriate powers of L. They should be chosen with care (e.g. no large momenta
should appear) but the effect of variations in the matching conditions on the final results
is in any case of a higher order in the 1/mb expansion.

III.5.2 Step scaling functions

The matching conditions, eq. (III.5.1), define the HQET parameters for any value of
the lattice spacing (or equivalently bare coupling). In practice, for L1 ≈ 0.4 fm, the
parameters of the effective theory are then determined at rather small lattice spacings in
a range of a ≈ 0.02 fm to a ≈ 0.05 fm. Large volumes as they are needed to compute the
physical mass spectrum or matrix elements then require very large lattices (L/a > 50).
A further step is needed to bridge the gap to practicable lattice spacings. A well-defined
procedure is as follows (bottom part of Fig. 28). We define step scaling functions [37],
Fk, by

ΦHQET
k (sL,M) = Fk({ΦHQET

j (L,M) , j = 1 . . . Neff}) , k = 1 . . . Neff , (III.5.2)
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Step scaling functions for heavy WME

• SSF can also be used for the computation of WMEs (rather than renormalization)

• method works because σ has a slighter dependence on 1/mh than fB (cancellations 
between numerator and denominator)

• the continuum SSF is obtained by extrapolation at several resolutions a/L of the 
discrete SSF

M. Guagnelli, F.Palombi, R.Petronzio, & N.Tantalo, Phys. Lett. B546(2002)237

• first compute the physical quantity (say fB)  on a small volume with good resolution

• result is unphysical due to strong finite size effects

• use finite-volume SSF to move to higher volumes: 
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scaling method faces the challenging requirements discussed above by adopting a two-step

strategy. As a first step, the decay constant is computed on a small volume, where the light

quark is squeezed, and the heavy quark propagates with a high resolution. At this stage, the

mass of the heavy quark can be raised up to very large values, with controlled discretization

errors, and the decay constant can be directly simulated at the physical heavy quark mass.

As a second step, the finite-size effects of this calculation are removed by evolving the

decay constant toward large volumes. The evolution is realized according to the identity

(1)fh!(L∞) = fh!(L0)
fh!(L1)

fh!(L0)

fh!(L2)

fh!(L1)
· · · , L0 < L1 < L2 < · · · ,

where the basic ingredient is the ratio of the decay constants computed on two different

volumes at the same values of the mass parameters

(2)σ (m!,mh,Lk−1) = fh!(m!,mh,Lk)

fh!(m!,mh,Lk−1)

∣

∣

∣

∣

Lk=sLk−1
.

Throughout the paper we refer to the step scaling function in the continuum limit as σ

(Greek lowercase) and to the step scaling function at finite lattice spacing as Σ (Greek

uppercase).

This quantity represents a non-perturbative calculation of the finite volume effects.

In principle, its dependence on the quark masses can be very different from the one

of the decay constants themselves. In effects, it has been shown [28] that the σ -ratio’s

are characterized by a very slight linear dependence upon the inverse of mh, due to

cancellations of additional heavy quark mass dependences between the numerator and the

denominator of Eq. (2). This suggests a concrete way to connect the finite volume decay

constant to physical volumes:

• given a couple of physical volumes (Lk−1,Lk) and a finite lattice spacing a, the step

scaling function is simulated on the lattice for a set of heavy and light quark masses.

In order to identify the quark mass on a finite volume, a RGI quark mass scheme is

adopted [30,31] and units are fixed through the r0 scale [32,33]. Throughout the paper

we fix r0 = 0.5 fm. The light quarkmasses are kept around the strangemass throughout

the whole procedure.

• A set of different simulations are done at fixed physical volumes (Lk−1,Lk) but with

different lattice spacings, in order to perform the continuum extrapolation of the step

scaling function at given heavy and light RGI quark masses. The ratio s between the

two volumes should be chosen small enough to cope with the increase of lattice sites

without exceeding computational resources. On the other hand, it should be large

enough to reach large volumes in few steps. A value s = 2 is a good compromise.

The continuum step scaling functions are then linearly extrapolated in the inverse of

the RGI heavy quark masses up to mRGI
c ormRGI

b , according to the heavy flavors of the

meson.

• As a starting value for the finite volume, we chose to set L0 = 0.4 fm. This allows

to reach a volume L2 = 1.6 fm, after just two evolution steps, which is adequate to

accommodate the heavy–light mesons at the physical values of the light quark masses.

374 G.M. de Divitiis et al. / Nuclear Physics B 672 (2003) 372–386

scaling method faces the challenging requirements discussed above by adopting a two-step

strategy. As a first step, the decay constant is computed on a small volume, where the light

quark is squeezed, and the heavy quark propagates with a high resolution. At this stage, the

mass of the heavy quark can be raised up to very large values, with controlled discretization

errors, and the decay constant can be directly simulated at the physical heavy quark mass.

As a second step, the finite-size effects of this calculation are removed by evolving the

decay constant toward large volumes. The evolution is realized according to the identity

(1)fh!(L∞) = fh!(L0)
fh!(L1)

fh!(L0)

fh!(L2)

fh!(L1)
· · · , L0 < L1 < L2 < · · · ,

where the basic ingredient is the ratio of the decay constants computed on two different

volumes at the same values of the mass parameters

(2)σ (m!,mh,Lk−1) = fh!(m!,mh,Lk)

fh!(m!,mh,Lk−1)

∣

∣

∣

∣

Lk=sLk−1
.

Throughout the paper we refer to the step scaling function in the continuum limit as σ

(Greek lowercase) and to the step scaling function at finite lattice spacing as Σ (Greek

uppercase).

This quantity represents a non-perturbative calculation of the finite volume effects.

In principle, its dependence on the quark masses can be very different from the one

of the decay constants themselves. In effects, it has been shown [28] that the σ -ratio’s

are characterized by a very slight linear dependence upon the inverse of mh, due to

cancellations of additional heavy quark mass dependences between the numerator and the

denominator of Eq. (2). This suggests a concrete way to connect the finite volume decay

constant to physical volumes:

• given a couple of physical volumes (Lk−1,Lk) and a finite lattice spacing a, the step

scaling function is simulated on the lattice for a set of heavy and light quark masses.

In order to identify the quark mass on a finite volume, a RGI quark mass scheme is

adopted [30,31] and units are fixed through the r0 scale [32,33]. Throughout the paper

we fix r0 = 0.5 fm. The light quarkmasses are kept around the strangemass throughout

the whole procedure.

• A set of different simulations are done at fixed physical volumes (Lk−1,Lk) but with

different lattice spacings, in order to perform the continuum extrapolation of the step

scaling function at given heavy and light RGI quark masses. The ratio s between the

two volumes should be chosen small enough to cope with the increase of lattice sites

without exceeding computational resources. On the other hand, it should be large

enough to reach large volumes in few steps. A value s = 2 is a good compromise.

The continuum step scaling functions are then linearly extrapolated in the inverse of

the RGI heavy quark masses up to mRGI
c ormRGI

b , according to the heavy flavors of the

meson.

• As a starting value for the finite volume, we chose to set L0 = 0.4 fm. This allows

to reach a volume L2 = 1.6 fm, after just two evolution steps, which is adequate to

accommodate the heavy–light mesons at the physical values of the light quark masses.



Decay Constants



Basics

Vacuum-to-meson matrix element of axial current

QCD effects in leptonic decays are parametrized in terms of a single parameter fM

B−

b

ū

l−

ν̄

W

Figure 2: Diagram representing the leptonic decay of the B-meson.

corresponding to this configuration. The numerical evaluation of this de-
terminant is possible, but is computationally very expensive, and for this
reason the determinant is frequently set equal to its average value, which
is equivalent to neglecting virtual quark loops. Gradually, however, un-
quenched calculations are beginning to be performed, e.g. in Figure 1 we
show the lattice spacing obtained by the SESAM and TχL collaborations
from four physical quantities in both quenched and unquenched simula-
tions 25. In the quenched case there is a spread of results of about ±10%,
whereas in the unquenched case the spread is smaller (although the errors
are still sizeable for some of the quantities used). In the next 3–5 years it
should be possible to compute most of the physical quantities discussed
below without imposing this approximation.

2 The Leptonic Decay Constants fD and fB

In this section we review the current status of calculations of the leptonic de-
cay constants fD and fB. Leptonic decays of heavy mesons, see Figure 2, are
particularly simple to treat theoretically a. In each case the strong interac-
tion effects are contained in a single parameter, called the decay constant, fD

or fB. Parity symmetry implies that only the axial component of the V –A
weak current contributes to the decay, and Lorentz invariance that the matrix
element of the axial current is proportional to the momentum of the meson
(with the constant of proportionality defined to be the decay constant) as, for
example, in Eq. (6).

Knowledge of fB would allow us to predict the rates for the corresponding
decays:

Γ(B → lνl + lνlγ) =
G2

F V 2
ub

8π
f2

Bm2
l mB

(

1 −
m2

l

m2
B

)2
(

1 + O(α)
)

, (9)

where the O(α) corrections are also known. The value of fB is very important
aFor simplicity, the presentation here is for pseudoscalar mesons D and B. A parallel

discussion holds also for the vector mesons D∗ and B∗.
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< 0|Aµ(0)|B(p) > = fB pµ

Aµ = b̄ γµγ5 u

Knowledge of fB allows prediction of corresponding decay rate 
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Basics

• Also interested in the decay constants of

• pion  (u-d quarks) fπ

• K-meson fK (s-d quarks)

• Dd (c-d) and Ds (c-s) mesons fDd , fDs 

• Bd (b-d) and Bs (b-s) mesons fBd , fBs  

• fπ monitors the chiral behaviour of QCD as predicted by chiral PT

• fπ = 132 MeV can also be used to calibrate lattice spacing

• fK can be a postdiction or a way to calibrate the strange quark mass

• fBd and fBs are part of the computation of neutral B-meson oscillations (later)

• similarly for fDd - fDs (cf. recent experiments on D-meson oscillations)



fK: recent quenched results

Using tmQCD the Wilson fermion computation has acquired even better precision:

• several lattice spacings 0.04 fm < a < 0.09 fm enable control of continuum limit

• lattice volumes adequate at L ~ 2 fm

• with tmQCD no axial current normalization ZA  needed 

• two variants of tmQCD enable combined fit to continuum

• realisitc masses allowed by tmQCD (mK ~ 490 MeV with degenerate quarks)

Alpha P. Dimopoulos et al. hep-lat/0702017

fK = 165 ± 3 MeV

fK = 164 ± 4 MeV

fK = 162 ± 4 MeV

Alpha J. Garden et al. Nucl.Phys.B571(2000)237

χLF K. Jansen et al. JHEP09(2005)071
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Figure 2: Continuum behaviour of fPS (filled circles) as a function of the pseudoscalar mass
squared (in physical units). We also plot the continuum limit obtained with non-perturbatively
improved Wilson fermions (open squares) [19].

