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Prelude

QCD: a central issue in the Standard Model (SM)

Strongly interacting matter comes in 3 generations of quarks & leptons
Weak interaction asymmetries: CP-violation under intensive study

Test subtler properties of SM

Hope to see signatures of Physics beyond SM

Experiments (strange sector): CERN, FNAL, ...

Experiments (bottom sector): CERN, DESY, FNAL, KEK, ...
Experiments (charm sector): Frascati, FNAL, KEK
Theory: Dortmund, Dubna, Lund, Montpelier, Munich, Rome, Taipei, Trieste,Valencia, ...

Main difficulty: control of strong interaction effects at low energies (non-perturbative
QCD)




eseveral processes to check UT

*“Gold plated” decay By — |/'f + Kj gives

sin(fB) [Belle - BaBar]
K’ — K°(AS =2)

® €-hyperbola:
e AB-side (A My): Bg — Bg(AB = 2)
°c’ | €
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Lattice basics




Lattice themes

discretization of spacetime and QCD length scales
hadron masses and WME from the lattice

lattice actions, fermion doubling

renormalization & improvement

® non-perturbative renormalization

® RG-running and step scaling function

heavy flavours on the lattice

e HQET,NRQCD

® more step scaling functions



Lattice basics

® Regularize QCD by discretizing space-time:

® hypercube with lattice spacing a (UV cutoff) ...

® _.and linear extension L (IR cutoff)

Pl is now well-defined for bare theory and can be computed; we can do
experimental QCD at finite UV cutoff




Lattice basics
® Regularize QCD by discretizing space-time:

® hypercube with lattice spacing a (UV cutoff) ...

® _.and linear extension L (IR cutoff)

Pl is now well-defined for bare theory and can be computed; we can do
experimental QCD at finite UV cutoff

® scales (e.g. hadron masses) must satisfy
L-l<<mpy<<ag-!

® must also ensure

/\QCD << g

® [N.B.Agcp ~ 300 MeV]




Practical difficulties

present day computers can tackle a ~ 0.04 fm and L ~ 2 fm;i.e. L/a ~ 50 lattice sites

we have O(50%) degrees of freedom
a'l~5GeVand L'~ 100 MeV

OK for strange and charm mesons

scales (e.g. hadron masses) must satisfy
L-l<<mpy<<ag-!

must also ensure

/\QCD << g

[N.B. Agco ~ 300 MeV]




Practical difficulties

present day computers can tackle a ~ 0.04 fmand L ~ 2 fm

we have O(50%) degrees of freedom

a'!~5GeVandL-' ~ 100 MeV

“Goldstone” mesons My ~ 150 MeV afflicted by finite volume effects

® scales (e.g. hadron masses) must satisfy

compute in range Ms/8 < mg < ms/2 and
extrapolate to light quark values

use functional form suggested by XPT in the
extrapolation

ensure my L > 4




Practical difficulties

present day computers can tackle a ~ 0.04 fmand L ~ 2 fm

we have O(50%) degrees of freedom

a'!~5GeVandL-' ~ 100 MeV

heavy mesons mg ~5 GeV afflicted by finite size effects

® scales (e.g. hadron masses) must satisfy

compute in range Mc < Mg < [.5 m¢ and
extrapolate to bottom quark values

using results suggested by HQET or NRQCD
interpolate charm up to bottom region




Lattice correlation functions

® in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 7377%) |O > = %/DAMD,(EDw exp[_‘slatt] Q(:Cla T 7'1:?%)




Lattice correlation functions

in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 7377%) |O > = %/DAMD,(EDw exp[_‘slatt] Q(xla T 7'1:?%)

the formalism is set up in Euclidean space-time;ie. i S — - Skt

this ensures real & bounded exponential factor

correlation function can be computed numerically (Monte Carlo weighted averages)
use exp[- 5" ] as probability weight to generate a configuration ensemble
compute observable on this ensemble

process characterized by statistical error; this is the least source of worry

“easily” controlled by increasing configuration ensemble Nconr (NB: € ~ | / \ Neconf )



Lattice correlation functions

in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 7377%) |O > = %/DAMD,(EDw exp[_‘slatt] Q(xla T 7'1:?%)

the formalism is set up in Euclidean space-time;ie. i S — - Skt

this ensures real & bounded exponential factor

correlation function can be computed numerically (Monte Carlo weighted averages)
use exp[- 5" ] as probability weight to generate a configuration ensemble
compute observable on this ensemble

how does this work with Grassmann (fermionic) variables?