β 5.70 5.85 6.00 6.10 6.20 6.45

fPSa (κpion
c )

µ1a 0.0986(10) 0.0782(13) 0.0516(17) 0.0466(14) 0.0437(13) 0.0329(13)

µ2a 0.1195(10) 0.0890(12) 0.0632(11) 0.0546(09) 0.0500(11) 0.0361(11)

µ3a 0.1418(11) 0.1003(12) 0.0740(09) 0.0623(08) 0.0562(10)

µ4a 0.1685(11) 0.1149(12) 0.0859(09) 0.0716(08) 0.0637(10)

µ5a 0.1902(11) 0.1273(13) 0.0949(09) 0.0790(08) 0.0698(09)

µ6a 0.2112(12) 0.1390(14) 0.1029(10) 0.0858(08) 0.0754(09)

µ7a 0.2320(13) 0.1501(14) 0.1104(10) 0.0919(09) 0.0806(09)

fPSa (κPCAC
c )

µ1a 0.1267(14) 0.0894(14) 0.0689(27) 0.0512(16)

µ2a 0.1345(13) 0.0947(13) 0.0711(13) 0.0532(13)

µ3a 0.1472(12) 0.1025(12) 0.0763(10) 0.0567(10)

µ4a 0.1697(12) 0.1159(12) 0.0858(10) 0.0633(08)

µ5a 0.1914(13) 0.1284(11) 0.0944(10) 0.0694(08)

µ6a 0.2134(14) 0.1402(11) 0.1025(10) 0.0751(08)

µ7a 0.2358(15) 0.1518(11) 0.1100(10) 0.0803(08)

µ8a 0.1403(13) 0.0983(12) 0.0734(11) 0.0548(11)

µ9a 0.1589(12) 0.1095(12) 0.0813(10) 0.0601(09)

Table 4: Pseudoscalar meson decay constants fPSa for all simulation points.

– 8 –

mπ = 270 MeV mπ = 550 MeV

fK

fπ

= 1.11 ± 0.04

fK

fπ

= 1.22 exp

10% quenching error



fK: recent unquenched results

Using staggered fermions with Nf = 2 the MILC collaboration reports:

MILC  C. Bernard et al. PoS(LAT2006)163

fπ = 128.6 ± 0.4 ± 3.0 MeV

fK = 155.3 ± 0.4 ± 3.1 MeV

fK

fπ

= 1.208 ± 0.02
+0.07
−0.14

• four lattice spacings 0.06 fm < a < 0.12 fm enable control of continuum limit

• lattice volumes adequate at 2 fm < L < 2.4 fm

• with staggered no axial current normalization ZA  needed 

• light quark masses (sea) mq ~ 11 MeV (mπ ~ 240 MeV)

• strange quark masses mK ~ 490 MeV

• each physical flavour accompanied by 3 “tastes”; determinant rooting !!
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fK: recent unquenched results

Using staggered fermions with Nf = 2 the MILC collaboration reports:

fK

fπ

= 1.208 ± 0.02
+0.07
−0.14

rate K → π µ ν

Vud

Update on the physics of light pseudoscalar mesons R. Sugar

Figure 3: The square of the pion mass divided

by the sum of the valence quark masses as a

function of the sum of the valence quark masses

in units of r1.

Figure 4: The pion decay constant as a function

of the sum of the valence quark masses in units

of r1.

f! 128 6 0 4 3 0MeV 129 5 0 9 3 5MeV (4.1)

fK 155 3 0 4 3 1MeV 156 6 1 0 3 6MeV (4.2)

fK f! 1 208 2 7
14 1 210 4 13 (4.3)

Here the numbers on the left are the new values, and those on the right in square brackets

are from Refs. [1, 2, 3]. In each case the first error is statistical, and the second systematic. The

result for f! obtained from the experimental rate for ! !" coupled with the value of Vud from

super allowed nuclear beta decay is f! 130 7 0 1 0 4 MeV. The agreement of our result

with the experimental one provides important evidence that we do understand and can control our

errors. Marciano has pointed out [14] that lattice results for f K f! can be combined with the

experimentally determined rate for K !" and Vud to calculate Vus. We find

Vus 0 2223 26
14 0 2219 26 (4.4)

Again, our latest result is on the left with the previous one in square brackets on the right. The

Particle Data Group (2006) gives Vus 0 2257 21 [15] from the K !!" experimental rate and

non-lattice theory. Lattice errors continue to dominate experimental ones in our determination of

Vus, and they will be reduced as additional super-fine lattices become available.

The up, down and strange quark masses can be determined from the masses of the ! and K

mesons using the S#PT fits. To do so we must distinguish between experimental masses, QCD

masses in which electromagnetism has been turned off, and those in which both electromagnetism

and isospin violations are turned off. The last of these, which we denote by m !̂ and mK̂ , are used

5
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W.J. Marciano  Phys. Rev. Lett.93(2004)231803

Particle Data Group 2006

MILC  C. Bernard et al. PoS(LAT2006)163



fK: recent unquenched results

Using DW fermions with Nf = 2+1 the RBC-UKQCD collaboration reports:

• one lattice spacing  a ~ 0.12 fm (the coarsest MILC); one lattice volume L ~ 2 fm

• with DW (L5 = 16) good chirality (?); axial current normalization ZA  present 

• light quark masses (sea) 0.33 ms < mq < 0.85 ms and ms physical

RBC-MILC  C. Allton et al. hep-lat/0701013

fK = 127 ± 4 MeV

fπ = 157 ± 5 MeV

fK

fπ

= 1.24 ± 0.02
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fπ: recent unquenched results

Using tmQCD fermions with Nf = 2 the ETM-Collaboration reports:

• one lattice spacing  a ~ 0.1 fm (the coarsest MILC); one lattice volume L ~ 2.4 fm

• light quark masses (sea) 300 MeV < mπ < 550 MeV

• no axial current (and no ZA) is needed, due to tmQCD Ward identity

• due to tmQCD @ twist angle α = π ∕ 2, we have automatic O(a) improvement

ETMC  Ph. Boucaud et al. hep-lat/0701012

fχ = 121.3 ± 0.7

fit to 4 points

fit to 5 points

(afPS)

(aµ)

0.0160.0120.0080.0040

0.09

0.08

0.07

0.06

0.05

Figure 3: We show afPS as a function of aµ together with fits to χPT formula Eq. (6).
We present two fits, one taking all data and one leaving out the point at the largest value
aµ = 0.015. We show finite size corrected (L → ∞) data points.

into account, shows that the uncharged pseudo scalar meson is about 20% lighter
than the charged one. We obtain

am±
PS = 0.1359(7) , am0

PS = 0.111(11) ,

or, expressed differently, r2
0((m

0
PS)

2 − (m±
PS)

2) = c(a/r0)2 with c = −4.5(1.8).
This coefficient is a factor of 2 smaller than the value found in quenched investi-
gations [28]. Note that the uncharged pion being lighter than the charged one is
compatible with predictions from lattice χPT if the first order phase transition
scenario is realised [45, 47, 44]. For an investigation of isospin breaking effects in
χPT see also Ref. [74].

The disconnected correlations needed for the π0 meson are evaluated using a
stochastic (Gaussian) volume source with 4 levels of hopping-parameter variance
reduction [75]. We use 24 stochastic sources per gauge configuration and evaluate
the relevant propagators every 10-th trajectory.

4 Summary

In this letter we have presented results of simulations of lattice QCD with Nf = 2
maximally twisted Wilson quarks at a fixed value of the lattice spacing a ! 0.1 fm.
We reached a pseudo scalar meson mass of about 300 MeV. The numerical
stability and smoothness of the simulations allowed us to obtain precise results
for the pseudo scalar mass and decay constant which in turn led to determine
the low energy constants of the effective chiral Lagrangian. In particular, we find
for the pseudo scalar decay constant in the chiral limit F = 121.3(7) MeV, and
l̄3 = 3.65(12) and l̄4 = 4.52(6) where only statistical errors are given.

11



fD: recent quenched results

Using W-Clover fermions the Alpha collaboration reports:

• four lattice spacings  0.04 fm < a < 0.09 fm ;  lattice volume L ~ 1.5 fm

• O(a)-improvement, renormalization etc well under control

Alpha  A. Juttner and J. Rolf Phys.Lett.B560(2003)59

3

Figure 2. Continuum extrapolation for FDs
.

computers at the HLRN [5]. Starting from the
same field configuration, we calculated the prop-
agators in single and double precision arithmetics
and with different solver residuals. It turned out
that the impact of these changes on FDs

is below
1 per mil.

For the definition of plateau ranges of (4)
where the relative contribution of excited states
and glueballs is below a threshold of 5 per
mil, one needs estimates of ∆ and mG. These
were obtained self-consistently from linear fits to
log(F bare

Ds
(x0)−F plateau

Ds
), where F plateau

Ds
is the av-

erage of an a priori chosen plateau (cf. fig. (1)
and [17] for details). We found that a suitable
range for the plateau is x0 = 4r0, . . . , 5r0 for all
values of β.

Fig. (2) shows the corresponding plateau aver-
ages for all simulated values of β. We excluded
the coarsest lattice in the continuum extrapola-
tion which was done linear in (a/r0)2 because
of O(a)-improvement. With bA taken from [9]
we finally quote r0FDs

= 0.638(24) as the main
result. We also used 1-loop perturbation the-
ory for bA [19], since taking bA from [9] involves
an extrapolation of the data. One then gets
r0FDs

= 0.631(24). Excluding the two coarsest
lattices instead leads to r0FDs

= 0.630(34). Fi-
nally, using r0 = 0.5 fm, our main result in phys-
ical units is FDs

= 252(9)MeV. When using the
nucleon mass to set the scale, which corresponds
to taking r0 = 0.55 fm, we found that FDs

de-
creases by 20 MeV [17].

4. Conclusion

We present a direct calculation of the heavy-
light decay constant FDs

with the final result
FDs

= 252(9)MeV. The error matches that of
future experiments, e.g. CLEO-c. We aim at ex-

tending the scaling study in the future and these
calculations are under way. We supplement this
analysis with more data around the charm mass
[3]. We estimate that FDs

decreases by by 20 MeV
under a scale shift of 10%.
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15. M. Lüscher et al., Nucl. Phys. B384 (1992)

168-228, hep-lat/9207009.
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fD - fB: recent quenched results

Using W-Clover fermions a Rome 2 collaboration reports:

 G.M. de Divitiis et al. Nucl.Phys.B672(2003)372

fDs
= 240 ± 5 ± 5 MeV

fBs
= 192 ± 6 ± 4 MeV

• finite volume step scaling method L ~ 0.4, 0.8, 1.6 fm

• several lattice spacings 0.06 ≤ a ≤ 0.13 control continuum limit

• compute SSF around the charm quark mass, extrapolate it to bottom region
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fD - fB: recent quenched results

Using W-Clover fermions the Alpha collaboration reports:

 Alpha J. Heitger et al. Phys.Lett.B581(2004)93

• finite volume step scaling method for NP renormalization for static case

• compute fD around the charm quark mass, fB-static and INTERPOLATE for fB

P
o
S
(
L
A
T
2
0
0
6
)
0
1
7

Heavy Flavor Physics Tetsuya Onogi

mRGI = 2.0− 3.5 for L = L1 and a = 0.10− 0.20 fm, mRGI = 1.3− 2.0 for L = L2 . Defining the

finite volume corrections factors with the ratio of the decay constants for two different volumes as

!(L0)≡ fBs (2L0)
fBs (L0)

and !(L1)≡ fBs (L!)
fBs (2L0)

, the decay constant in the infinite volume can be obtained as

fBs(L!) = fBs(L0)!(L0)!(L1). (3.2)

The result is

fBs(L0) = 475(2)MeV, fDs(L0) = 644(3)MeV (3.3)

!Bs(L1) = 0.417(3), !Ds(L1) = 0.414(3) (3.4)

!Bs(L1) = 0.97(3), !Ds(L1) = 0.90(2). (3.5)

As it turned out, the heavy quark mass dependence of the step scaling function are indeed small,

which justified the extrapolation. Combining these results

fBs = 192(6)(4)MeV, fDs = 240(5)(5)MeV. (3.6)

Alpha collaboration [13] compute static heavy-light decay constant with lattice HQETwhich is

matched to QCDwith nonperturbative accuracy by Schrodinger functional method. They computed

the renormalization group invariant matrix element"stat
RGI which can be related to the decay constant

by a matching factorCPS(mPS) [14] as "stat
RGI = fPS

√
mPS/CPS(mPS) and obtain

r
3/2
0 "stat

RGI = 1.74(13). (3.7)

Figure 2: Interpolation of static and relativistic results of heavy-light decay constant to obtain fBs . Figure

taken from [15].

Alpha collaboration [15] also computed the decay constants for the charm quark mass regime,

i.e. mQ = 1.7−2.6 GeV, at four lattice spacings in the range a= 0.05−0.1 fm usingO(a)-improved
Wilson fermion for both the heavy and the light quarks. They then interpolated the decay constants

7

fBs
= 206 ± 10 MeV



fD - fB: recent quenched results

Using W-Clover fermions the Alpha/Rome 2 collaboration reports:

 D.Guazzini, R.Somer, N.Tantalo PoS(Lat2006)084

• combination of methods and data

• compute step scaling function around the charm quark mass and in the static 
limit;  then INTERPOLATE for step scaling function in bottom 

• use these step scaling functions and finite volume Rome 2 method to get fB

fBs
= 191 ± 6 MeV



fD: recent quenched results

Using DW fermions the RBC collaboration reports:

 H.W. Lin et al., Phys.Rev.D749(2006)114506

• one lattice spacing a ~ 0.065 fm and one volume L ~ 1.6 fm 

• quark mass range  ms/4 < mq < 5ms/4 

 T.W.Chiu, Phys.Lett.B624(2005)31
• one lattice spacing a ~ 0.09 fm 

• thirty quark masses ranging  70 MeV < mq < 180 MeV 

fDs
= 254 ± 4 ± 12 MeV

fDs
= 266 ± 10 ± 18 MeV



fD - fB : recent unquenched result

FNAL/MILC collaboration reports at Nf = 2+1:

 C. Bernard et al., PoS(LAT2006)094

• staggered light quarks with Fermilab heavy quarks

• three lattice spacings a ~ 0.09 fm,  0.12 fm,  0.15 fm

• work in progress

fDs
= 249 ± 3 ± 16 MeV

fDs
= 282 ± 16 ± 7 MeVCLEO:

fBs

fDs

= 0.99 ± 0.02 ± 0.06



fD - fB : summary
 T. Onogy PoS(LAT2006)017

• due to step scaling function methods, quenched Wilson results are the best

• unquenched results suggest a 10-15% increase in the fB  values

• all error bars are not equally reliable; all results are not on equal footing
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Figure 5: Decay constants fDs (left), fBs(right)

0.0 0.1 0.2 0.3 0.4 0.5

1/m
H

s
 (GeV

−1
)

0.2

0.3

0.5

0.6

0.7

f H
s M

H
s1

/2
 (

G
eV

3
/2
)

Alpha

RomeII

Rome II + static

FNAL

Collins et al.(NRQCD)

JLQCD(NRQCD)

Figure 6: Comparison of 1/m dependence of !RGI ≡ fPS
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mPS/CPS(mPS)

nonperturbatively renormalized heavy-light decay constants in the continuum limit as discussed in

the previous subsection. We take the average of the results from Rome II and Alpha collaboration

as the best result in quenched approximation,

f
n f=0
Bs

= 194(6)MeV, f
n f=0
Ds

= 245(6)MeV,

(
fBs
fDs

)n f=0
= 0.80(6),

In the unquenched case, the decay constants have larger errors from perturbative matching. I would

quote the average of HPQCD/MILC and FNAL/MILC results for fB and FNAL/MILC results for

fD as the best value. However, since the best result come from the same configuration, it would be
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ΔS=2 transitions: εK

|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

   can also be expressed in terms of  K0 -  K0  mixing
dominant EW process is FCNC (2 W exchange)

d u,c,t s

s
-

d
-

u,c,t

W W
O

d s

s
-

d
-

indirect CP-violation

εK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
= [2.282(17) × 10−3] exp(iπ/4)
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ΔS=2 transitions: εK
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from NLO PT (with QCD)
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ΔS=2 transitions: εK

|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

   can also be expressed in terms of  K0 -  K0  mixing
dominant EW process is FCNC (2 W exchange)

indirect CP-violation

εK =
A[KL → (ππ)I=0]

A[KS → (ππ)I=0]
= [2.282(17) × 10−3] exp(iπ/4)

long distance NP Put in NLO PT + Cabibbo angle + A + mc,t:

η̄(1.4 − ρ̄) B̂K ≈ 0.40

B̂K =

〈K̄0|Ô∆S=2|K0〉
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ΔS=2 transitions: εK

|εK| =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

exp
= [2.282(17) × 10−3] e

iπ/4
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BK − a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators 
of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 
1998; Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]
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Vanishes for staggered, GW, DW fermions
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BK − a renormalisation classic

Subtractions flaw the quality of Wilson fermion results

L.  Lellouch Nucl.Phys.Proc.Suppl.94(2001)142



Getting rid of mixing

Straightforward option: preserve chiral symmetry  possibly exactly.

Wilson 1: axial Ward identity (3-point function with OVV+AA → 4-point 
function with OVA+AV)

subtractions traded off for fluctuations

D.Becirevic et al. Phys.Lett.B487(2000)74; Eur.Phys.J.C37(2004)315
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Figure 3: Extrapolation to the continuum limit. Empty symbols correspond to the results obtained

at fixed lattice spacing, whereas the filled ones are the results of the linear extrapolations. The
shapes of the symbols correspond to two different strategies to compute B̂K , as indicated in the
legend.

quenched theory would suffer from the (divergent) quenched chiral logarithms. To assess
some uncertainty due to the degeneracy we may take the relative difference between the
chiral logarithmic part known in the degenerate and non-degenerate case in full ChPT.
With Λχ = 1 GeV, we obtain that B̂K for the kaon with non-degenerate quarks would
be only 2% smaller than the one with degenerate quarks. Finally since our calculations
are made in the quenched approximation, our result cannot make impact on the world
average value for B̂K , which is actually completely dominated by the errors due to the use
of quenched approximation [20]. 3 It is worth mentioning that the short distance piece in the
unquenched scenario would lead to B̂K larger by only 1% ÷ 2% compared to the quenched
one. Such an estimate arises after replacing nf = 0 by nf = 4 in eq. (14) and in αs(µ), and

by using Λ(nf=4)

MS
= 294+42

−38 MeV [21].

4 Conclusion

In this letter we presented the results for the renormalisation group invariant bag parameter,
B̂K , computed on the lattice with Wilson quarks. Besides the standard procedure, which
requires a delicate subtraction of the spurious mixing with other ∆S = 2, dimension-six,

3A complete list of results for BK by using other quark actions with recently updated references can be
found in ref. [20].
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δOR = [OV V +AA]R



            quenched computation of BK

tmQCD → no operator mixing (no exceptional configurations).

SF non-perturbative renormalisation.

Various physical volumes: check control of finite volume effects.

Two different regularisations: check control of the continuum limit.

N.B.: action is O(a) improved, but four-fermion operator is not ⇒ continuum 
limit approached linearly in a.

LPHAA
Collaboration

Dimopoulos, Heitger, Palombi, Pena, Sint, A.V. NPB 749 (2006) 69

Guagnelli, Heitger, Pena, Sint, A.V. JHEP 03 (2006) 088
Palombi, Pena, Sint JHEP 03 (2006) 089



Approach to continuum: non-perturbative renormalisation

SF technique via finite size scaling: split renormalisation into

Renormalisation at a low, hadronic scale where contact with typical large-
volume values of β is made.

NP running to very high scales (~100 GeV) where contact with PT is 
made.

Figure C.3: Left column: The step scaling function σ+
VA+AV;s(u) (discrete points) as

obtained non-perturbatively from combined fits to Clover and Wilson data. The
shaded area is the result of fit D to the points (see text). The dotted (dashed) line is
the LO (NLO) perturbative result. Right column: RG running of O+

VA+AV obtained
non-perturbatively (discrete points) at specific values of the renormalization scale µ,
in units of Λ (taken from ref. [4]). The lines are perturbative results at the indicated
order for the Callan-Symanzik β-function and the operator anomalous dimension γ.

41

ALPHA, Palombi et al., JHEP 03 (2006) 089ALPHA, Guagnelli et al., JHEP 03 (2006) 088



Comparison with quenched literature

 RBC 05
 CP-PACS 01

 MILC 03
 BosMar 03
 Babich et al 06

 ALPHA 06

 Lee et al 04
 JLQCD 97

Difference with other Wilson fermion 
computations mainly due to method 
employed to extract BK.