Lattice correlation functions

® in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 737?%) |O > = %/DA,MDwa exp[_slatt] Q(xla T 7:871)

® |attice (bare QCD) action in general has the form:

glatt  _ 4 Z{ FlFol |latt | i platt 4 m]w}

® integrate Grassmann degrees of freedom:

1 ~
<O[Qoryvaa) 0> = [ DA, expl=S7] detlP ] Qlan, - 20)

® the non-local determinant is the costly part




Lattice correlation functions

® in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 737?%) |O > = %/DA,MDwa exp[_slatt] Q(xla T 7:871)

® |attice (bare QCD) action in general has the form:

glatt  _ 4 Z{ FlFol |latt | i platt 4 m]w}

® integrate Grassmann degrees of freedom:

1 ~
<O[Qoryvaa) 0> = [ DA, expl=S7] detlP ] Qlan, - 20)

® the non-local determinant corresponds to internal fermion loops (sea quarks)




Lattice correlation functions

® in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 7$n) |O > = %/DA,MDwa exp[_‘slatt] Q(xla T 7:8?1)

® |attice (bare QCD) action in general has the form:

glatt  _ 4 Z{ FlFol |latt | i platt 4 m]w}

® integrate Grassmann degrees of freedom:

1 ~
<0l Q(z1,--,xy) |0> = z /DAM exp[—S9'“¢] det[ D" +m] Q(x1,- -, xy)

® popular shortcut id to set det[D'"+m]=1;i.e. sea quarks are infinitely heavy.

® This is the QUENCHED APPROXIMATION which has been (and still is) a
principal source of uncontrolled errors




Lattice correlation functions

® in the lattice Pl framework, we compute bare correlation functions of the form:

< 0| Q(xlv T 737?%) |O > = %/DA,MDwa exp[_slatt] Q(xla T 7:871)

® |attice (bare QCD) action in general has the form:

glatt  _ 4 Z{ FlFol |latt | i platt 4 m]w}

® integrate Grassmann degrees of freedom:

1 ~
<0l Q(z1,--,xy) |0> = z /DAM exp[—S9'“¢] det[ D" +m] Q(x1,- -, xy)

® we are currently at the end of the quenched era, in the middle of N~2 and
NF=2+l, aiming at Nf=2+ 1+




From correlation functions to hadron masses and matrix elements

How do we obtain matrix elements and hadronic masses (i.e. bare low energy
quantities)?

Consider the lattice correlation function:

the states |s> are those with the quantum numbers of Q(x)
ms are the corresponding hadronic masses; m¢ the ground state

<0]|Q|G>is the vacuum-to-G bare WME of operator Q

higher excited states (same quantum numbers) drop out in the large-t limit




From correlation functions to hadron masses and matrix elements

How do we obtain matrix elements and hadronic masses (i.e. bare low energy
quantities)?

Consider the lattice correlation function:

® example:the operator Q is the charged axial current () — Ay = uvyyysd

® the state |G> is the charged pion; mg = mp

® the matrix element defines the pion decay contant < 0 | A() | ™ >= f7T M




From correlation functions to hadron masses and matrix elements

How do we obtain matrix elements and hadronic masses (i.e. bare low energy
quantities)?

Consider the lattice correlation function:

® masses and matrix elements are computed from first principles in a model
independent way

® the computation is clean in principle, but systematic errors abound (see later)




From correlation functions to hadron masses and matrix elements

How do we obtain matrix elements and hadronic masses (i.e. bare low energy
quantities)?