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)
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Recent unquenched result
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FIG. 1: Top. Average of the uncorrelated B̂K results without
the quoted errors. Bottom. Average of the B̂K results with
Nf > 0 with the quoted errors (red lines).

calculate BK by keeping under control all the sources of
errors apart from quenching (non-perturbative renormal-
ization, estimate of SU(3)-breaking effects, continuum
limit with 5 lattice spacings, estimate of finite volume ef-
fects). The authors of refs. [10, 11] avoided the mixing by
using a chiral ward identity that again relates the matrix
elements of OV V +AA to that of OV A+AV at the price of
computing on the lattice a four-point Green function.

In the case of lattice discretizations that satisfy the
so called Ginsparg-Wilson (GW) relation an exact chi-
ral symmetry is preserved also at finite lattice spacing.
Domain wall fermions satisfy the GW in the limit of an
infinite fifth dimension. Practically, the fifth dimension
is finite and the lattice chiral symmetry is only approxi-
mately preserved. The authors of refs. [21, 22] have per-
formed a calculation of BK with respectively Nf = 2 and
Nf = 2 + 1 flavours of dynamical domain wall fermions.
The Nf = 2+1 results have been obtained at fixed lattice
spacing (a ! 0.12 fm), with non perturbative renormal-
ization (by neglecting the small mixing due to the “resid-
ual mass term”), by interpolating the physical K meson
state, on a single volume (L ! 2 fm); a simulation at the
same lattice spacing on a larger volume (L ! 3 fm) is
under way.

On the one hand, there have been so many different
calculations of BK among the years that it is not possi-
ble to enter into the details of all of them in this short
review3 (see TABLE I). On the other hand none of this
calculations is able to take under control all the sources

3 we have just mentioned some representative calculations and
apologize with the authors whose results have not been covered
in greater detail. The same holds also for the following sections.

TABLE I: Lattice calculations of the renormalization group
invariant (RGI) kaon bag parameter B̂K .

collaboration B̂K Nf

JLQCD97 [12] 0.868(59) 0
Becirevic00 [20] 1.01(9) 0
CP-PACS01 [13] 0.795(29) 0
SPQCDR02 [10] 0.91(9) 0
BosMar03 [14] 0.87(8) 0
MILC03 [15] 0.79(9) 0
Babich06 [16] 0.79(8) 0
ALPHA06 [18] 0.735(71) 0
RBC03 [21] 0.697(33) 2
UKQCD04 [19] 0.67(18) 2
SPQCDR05 [11] 1.02(25) 2
RBC05 [17] 0.78(7) 2
RBC-UKQCD06 [22] 0.778(36) 2+1
HPQCD-UKQCD06 [23] 0.85(12) 2+1

of systematics at the same time. Since different numbers
have been obtained with different actions, techniques, as-
sumptions, etc. we can get an estimate of the systemat-
ics by averaging all the results that are “uncorrelated”
(in the sense that we neglect results that have been up-
dated by the same collaboration at fixed Nf ) without the
quoted errors (see FIG. 1 top plot). As a result we get
B̂K = 0.81(3) i.e. a relative error of the order of 4%; if
instead we take the average of the numbers with Nf > 0
by trusting the quoted errors we get B̂K = 0.78(2) (see
FIG. 1 bottom plot). The previous numbers have to be
taken as “provocative” averages: unless a clear statement
is made on which lattice results can be trusted and which
have to be excluded from phenomenological analysis one
should conclude that B̂K is presently predicted by the
lattice with a few percent error. A conservative estimate
of the errors, to be used in phenomenological applica-
tions, can be obtained for example by accounting for the
dispersion of the results:

B̂K = 0.78(2)(9) (1)

III. fBq

The decay constants of the Bq mesons, where q stays
for either a down or a strange quark, enter in the
parametrization of the B̄q-Bq mixing amplitudes together
with the bag parameters,

〈B̄q|ÔV V +AA|Bq〉 =
8
3
M2

Bq
f2

Bq
BBq (µ)

What it is actually needed in order to perform the UTA
is the combination fBq

√
BBq , that comes out to have a

smaller statistical error on the lattice w.r.t. the product
of fBq and

√
BBq computed separately. Since there are

many more calculations of the decay constants than the
bag parameters and since we want to use as much infor-
mation as possible in taking the averages, we will discuss

N.Tantalo, CKM2006, hep-ph/0703241

B̂K = 0.78 ± 0.02 ± 0.09

• averaging is difficult: different groups use different approaches which suffer from 
different systematics

• keep only the latest unquenched results from each group (unless they change 
Nf etc.)
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FIG. 1: Top. Average of the uncorrelated B̂K results without
the quoted errors. Bottom. Average of the B̂K results with
Nf > 0 with the quoted errors (red lines).

calculate BK by keeping under control all the sources of
errors apart from quenching (non-perturbative renormal-
ization, estimate of SU(3)-breaking effects, continuum
limit with 5 lattice spacings, estimate of finite volume ef-
fects). The authors of refs. [10, 11] avoided the mixing by
using a chiral ward identity that again relates the matrix
elements of OV V +AA to that of OV A+AV at the price of
computing on the lattice a four-point Green function.

In the case of lattice discretizations that satisfy the
so called Ginsparg-Wilson (GW) relation an exact chi-
ral symmetry is preserved also at finite lattice spacing.
Domain wall fermions satisfy the GW in the limit of an
infinite fifth dimension. Practically, the fifth dimension
is finite and the lattice chiral symmetry is only approxi-
mately preserved. The authors of refs. [21, 22] have per-
formed a calculation of BK with respectively Nf = 2 and
Nf = 2 + 1 flavours of dynamical domain wall fermions.
The Nf = 2+1 results have been obtained at fixed lattice
spacing (a ! 0.12 fm), with non perturbative renormal-
ization (by neglecting the small mixing due to the “resid-
ual mass term”), by interpolating the physical K meson
state, on a single volume (L ! 2 fm); a simulation at the
same lattice spacing on a larger volume (L ! 3 fm) is
under way.

On the one hand, there have been so many different
calculations of BK among the years that it is not possi-
ble to enter into the details of all of them in this short
review3 (see TABLE I). On the other hand none of this
calculations is able to take under control all the sources

3 we have just mentioned some representative calculations and
apologize with the authors whose results have not been covered
in greater detail. The same holds also for the following sections.

TABLE I: Lattice calculations of the renormalization group
invariant (RGI) kaon bag parameter B̂K .

collaboration B̂K Nf

JLQCD97 [12] 0.868(59) 0
Becirevic00 [20] 1.01(9) 0
CP-PACS01 [13] 0.795(29) 0
SPQCDR02 [10] 0.91(9) 0
BosMar03 [14] 0.87(8) 0
MILC03 [15] 0.79(9) 0
Babich06 [16] 0.79(8) 0
ALPHA06 [18] 0.735(71) 0
RBC03 [21] 0.697(33) 2
UKQCD04 [19] 0.67(18) 2
SPQCDR05 [11] 1.02(25) 2
RBC05 [17] 0.78(7) 2
RBC-UKQCD06 [22] 0.778(36) 2+1
HPQCD-UKQCD06 [23] 0.85(12) 2+1

of systematics at the same time. Since different numbers
have been obtained with different actions, techniques, as-
sumptions, etc. we can get an estimate of the systemat-
ics by averaging all the results that are “uncorrelated”
(in the sense that we neglect results that have been up-
dated by the same collaboration at fixed Nf ) without the
quoted errors (see FIG. 1 top plot). As a result we get
B̂K = 0.81(3) i.e. a relative error of the order of 4%; if
instead we take the average of the numbers with Nf > 0
by trusting the quoted errors we get B̂K = 0.78(2) (see
FIG. 1 bottom plot). The previous numbers have to be
taken as “provocative” averages: unless a clear statement
is made on which lattice results can be trusted and which
have to be excluded from phenomenological analysis one
should conclude that B̂K is presently predicted by the
lattice with a few percent error. A conservative estimate
of the errors, to be used in phenomenological applica-
tions, can be obtained for example by accounting for the
dispersion of the results:

B̂K = 0.78(2)(9) (1)

III. fBq

The decay constants of the Bq mesons, where q stays
for either a down or a strange quark, enter in the
parametrization of the B̄q-Bq mixing amplitudes together
with the bag parameters,

〈B̄q|ÔV V +AA|Bq〉 =
8
3
M2

Bq
f2

Bq
BBq (µ)

What it is actually needed in order to perform the UTA
is the combination fBq

√
BBq , that comes out to have a

smaller statistical error on the lattice w.r.t. the product
of fBq and

√
BBq computed separately. Since there are

many more calculations of the decay constants than the
bag parameters and since we want to use as much infor-
mation as possible in taking the averages, we will discuss

N.Tantalo, CKM2006, hep-ph/0703241

B̂K = 0.78 ± 0.02 ± 0.09

weighted average

• averaging is difficult: different groups use different approaches which suffer from 
different systematics

• keep only the latest unquenched results from each group (unless they change 
Nf etc.)
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FIG. 1: Top. Average of the uncorrelated B̂K results without
the quoted errors. Bottom. Average of the B̂K results with
Nf > 0 with the quoted errors (red lines).

calculate BK by keeping under control all the sources of
errors apart from quenching (non-perturbative renormal-
ization, estimate of SU(3)-breaking effects, continuum
limit with 5 lattice spacings, estimate of finite volume ef-
fects). The authors of refs. [10, 11] avoided the mixing by
using a chiral ward identity that again relates the matrix
elements of OV V +AA to that of OV A+AV at the price of
computing on the lattice a four-point Green function.

In the case of lattice discretizations that satisfy the
so called Ginsparg-Wilson (GW) relation an exact chi-
ral symmetry is preserved also at finite lattice spacing.
Domain wall fermions satisfy the GW in the limit of an
infinite fifth dimension. Practically, the fifth dimension
is finite and the lattice chiral symmetry is only approxi-
mately preserved. The authors of refs. [21, 22] have per-
formed a calculation of BK with respectively Nf = 2 and
Nf = 2 + 1 flavours of dynamical domain wall fermions.
The Nf = 2+1 results have been obtained at fixed lattice
spacing (a ! 0.12 fm), with non perturbative renormal-
ization (by neglecting the small mixing due to the “resid-
ual mass term”), by interpolating the physical K meson
state, on a single volume (L ! 2 fm); a simulation at the
same lattice spacing on a larger volume (L ! 3 fm) is
under way.

On the one hand, there have been so many different
calculations of BK among the years that it is not possi-
ble to enter into the details of all of them in this short
review3 (see TABLE I). On the other hand none of this
calculations is able to take under control all the sources

3 we have just mentioned some representative calculations and
apologize with the authors whose results have not been covered
in greater detail. The same holds also for the following sections.

TABLE I: Lattice calculations of the renormalization group
invariant (RGI) kaon bag parameter B̂K .

collaboration B̂K Nf

JLQCD97 [12] 0.868(59) 0
Becirevic00 [20] 1.01(9) 0
CP-PACS01 [13] 0.795(29) 0
SPQCDR02 [10] 0.91(9) 0
BosMar03 [14] 0.87(8) 0
MILC03 [15] 0.79(9) 0
Babich06 [16] 0.79(8) 0
ALPHA06 [18] 0.735(71) 0
RBC03 [21] 0.697(33) 2
UKQCD04 [19] 0.67(18) 2
SPQCDR05 [11] 1.02(25) 2
RBC05 [17] 0.78(7) 2
RBC-UKQCD06 [22] 0.778(36) 2+1
HPQCD-UKQCD06 [23] 0.85(12) 2+1

of systematics at the same time. Since different numbers
have been obtained with different actions, techniques, as-
sumptions, etc. we can get an estimate of the systemat-
ics by averaging all the results that are “uncorrelated”
(in the sense that we neglect results that have been up-
dated by the same collaboration at fixed Nf ) without the
quoted errors (see FIG. 1 top plot). As a result we get
B̂K = 0.81(3) i.e. a relative error of the order of 4%; if
instead we take the average of the numbers with Nf > 0
by trusting the quoted errors we get B̂K = 0.78(2) (see
FIG. 1 bottom plot). The previous numbers have to be
taken as “provocative” averages: unless a clear statement
is made on which lattice results can be trusted and which
have to be excluded from phenomenological analysis one
should conclude that B̂K is presently predicted by the
lattice with a few percent error. A conservative estimate
of the errors, to be used in phenomenological applica-
tions, can be obtained for example by accounting for the
dispersion of the results:

B̂K = 0.78(2)(9) (1)

III. fBq

The decay constants of the Bq mesons, where q stays
for either a down or a strange quark, enter in the
parametrization of the B̄q-Bq mixing amplitudes together
with the bag parameters,

〈B̄q|ÔV V +AA|Bq〉 =
8
3
M2

Bq
f2

Bq
BBq (µ)

What it is actually needed in order to perform the UTA
is the combination fBq

√
BBq , that comes out to have a

smaller statistical error on the lattice w.r.t. the product
of fBq and

√
BBq computed separately. Since there are

many more calculations of the decay constants than the
bag parameters and since we want to use as much infor-
mation as possible in taking the averages, we will discuss

N.Tantalo, CKM2006, hep-ph/0703241

B̂K = 0.78 ± 0.02 ± 0.09

semi-dispersion

• averaging is difficult: different groups use different approaches which suffer from 
different systematics

• keep only the latest unquenched results from each group (unless they change 
Nf etc.)
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FIG. 1: Top. Average of the uncorrelated B̂K results without
the quoted errors. Bottom. Average of the B̂K results with
Nf > 0 with the quoted errors (red lines).

calculate BK by keeping under control all the sources of
errors apart from quenching (non-perturbative renormal-
ization, estimate of SU(3)-breaking effects, continuum
limit with 5 lattice spacings, estimate of finite volume ef-
fects). The authors of refs. [10, 11] avoided the mixing by
using a chiral ward identity that again relates the matrix
elements of OV V +AA to that of OV A+AV at the price of
computing on the lattice a four-point Green function.

In the case of lattice discretizations that satisfy the
so called Ginsparg-Wilson (GW) relation an exact chi-
ral symmetry is preserved also at finite lattice spacing.
Domain wall fermions satisfy the GW in the limit of an
infinite fifth dimension. Practically, the fifth dimension
is finite and the lattice chiral symmetry is only approxi-
mately preserved. The authors of refs. [21, 22] have per-
formed a calculation of BK with respectively Nf = 2 and
Nf = 2 + 1 flavours of dynamical domain wall fermions.
The Nf = 2+1 results have been obtained at fixed lattice
spacing (a ! 0.12 fm), with non perturbative renormal-
ization (by neglecting the small mixing due to the “resid-
ual mass term”), by interpolating the physical K meson
state, on a single volume (L ! 2 fm); a simulation at the
same lattice spacing on a larger volume (L ! 3 fm) is
under way.

On the one hand, there have been so many different
calculations of BK among the years that it is not possi-
ble to enter into the details of all of them in this short
review3 (see TABLE I). On the other hand none of this
calculations is able to take under control all the sources

3 we have just mentioned some representative calculations and
apologize with the authors whose results have not been covered
in greater detail. The same holds also for the following sections.

TABLE I: Lattice calculations of the renormalization group
invariant (RGI) kaon bag parameter B̂K .

collaboration B̂K Nf

JLQCD97 [12] 0.868(59) 0
Becirevic00 [20] 1.01(9) 0
CP-PACS01 [13] 0.795(29) 0
SPQCDR02 [10] 0.91(9) 0
BosMar03 [14] 0.87(8) 0
MILC03 [15] 0.79(9) 0
Babich06 [16] 0.79(8) 0
ALPHA06 [18] 0.735(71) 0
RBC03 [21] 0.697(33) 2
UKQCD04 [19] 0.67(18) 2
SPQCDR05 [11] 1.02(25) 2
RBC05 [17] 0.78(7) 2
RBC-UKQCD06 [22] 0.778(36) 2+1
HPQCD-UKQCD06 [23] 0.85(12) 2+1

of systematics at the same time. Since different numbers
have been obtained with different actions, techniques, as-
sumptions, etc. we can get an estimate of the systemat-
ics by averaging all the results that are “uncorrelated”
(in the sense that we neglect results that have been up-
dated by the same collaboration at fixed Nf ) without the
quoted errors (see FIG. 1 top plot). As a result we get
B̂K = 0.81(3) i.e. a relative error of the order of 4%; if
instead we take the average of the numbers with Nf > 0
by trusting the quoted errors we get B̂K = 0.78(2) (see
FIG. 1 bottom plot). The previous numbers have to be
taken as “provocative” averages: unless a clear statement
is made on which lattice results can be trusted and which
have to be excluded from phenomenological analysis one
should conclude that B̂K is presently predicted by the
lattice with a few percent error. A conservative estimate
of the errors, to be used in phenomenological applica-
tions, can be obtained for example by accounting for the
dispersion of the results:

B̂K = 0.78(2)(9) (1)

III. fBq

The decay constants of the Bq mesons, where q stays
for either a down or a strange quark, enter in the
parametrization of the B̄q-Bq mixing amplitudes together
with the bag parameters,

〈B̄q|ÔV V +AA|Bq〉 =
8
3
M2

Bq
f2

Bq
BBq (µ)

What it is actually needed in order to perform the UTA
is the combination fBq

√
BBq , that comes out to have a

smaller statistical error on the lattice w.r.t. the product
of fBq and

√
BBq computed separately. Since there are

many more calculations of the decay constants than the
bag parameters and since we want to use as much infor-
mation as possible in taking the averages, we will discuss
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TABLE II: Lattice calculations of fBs (MeV) and rB =
fBs/fB .

collaboration fBs rB Nf

Fermilab97 [38] 185(16) 0
MILC98 [39] 171(44) 0
JLQCD99 [40] 191(18) 0
UKQCD00 [32] 204(27) 0
APE00 [33] 235(20) 0
ALPHA03 [45] 206(10) 0
ROMEII03 [47] 192(7) 0
ROMEII-ALPHA06 [30] 191(6) 0
CP-PACS00 [41] 250(18) 1.203(64) 2
CP-PACS01 [42] 242(52) 1.179(29) 2
MILC02 [43] 217(36) 1.16(5) 2
JLQCD03 [36] 215(17) 1.13(12) 2
UKQCD04 [48] 256(45) 1.38(15) 2
Gadiyak05 [50] 341(32) 1.38(15) 2
ALPHA06 [52] 297(14) 2
HPQCD05 [49] 259(32) 2+1
Fermilab-MILC-HPQCD06 [53] 253(42) 1.27(6) 2+1

TABLE III: Lattice calculations of BBs(mb) and BB(mb).

collaboration BBs(mb) BB(mb) Nf

UKQCD00 [32] 0.90(4) 0.91(6) 0
APE00 [33] 0.92(7) 0.93(10) 0
SPQCDR01 [34] 0.87(5) 0.87(6) 0
JLQCD02 [35] 0.86(5) 0.84(6) 0
JLQCD03 [36] 0.850(64) 0.836(68) 2
Gadiyak05 [50] 0.864(76) 0.812(82) 2
HPQCD06 [37] 0.76(11) 3

rooted staggered fermions for the dynamical light quarks
and NRQCD and Fermilab respectively for the heavy. By
looking at FIG 2 it emerges that quenched lattice calcu-
lations, though compatible within themselves, are sys-
tematically smaller than unquenched results; the quoted
errors are still large but unquenching seems to have a sig-
nificant effect on this observable (this is not the case of
BK within the quoted errors) and the “provocative” av-
erage (fBs = 245(13) MeV and rB = 1.24(4)) prefers un-
quenched results. The unquenched average, static points
included, with an error that takes into account the spread
of the results is

fBs = 268(17)(20) MeV,
fBs

fB
= 1.20(2)(5) (2)

IV. BBq

In order to calculate the bag parameters of the Bq

mesons one has to face at the same time the problem of

the mixing, as for BK , and the problem related to the
presence of a heavy and a light quark, as for fBq . For
this reason the number of lattice calculations of BBq is
much smaller than in the case of fBq or BK .

Nevertheless, by looking at TABLE III it emerges that,
within the quoted errors, BBq does not seem to depend
upon the number of dynamical flavours, the renormal-
ization systematics (the quenched result of ref. [34] has
been non-perturbatively renormalized), the strategy used
to handle with heavy quarks and even the light quark
mass. Actually, the matrix element 〈B̄q|ÔV V +AA|Bq〉
does show a sizable dependence upon all these variables
but through the vacuum saturation approximation, i.e.
8M2

Bq
f2

Bq
/3. The average of the Nf > 0 calculations,

with an error that takes into account the spread of the
results, is

BBs(mb) = 0.84(3)(5) BB(mb) = 0.83(1)(6) (3)

V. A CALCULATION OF G(ω)
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FIG. 3: Comparison of lattice data and experimental deter-
minations of G(ω): Vcb = 41(5)× 10−3 is extracted by using
the experimental points at ω = 1.2.