Consider the lattice correlation function:

NB: gluon and sea quarks not drawn

_— T
O\ /t




From correlation functions to hadron masses and matrix elements

® More general WMEs are obtained from more complicated correlation functions:

Clts,ty) = »  <0| Ha(y) Q(0) Hi(z) |0 >

exp|—mat,| exp|mit,]
< O‘ HQ(O) |H2 > < HQ‘ Q(O) ’Hl > < Hl‘ Hl(O) |O >




From correlation functions to hadron masses and matrix elements

® More general WMEs are obtained from more complicated correlation functions:

Clts,ty) = »  <0| Ha(y) Q(0) Hi(z) |0 >

~ exp|—mat,| exp|mit,]
x < 0] H(0) |[Hy > < Hy| Q(0) |H; > < Hy| H1(0) |0 >

Examplel: B—D+l+v decays have WME <D | J, | B >

R[<£eptons
~J

c, U

() = Vcbpvub
DY, p




Renormalization and improvement

the lattice formalism is a bare QFT

computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< f1 Qr(p) i > = 1im | Zo(amg3) < f1 Q) li > + O(a) |




Renormalization and improvement

the lattice formalism is a bare QFT

computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< f1 Qnlp) i > = 1im | Zo(amg3) < f1 Q) li > + O(a) |

bare WME depends on
bare coupling and masses




Renormalization and improvement

the lattice formalism is a bare QFT

computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< f1 Qrlp) i > = lim | Zo(amg3) < f1 Q) li > + O(a) |

renormalized WME
depends on dressed
coupling, masses
and scale

bare WME depends on
bare coupling and masses




Renormalization and improvement

the lattice formalism is a bare QFT

computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< f1 Qrlp) i > = lim | Zo(amg3) < f1 Q) li > + O(a) |

R

(- )

bare WME depends on
bare coupling and masses

" renormalized WME

depends on dressed
coupling, masses

< and scale ) ~ /

é )
renorm. constant

diverges logarithmically

with a
\_ y,




Renormalization and improvement

the lattice formalism is a bare QFT

computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< f1 Qrlp) i > = lim | Zo(amg3) < f1 Q) li > + O(a) |

I

(- )

bare WME depends on
bare coupling and masses

" renormalized WME

depends on dressed
coupling, masses

< and scale ) ~ /

(~ N\ )
continuum limit obtained renorm. constant
gradually by successive diverges logarithmically

simulations with a
\_ ), \§ J




Renormalization and improvement

the lattice formalism is a bare QFT

computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< £l Qr(n) i > = lim | Zg(ap, g8) < f| Q(gd) i > + Ola) |

T A T R

(- )

bare WME depends on
bare coupling and masses

" renormalized WME

depends on dressed
coupling, masses

< and scale ) ~ /

e N\ ) " discretization effects due |
continuum limit obtained renorm. constant to cutoff finiteness

gradually by successive diverges logarithmically contaminate all

simulations with a L computations
\- J . J




Renormalization and improvement
the lattice formalism is a bare QFT
computation results are bare WMEs at fixed UV cutoff [ /a (i.e.fixed go?(a) )

must renormalize them in order to get continuum physics

UV cutoff is present at all stages of a computation and it is gradually increased

< f1 Qr(p) i > = 1im | Zo(amg3) < f1 Q) li > + O(a) |

lattice renormalization can be done either in PT or non-perturbatively (NP)

lattice PT is tedious and badly convergent; at say LO, it introduces large 0(g0)

errors in ZQ

NP methods introduce O(a) discretization errors is Zg ; as also the bare
WME has 0(a) effects, this is preferable to PT

better still: attempt to “help” continuum extrapolation by reducing all
discretization errors to 0(a?)




Lattice actions




Lattice regularization: gluons

write a lattice action which reduces to bare QCD when a—0
naive continuum limit: bare quantities go, mqare kept fixed
true continuum limit: physical quantities gr my are kept fixed

arbitrariness in choice of action; it should give QCD in naive cont. limit

naive discretization of gluonic action is not gauge invariant

Wilson: degree of freedom is the link variable Up(x) € SU(3)

T+ U T+ -+ U
L

® <




Lattice regularization: gluons

write a lattice action which reduces to bare QCD when a—0
naive continuum limit: bare quantities go, mqare kept fixed
true continuum limit: physical quantities gr my are kept fixed

arbitrariness in choice of action; it should give QCD in naive cont. limit

naive discretization of gluonic action is not gauge invariant

Wilson: degree of freedom is the link variable Up(x) € SU(3)