We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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rooted staggered fermions for the dynamical light quarks
and NRQCD and Fermilab respectively for the heavy. By
looking at FIG 2 it emerges that quenched lattice calcu-
lations, though compatible within themselves, are sys-
tematically smaller than unquenched results; the quoted
errors are still large but unquenching seems to have a sig-
nificant effect on this observable (this is not the case of
BK within the quoted errors) and the “provocative” av-
erage (fBs = 245(13) MeV and rB = 1.24(4)) prefers un-
quenched results. The unquenched average, static points
included, with an error that takes into account the spread
of the results is

fBs = 268(17)(20) MeV,
fBs
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= 1.20(2)(5) (2)

IV. BBq

In order to calculate the bag parameters of the Bq

mesons one has to face at the same time the problem of

the mixing, as for BK , and the problem related to the
presence of a heavy and a light quark, as for fBq . For
this reason the number of lattice calculations of BBq is
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Nevertheless, by looking at TABLE III it emerges that,
within the quoted errors, BBq does not seem to depend
upon the number of dynamical flavours, the renormal-
ization systematics (the quenched result of ref. [34] has
been non-perturbatively renormalized), the strategy used
to handle with heavy quarks and even the light quark
mass. Actually, the matrix element 〈B̄q|ÔV V +AA|Bq〉
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8M2

Bq
f2

Bq
/3. The average of the Nf > 0 calculations,

with an error that takes into account the spread of the
results, is

BBs(mb) = 0.84(3)(5) BB(mb) = 0.83(1)(6) (3)

V. A CALCULATION OF G(ω)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1  1.1  1.2  1.3  1.4  1.5  1.6

G
(w

) 
|V

c
b
|

w

|Vcb|= 41(5) 10
-3

prel. latt.
CLEO
BELLE

FIG. 3: Comparison of lattice data and experimental deter-
minations of G(ω): Vcb = 41(5)× 10−3 is extracted by using
the experimental points at ω = 1.2.

We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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rooted staggered fermions for the dynamical light quarks
and NRQCD and Fermilab respectively for the heavy. By
looking at FIG 2 it emerges that quenched lattice calcu-
lations, though compatible within themselves, are sys-
tematically smaller than unquenched results; the quoted
errors are still large but unquenching seems to have a sig-
nificant effect on this observable (this is not the case of
BK within the quoted errors) and the “provocative” av-
erage (fBs = 245(13) MeV and rB = 1.24(4)) prefers un-
quenched results. The unquenched average, static points
included, with an error that takes into account the spread
of the results is

fBs = 268(17)(20) MeV,
fBs

fB
= 1.20(2)(5) (2)

IV. BBq

In order to calculate the bag parameters of the Bq

mesons one has to face at the same time the problem of

the mixing, as for BK , and the problem related to the
presence of a heavy and a light quark, as for fBq . For
this reason the number of lattice calculations of BBq is
much smaller than in the case of fBq or BK .

Nevertheless, by looking at TABLE III it emerges that,
within the quoted errors, BBq does not seem to depend
upon the number of dynamical flavours, the renormal-
ization systematics (the quenched result of ref. [34] has
been non-perturbatively renormalized), the strategy used
to handle with heavy quarks and even the light quark
mass. Actually, the matrix element 〈B̄q|ÔV V +AA|Bq〉
does show a sizable dependence upon all these variables
but through the vacuum saturation approximation, i.e.
8M2

Bq
f2

Bq
/3. The average of the Nf > 0 calculations,

with an error that takes into account the spread of the
results, is

BBs(mb) = 0.84(3)(5) BB(mb) = 0.83(1)(6) (3)

V. A CALCULATION OF G(ω)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1  1.1  1.2  1.3  1.4  1.5  1.6

G
(w

) 
|V

c
b
|

w

|Vcb|= 41(5) 10
-3

prel. latt.
CLEO
BELLE

FIG. 3: Comparison of lattice data and experimental deter-
minations of G(ω): Vcb = 41(5)× 10−3 is extracted by using
the experimental points at ω = 1.2.

We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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does show a sizable dependence upon all these variables
but through the vacuum saturation approximation, i.e.
8M2

Bq
f2

Bq
/3. The average of the Nf > 0 calculations,

with an error that takes into account the spread of the
results, is

BBs(mb) = 0.84(3)(5) BB(mb) = 0.83(1)(6) (3)

V. A CALCULATION OF G(ω)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1  1.1  1.2  1.3  1.4  1.5  1.6

G
(w

) 
|V

c
b
|

w

|Vcb|= 41(5) 10
-3

prel. latt.
CLEO
BELLE

FIG. 3: Comparison of lattice data and experimental deter-
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We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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TABLE II: Lattice calculations of fBs (MeV) and rB =
fBs/fB .

collaboration fBs rB Nf

Fermilab97 [38] 185(16) 0
MILC98 [39] 171(44) 0
JLQCD99 [40] 191(18) 0
UKQCD00 [32] 204(27) 0
APE00 [33] 235(20) 0
ALPHA03 [45] 206(10) 0
ROMEII03 [47] 192(7) 0
ROMEII-ALPHA06 [30] 191(6) 0
CP-PACS00 [41] 250(18) 1.203(64) 2
CP-PACS01 [42] 242(52) 1.179(29) 2
MILC02 [43] 217(36) 1.16(5) 2
JLQCD03 [36] 215(17) 1.13(12) 2
UKQCD04 [48] 256(45) 1.38(15) 2
Gadiyak05 [50] 341(32) 1.38(15) 2
ALPHA06 [52] 297(14) 2
HPQCD05 [49] 259(32) 2+1
Fermilab-MILC-HPQCD06 [53] 253(42) 1.27(6) 2+1

TABLE III: Lattice calculations of BBs(mb) and BB(mb).

collaboration BBs(mb) BB(mb) Nf

UKQCD00 [32] 0.90(4) 0.91(6) 0
APE00 [33] 0.92(7) 0.93(10) 0
SPQCDR01 [34] 0.87(5) 0.87(6) 0
JLQCD02 [35] 0.86(5) 0.84(6) 0
JLQCD03 [36] 0.850(64) 0.836(68) 2
Gadiyak05 [50] 0.864(76) 0.812(82) 2
HPQCD06 [37] 0.76(11) 3

rooted staggered fermions for the dynamical light quarks
and NRQCD and Fermilab respectively for the heavy. By
looking at FIG 2 it emerges that quenched lattice calcu-
lations, though compatible within themselves, are sys-
tematically smaller than unquenched results; the quoted
errors are still large but unquenching seems to have a sig-
nificant effect on this observable (this is not the case of
BK within the quoted errors) and the “provocative” av-
erage (fBs = 245(13) MeV and rB = 1.24(4)) prefers un-
quenched results. The unquenched average, static points
included, with an error that takes into account the spread
of the results is

fBs = 268(17)(20) MeV,
fBs

fB
= 1.20(2)(5) (2)

IV. BBq

In order to calculate the bag parameters of the Bq

mesons one has to face at the same time the problem of

the mixing, as for BK , and the problem related to the
presence of a heavy and a light quark, as for fBq . For
this reason the number of lattice calculations of BBq is
much smaller than in the case of fBq or BK .

Nevertheless, by looking at TABLE III it emerges that,
within the quoted errors, BBq does not seem to depend
upon the number of dynamical flavours, the renormal-
ization systematics (the quenched result of ref. [34] has
been non-perturbatively renormalized), the strategy used
to handle with heavy quarks and even the light quark
mass. Actually, the matrix element 〈B̄q|ÔV V +AA|Bq〉
does show a sizable dependence upon all these variables
but through the vacuum saturation approximation, i.e.
8M2

Bq
f2

Bq
/3. The average of the Nf > 0 calculations,

with an error that takes into account the spread of the
results, is

BBs(mb) = 0.84(3)(5) BB(mb) = 0.83(1)(6) (3)
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FIG. 3: Comparison of lattice data and experimental deter-
minations of G(ω): Vcb = 41(5)× 10−3 is extracted by using
the experimental points at ω = 1.2.

We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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FIG. 3: Comparison of lattice data and experimental deter-
minations of G(ω): Vcb = 41(5)× 10−3 is extracted by using
the experimental points at ω = 1.2.

We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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FIG. 3: Comparison of lattice data and experimental deter-
minations of G(ω): Vcb = 41(5)× 10−3 is extracted by using
the experimental points at ω = 1.2.

We now change subject to put up to the results of a
preliminary quenched calculation [54] of the form factor
G(ω), needed in order to extract Vcb from the exclusive
semileptonic decay B(s) → D(s)"ν (ω = pB ·pD/MBMD).
The calculation has been carried on by using the SSM and
by defining the form factor and the kinematical factors in
terms of ratios of three point correlation functions. The
results have been obtained with a relative error of about
4% for values of 1 ≤ ω ≤ 1.2 were experimental data do
not need to be extrapolated (FIG. 3).
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Figure 11: Re A2 vs. m2! in quenched QCD calculated using domain wall fermions.

7. Kl3 decay

The Kl3 decays are the kaon beta decay processes: K !0l "l and K
0 ! l "l , where l

represents the electron or the muon. These decay channels play an important role in determining

the CKM matrix element Vus . The decay rate of the Kl3 processes is given in Ref. [47]:

!
G2
F

192!3
m5K Vus

2 C2 f 0 2 I 1 # (7.1)

where C is a Clebsch-Gordon coefficient (1 for K0 decay; 1 2 for K decay), I represents the

phase space integral, and # represents radiative corrections from electroweak and electromagnetic

interactions. Here, f 0 is a form factor which is defined for the neutral kaon decay as

! p s̄$µu K p pµ pµ f q2 qµ f q2 (7.2)

where q p p represents the momentum transfer. For later discussion, it is convenient to define

the scalar form factor f0 q
2 as

f0 q
2 f q2

q2

m2
K

m2!
f q2 (7.3)

% q2
f q2

f q2
(7.4)

20

|Vus| f+(0) = 0.2173 ± 0.0008
• gives the combination

• Cabibbo angle requests knowledge of f+(0) with accuracy within 1%

• it is a form factor  of the neutral Kaon decay:

< π(pπ) |s̄γµu |K(pK) > = (pπ + pK)µ f+(q2) +qµ f
−

(q2) q = pK − pπ

• in principle one uses above to extract the form factors at several momenta 
transfers and extrapolate to the q = 0 point (using various Ansätze)

• NB: on the lattice momenta are discretized and only the low ones (p = 0, 2π/L) 
are useful (higher ones introduce fluctuations, unwanted systematic effects etc.)

• the requested high accuracy requires use of “clever” ratios of correlation 
functions, in order to cancel fluctuations, unwanted chiral effects etc.



• recent accurate quenched result

• one lattice spacing a = 0.066 fm, several masses and momenta

• encouraging comparison with χPT calculation

K → π l ν decays

f+(0) = 0.960 ± 0.005 ± 0.007

H. Leutwyler & M.Roos, Z.Phys. C25 (1984) 91

f+(0) = 0.961 ± 0.008

• unquenched computations have begun:

• DW fermions, Nf = 2, a = 0.12 fm, L = 1.9 fm

RBC Collab. C. Dawson et al., Phys.Rev. D74 (2006) 114502

D. Becirevic et al., Nucl.Phys.B705(2005)339



JLQCD Collab. N. Tsutsui et al., PoS LAT2005 357

• recent accurate quenched result

• one lattice spacing a = 0.066 fm, several masses and momenta

• encouraging comparison with χPT calculation

K → π l ν decays

f+(0) = 0.960 ± 0.005 ± 0.007

H. Leutwyler & M.Roos, Z.Phys. C25 (1984) 91

f+(0) = 0.961 ± 0.008

• unquenched computations have begun:

• Clover-Wilson fermions, Nf = 2, a = 0.09 fm, L = 1.8 fm

• improved action but not operator (current)



HPQCD/FNAL/MILC Collab. M.Okamoto hep-lat/0412044

• recent accurate quenched result

• one lattice spacing a = 0.066 fm, several masses and momenta

• encouraging comparison with χPT calculation

K → π l ν decays

f+(0) = 0.960 ± 0.005 ± 0.007

H. Leutwyler & M.Roos, Z.Phys. C25 (1984) 91

f+(0) = 0.961 ± 0.008

• unquenched computations have begun:

• Nf = 2+1 staggered light quarks, Clover-Wilson strange
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collaboration f 0

RBC 0 968 9 6 (NF 2)

HPQCD/FNAL 0 962 6 9 (NF 2 1)

JLQCD 0 952 6 (NF 2)

Leutwyler 0 961 8

Table 3: Results for f 0 .

masses. In other words, we need to insert small momenta in the kaon and pion states to change

q2 p p 2 (defined in Minkowski space) from q2
0

mK m!
2 to negative q2 such that we

can interpolate f0 q
2 to the q2 0 point. For this purpose, we can calculate the following ratio on

the lattice:

F p p
mK m!

EK p E! p

! p s̄"4u K p

! 0 s̄"4u K 0

f q2

f0 q
2

0

1
EK p E! p

EK p E! p
# q2 (7.8)

where p and p are the kaon and pion momenta respectively, EK p is the energy of kaon with a

momentum p, and E! p is the energy of pion with a momentum p . Here, note that F 0 0 1.

In order to extract f0 q
2 from Eq. 7.8, we first need to know # q2 . It can be directly determined

by measuring the following ratio:

R p p
! p s̄"iu K p K p s̄"4s K p

! p s̄"4u K p K p s̄"is K p

p p i p p i# q2 EK p EK p

EK p E! p EK p E! p # q2 p p i

(7.9)

After determining # q2 from this, it is then possible to determine f0 q
2 by combining Eq. 7.7,

7.8 and 7.9.

Recently, a main goal on the lattice has been to calculate f0 0 in unquenched QCD. Three

groups have reported results on this. First, the RBC collaboration have calculated f0 q
2 in two

flavor QCD using domain wall fermions at a 0 12 fm on the 163 32 lattice [51]. In Fig. 12, we

show their results for f0 q
2 as a function of (Minkowski) q2. Second, the JLQCD collaboration

has calculated f0 q
2 in two flavor QCD using non-perturbatively a improved Wilson fermions

[52]. In this calculation, theWilson fermion action is a improved but the vector current operator

is not fully a improved. Third, the HPQCD/FNAL collaboration has calculated f0 q
2 in 2 1

flavor QCD [53]. They use unimproved staggered fermions for the u and d quarks and an improved

Wilson fermion for the s quark. They calculate only f0 q
2

0
using the double ratio in Eq. 7.7 and

extrapolate to q2 0 using the pole model by setting the free coefficient to the experimental value.

These results are summarized in Table 3.

8. Kaon distribution amplitude

Exclusive reactions with specific hadrons in the final and initial states have received a lot of

attention. The reason is that they are dominated by rare configurations of the hadron’s constituents.

22



• similar approach reviewed by T.Onogi, PoS(LAT2006)017

• the physics:

B → π l ν decays

• the form factors:
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5. B→ !l" form factors

The matrix element 〈!(k!)|q̄#µb|B(pB)〉 for the heavy-to-light semi-leptonic decay B→ !l"

is often parameterized as

〈!(k!)|q̄#µb|B(pB)〉 = f+(q2)
[
(pB+ k!)µ −

m2B−m2!
q2

qµ
]
+ f 0(q2)

m2B−m2!
q2

qµ , (5.1)

with pB and k! the momenta and q = pB− k! . The differential decay rate of the semileptonic

B0 → !−l+"l decay is

1

|Vub|2
d!

dq2
=

G2F
24!3

|!k! |3| f+(q2)|2. (5.2)

from which one can extract the CKM element |Vub|.
HPQCD collaboration [43] has made a new study of B→ !l" form factors using 2+1 flavor

MILC configuration with a−1 = 1.6,2.3 GeV. They used NQCD action for the heavy quark and

improved staggered fermion for the light quark. The light quark mass ranges mq/ms = 0.125−0.5
on the coarse lattice and mq/ms = 0.2− 0.4 on the fine lattice. The heavy-light vector current
is renormalized with 1-loop matching through O($/M) and O($a). The chiral extrapolation is
carried out using staggered chiral perturbation theory. In order to make the analysis convenient

they parameterize the matrix element as

〈!(k!)|V µ |B(pB)〉 =
√
2mB[vµ f‖ + k

µ
⊥ f⊥], (5.3)

with

vµ =
p
µ
B

mB

, kµ⊥ = k
µ
! − (k! · v)vµ . (5.4)

In order to interpolate in q2, they used several different pole model fit functions. The first one is

BK parameterization with three parameters with q̃2 ≡ q2/mB∗ ,

f+(q2) =
f (0)

(1− q̃2)(1−$ q̃2)
, f 0(q2) = f (0)

(1−q̃2/% ) . (5.5)

The second one is BZ parameterization with four parameters

f+(q2) =
f (0)

(1− q̃2)
+

rq̃2

(1− q̃2)(1−$ q̃2)
, (5.6)

The third one is RH parameterization with four parameters
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• unquenched NF=2+1 computations have begun:

• FNAL/MILC:  M.Okamoto et al., Nucl.hys.B(PS)140(2005)461

• staggered light flavours, HQET(Fermilab) heavy flavours

• HPQCD/MILC: E.Gulez et al., Phys.Rev.D73(2006)074502

• staggered light flavours, NRQCD heavy flavours
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• unquenched NF=2+1 computations have begun:

• FNAL/MILC: HQET(Fermilab) heavy flavours

• HPQCD/MILC: NRQCD heavy flavours

• NB: same light quark ensemble

|Vub| = [3.76 ± 0.25 ± 0.65] × 10−3

|Vub| = [4.22 ± 0.30 ± 0.51] × 10−3



ΔI = 1/2
K→π π



K→ππ decays in a nutshell

If CP is conserved the eigenstates of the Hamiltonian are                                 . 
CP violation in the SM leads to mixing:

CP violation parameters accessible via decay amplitudes into two pions:

|K1,2〉 =
1√
2
(|K0〉 ± |K̄0〉)

|KS〉 =
1

√

1 + |ε̄|2
(|K1〉+ ε̄|K2〉) |KL〉 =

1
√

1 + |ε̄|2
(|K2〉+ ε̄|K1〉) ε̄ =

p − q

p + q

ε
′ =

ε
√

2

(

T[KL → (ππ)2]
T[KL → (ππ)0]

−
T[KS → (ππ)2]
T[KS → (ππ)0]

)

%
1
√

2
e

i(δ2−δ0+π/2) ReA2

ReA0

(

ImA2

ReA2
−

ImA0

ReA0

)

ε =
T[KL → (ππ)0]
T[KS → (ππ)0]

" ε̄ + i
Im A0

Re A0

−iT[K0
→ (ππ)I ] = AI e

iδI T[(ππ)I → (ππ)I ]l=0 = 2e
iδI sin δI



K→ππ decays in a nutshell

Experiment:

∣

∣

∣

∣

A0

A2

∣

∣

∣

∣

! 22.1

|ε| = (2.282 ± 0.017) × 10
−3

Re

(

ε
′

ε

)

= (16.7 ± 2.3) × 10
−4

Experimental results

∆I = 1/2 rule

˛̨
˛̨ A0

A2

˛̨
˛̨ ! 22.1

Indirect CP violation

|ε| = (2.282 ± 0.017) × 10−3

Direct CP violation

Re(ε′/ε) = (16.7 ± 2.3) · 10−4
Re(ε’/ε)

Average: (16.7 ± 2.3) 10-4

E731
(7.4±6.0)10-4

NA31
(23.0±6.5)10-4

KTeV
(20.7±2.8)10-4

NA48
(14.7±2.2)10-4

0 0.002 0.004 0.006

L. Giusti – Valencia November 2005 – p.5/33



The ΔI=1/2 rule for kaon decays

Bulk of enhancement in the SM must come from long-distance strong 
interaction effects ...

... that have to be addressed non-perturbatively.

Lattice QCD studies hampered by no-go theorems on chiral fermions and 
multiparticle decays, almost no activity in the ‘90s.

Theoretical breakthroughs in late ‘90s (mainly chiral lattice fermions) have led 
to a renewed interest and some “rough” lattice results.

Still far from having an understanding of the mechanism(s) behind the 
enhancement. 

Gaillard & Lee, PRL 33 (1974) 108 
Altarelli & Maiani, PLB 52 (1974) 351

Cabibbo, Martinelli & Petronzio, NPB 244 (1984) 381 
Brower, Maturana, Gavela & Gupta, PRL 53 (1984) 1318

CP-PACS & RBC Collaborations

T(K → (ππ)α) = iAαe
iδα , α = 0, 2 |A0/A2| = 22.1



A(i → f ) ≈ 〈 f |Heff
W |i〉

Heff
W =

GF
√

2
∑
k

fk(VCKM)Ck(µ/MW)Ōk(µ)

Effective Weak Hamiltonian



CKM parameters

Wilson coefficients  high energy, NLO computation

Composite operators  low energy (hadronic) scales
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Effective Weak Hamiltonian



CKM parameters

Wilson coefficients  high energy, NLO computation

Composite operators  low energy (hadronic) scales

A(i → f ) ≈ 〈 f |Heff
W |i〉

Heff
W =

GF
√

2
∑
k

fk(VCKM)Ck(µ/MW)Ōk(µ)
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A(i → f ) ≈ 〈 f |Heff
W |i〉

Heff
W =

GF
√

2
∑
k

fk(VCKM)Ck(µ/MW)Ōk(µ)

Effective Weak Hamiltonian

Hw =
g2

w

2M2
W

(Vus)
∗(Vud) ∑

σ=±
{kσ

1Q
σ

1 + kσ

2Q2}

Q±
1

= (s̄γµP−u)(ūγµP−d)±(s̄γµP−d)(ūγµP−u) − [u → c]

Q±
2

= (m
2
u − m

2
c ) {md(s̄P+d) + ms(s̄P−d)}

With an active charm quark (CP-violating effects neglected):

      transform according to irreps of d=84 (+) and d=20 (-) of SU(4).
    do not contribute to the physical K→ππ transition.

Q±
1

Q±
2
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With an active charm quark (CP-violating effects neglected):

(+):  ΔI=3/2, 1/2  (-): ΔI=1/2 only



Effective Weak Hamiltonian

Hw =
g2

w

2M2
W

(Vus)
∗(Vud) ∑

σ=±
{kσ

1Q
σ

1 + kσ

2Q2}

Q±
1

= (s̄γµP−u)(ūγµP−d)±(s̄γµP−d)(ūγµP−u) − [u → c]

Q±
2

= (m
2
u − m

2
c ) {md(s̄P+d) + ms(s̄P−d)}

Enhancement dominated by matrix elements of effective interaction vertices 
(long-distance regime of the strong interaction).

∣

∣

∣

∣

A0

A2

∣

∣

∣

∣

=
k−

1
(MW)

k+
1
(MW)

〈(ππ)I=0|Q̂
−
1
|K〉

〈(ππ)I=2|Q̂
+
1
|K〉

k−
1
(MW)

k+
1
(MW)

= 2.8 ∼ O(1)

Well, let’s compute the matrix elements ...



A tale of various scales



A tale of various scales

Resummation of                                   up to               gives a 
moderate enhancement.

Charm threshold:                        penguins.

Penguin matrix elements can be large compared to that of left-left 
operators.

The standard [?] lore:

Still to be verified/discarded via an explicit computation ...

Shifman, Vainshtein, Zakharov 1977; Bardeen, Buras, Gerard 1986

O(1/N) log(µ/MW) µ > mc

µ < mc



Existing results for A0, A2?

Lightest pion mass around 495 MeV.

CP-PACS Collaboration (Ali Khan et al.) 01



New strategy to reveal the role of the charm

Physics at the charm scale (via penguins).

Physics at intrinsic QCD scale ~200-300 MeV.

Final state interactions.

All of the above (no dominating “mechanism”).

Disentangle several possible origins/contributions:

Consider effective weak Hamiltonian with an active 
charm and study A0, A2 as a function of mc.

mu = md = ms! mc

mu = md = ms= mc

Giusti, Hernández, Laine, Weisz & Wittig, JHEP 11 (2004) 016

Separate “intrinsic QCD” effects from physics at the charm scale:
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SU(4)L × SU(4)R
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Dynamics of Goldstone bosons @ LO:

LE = 1
4
F

2Tr
[

∂µU∂µU
†
]

− 1
2 ΣTr

[

UM
†
e

iθ/Nf + h.c.
]

U ∈ SU(4) , M = mass matrix

Low-energy counterpart of the weak effective Hamiltonian @ LO:

Relation of LEC’s to K→ππ transition amplitudes @ LO in χPT:

A0

A2

=
1
√

2

(

1

2
+

3

2

g−
1

g+

1

)

⇒  Determine LEC’s using lattice QCD

[Ô1]αβγδ = 1

4
F

4(U∂µU
†)γα(U∂µU

†)δβ

H
χPT
w =

g2
w

2M2
W

(Vus)
∗(Vud) ∑

σ=±

gσ
1

{
[Ôσ

1 ]suud − [Ôσ
1 ]sccd

}

Effective low-energy description



QCD

χPT

• p-regime: new LECs appear at NLO

• ε-regime: no additional ΔS=1 interaction terms at O(ε2) ⇒ enables 
matching at NLO!

Matching QCD to the chiral expansion

R±(x0, y0) =
C±(x0, y0)
C(x0)C(y0)

C±(x0, y0) = ∑
x,y

〈[J0(x)]du[Q±
1 (0)][J0(y)]us〉

C(x0) = ∑
x

〈[J0(x)]ds[J0(0)]sd〉

k±RGI

[

Z±

Z2
A

]

RGI

R± = g±R±(m, V, LECs)

R
±(x0, y0) =

Ĉ±(x0, y0)
C(x0)C(y0)

Ĉ±(x0, y0) =
∫

d3
x d3

y 〈J0(x)O±
1 (0)J0(y)〉

C(x0) =
∫

d
3
x 〈J0(x)J0(0)〉



Results: K→ππ amplitudes in the chiral limit
3

am aMP R+, bare R−, bare

ε-regime
0.002 - 0.569(44) 2.43(15)
0.003 - 0.572(43) 2.41(14)

p-regime
0.020 0.1960(28) 0.636(40) 2.20(12)
0.030 0.2302(25) 0.691(33) 1.93(9)
0.040 0.2598(24) 0.723(31) 1.75(8)
0.060 0.3110(24) 0.772(30) 1.51(7)

TABLE I: Results for aMP and R±,bare

for a smooth extrapolation to the chiral limit. It is also
important to notice that at this volume and for these
masses finite volume corrections are visible and taken
into account in the formulas (10) and (11)...

FITTING STRATEGY

At the kaon mass or heavier, where finite volume correc-
tions can be safely neglected, the continuum-limit renor-
malization group-invariant (RGI) ratios R±,RGI can be
extracted from Refs. [35, 36]. By defining the reference
values

R±,RGI
ref ≡ R±,RGI

∣∣∣
r2
0M2

P =r2
0M2

K

(13)

at the pseudoscalar mass r2
0M

2
K = 1.573, we obtain

R+,RGI
ref = 0.954(52) and R−,RGI

ref = 0.910(76). Since
Wilson coefficients are computed in a mass independent
renormalization scheme

R±,RGI = R±,bare
[
R±,bare

∣∣∣
r2
0M2

K

]−1
R±,RGI

ref (14)

for any value of the quark mass.

IV. PHYSICS DISCUSSION

We can now combine our results for R±,RGI with the
Wilson coefficients in Eq. (3) to obtain

g+
1 = 0.50(?) , g−1 = 2.9(?) ,

g−1
g+
1

= 5.8(??) , (15)

where errors take into account uncertainties on k±
1 ,

R±,RGI
ref and statistical errors on R±,bare. A solid esti-

mate of discretization effects would require simulations
at several lattice spacing, which is beyond the scope
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am
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2.5

3

R

m
s
/2

R
+

R
-

FIG. 1: Dependence of R±,bare on am

of this exploratory study. However, computations of
R± at different lattice spacings and for masses close
to ms/2 [5, 34, 38] indicate that discretization effects
may be already comparable or smaller than our statis-
tical errors. In this respect it is interesting to notice
that quenched computations of various physical quan-
tities carried out with Neuberger fermions show small
discretization uncertainties at this lattice spacing [37].

Our values of g±1 in Eq.(15) reveal a clear hierarchy
among the low-energy constants, g−1 " g+

1 , which in turn
implies the presence of a ∆I = 1/2 rule in this corner of
the parameter space of (quenched) QCD.

Assuming that QCD reproduces the experimental am-
plitudes, the LECs of the ∆S = 1 effective Hamiltonian
can be extracted from a combination of LO ChPT and
experimental results [39]

g+, exp
1 ∼ 0.50 , g−, exp

1 ∼ 10.4 ,
g−, exp
1

g+, exp
1

∼ 20.8 . (16)

Apart for quenching effects, these LECs differ from the
ones we have computed due to higher order effects in
ChPT and/or due to contributions arising when the
charm mass is heavier. A comparison of the values in
Eqs. (15) and (16) suggests the presence of a large con-
tribution to the ∆I = 1/2 rule from physics at the intrin-
sic QCD scale. Barring accidental cancellations among
quenching effects and higher order ChPT corrections, our
value of g+

1 points to the fact that higher order ChPT cor-
rections in |A2| may be relatively small. In this case, in
fact, the charm mass dependence is expected to be mild
(only via the determinant). On the contrary our value for
g−1 is off by more than a factor three with respect to the
experimental value. Apart from possible large quench-
ing artifacts, this suggests that the charm mass depen-
dence and/or higher order effects in ChPT are large for
|A0|. These two contributions can be disentangled by im-
plementing the second step of the strategy proposed in
Ref. [5].

All the above speculations are, of course, invalidated
if it turns out that quenching affects these correlation
functions in a significant way. In this respect it is im-

ΔI=3/2 comes in the right ballpark (N.B.: charm effects enter only via 
quark loops).

ΔI=1/2 channel and amplitude ratio are a factor ~4 too small.

Enhancement of the ΔI=1/2 channel already present with an 
unphysically light charm quark (A0/A2 ~ 6): “pure no-penguin” effect.

Giusti, Hernández, Laine, Pena, Wennekers, Wittig 2006



The new strategy to reveal the role of the charm

Physics at the charm scale (via penguins).

Physics at intrinsic QCD scale ~200-300 MeV.

Final state interactions.

All of the above (no dominating “mechanism”).

Disentangle several possible origins/contributions:

Separate “intrinsic QCD” effects from physics at the charm scale:

☚
SU(4)L × SU(4)R

Consider effective weak Hamiltonian with an active 
charm and study A0, A2 as a function of mc.

mu = md = ms! mc

mu = md = ms= mc

Giusti, Hernández, Laine, Weisz & Wittig, JHEP 11 (2004) 016



Conclusions
The lattice is a rigorously defined regularization of QCD (the only one?).

As such, it enables non-pertrubative computations at low energies, from 
first principles, without any model assumptions.

The price to pay is the presence of a plethora of systematic effects. They 
can be kept under control and are being systematically reduced.

 The control of these effects is not just the result of better hardware an 
software, but principally stems from a better theoretical understanding 
of non-perturbative QFT at fixed UV cutoff.

We are currently moving away from uncontrolled approximations 
(quenching) and approach a realistic situation of Nf = 2 + 1 + 1.  
Moreover, we are approaching the most “critical” areas of the QCD 
parameter space (chiral limit, heavy flavours).

The result of this progress is that lattice QCD is a mature field, capable 
of providing reliably some missing puzzles in Standard Model 
phenomenology.