T+ U T+ -+ U
L

® <

A

[

® > ®

T ] T+ i gauge field (gluon)

/

Uu(x) = expligoaAu(x) ]J= | +igoaAulx) +..




basic gauge invariant element is the trace of the plaquette

Puv(x) = Un(x) Uv(x+H) Un(x+p+v) T Uy(x+p) T € SU(3)

Puv()t = I =i go? a Fu(x)? + 0(a?) U

Wilson action:

/
U} Un-+p,v

n,v

% Z ReTr P, ~ a4z F..(2) Fu(z) + O(a?)
P x

N.B. higher order discretization effects

gauge invariance is maintained

Lorenz symmetry reduced to hypercubic rotations by T1/2 and translations by a

generally, it is not the only symmetry lost on the lattice (chiral, SUSY); a central issue is
symmetry recovery in the true continuum limit

recovery of Lorentz symmetry appears to be straightforward while recovery of chiral
symmetry is intricate




Lattice regularization: naive fermions

write a lattice action which reduces to bare QCD when a—0

naive discretization of fermionic derivative (free quarks)

0/ p(z) = %[w(wﬂc) — Yz — p)]

naive fermionic Euclidean action

WP(x) € SU(3)UH(X) = exp[igoaAu(x) ]



Lattice regularization: naive fermions

naive free fermion propagator (limited in first Brillouin zone-BZ): -1m/a <puy <m/a

= >, Yusin(apy)/a] + M
-, sin(apy)?/a?] + M2

S(p; M) =

“correct’” naive continuum limit

Sy — Loz T M

DNAERE

wrong true continuum limit due to fermion doublers (i.e. |6 poles in the first BZ)

Pl

b o

’ O— Po

[po, p1, P2, p3] = [0,0,0,0]




Lattice regularization: naive fermions

naive free fermion propagator (limited in first Brillouin zone-BZ): -mm/a<py<m/a

= >, Yusin(apy)/a] + M
-, sin(apy)?/a?] + M2

S(p; M) =

“correct’” naive continuum limit

Sy — Loz T M

DNAERE

wrong true continuum limit due to fermion doublers (i.e. |6 poles in the first BZ)

Pl

b o

’ —@— po

[Po, P1, P2, p3] = 4%[11/3,0,0,0]




Lattice regularization: naive fermions

naive free fermion propagator (limited in first Brillouin zone-BZ): -mm/a<py<m/a

= >, Yusin(apy)/a] + M
-, sin(apy)?/a?] + M2

S(p; M) =

“correct’” naive continuum limit

Sy — Loz T M

DNAERE

wrong true continuum limit due to fermion doublers (i.e. |6 poles in the first BZ)

Pl

b o

’ O— Po

[Po, P1, P2, p3] = 6%[1/a,1/a,0,0]




Lattice regularization: naive fermions

naive free fermion propagator (limited in first Brillouin zone-BZ): -mm/a<py<m/a

= >, Yusin(apy)/a] + M
-, sin(apy)?/a?] + M2

S(p; M) =

“correct’” naive continuum limit

Sy — Loz T M

DNAERE

wrong true continuum limit due to fermion doublers (i.e. |6 poles in the first BZ)

Pl

b o

’ O— Po

[Po, PI, P2, p3] = 4%[1/a,11/a,11/a,0] [Po, P1, P2, p3] = [M/a,T1/a,T1/a, T1/a]




Fermion “doubling”
® the problem is general: for any lattice fermion action (free massless case)

slerm = o'y P(x) D(z —y) ¥(y)

® the lattice Dirac operator should satisfy:
® Locality: D(x-y) < Cexp[ - K |x-y| ]
e Continuum limit: D(p) = Yu pu + O(a p?)
® No doublers: D(p) invertible for py # 0
® chiral symmetry: D(x) Y5 + Y5 D(x) =0

® Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously




Fermion “doubling”
® the problem is general: for any lattice fermion action (free massless case)

slerm = o'y P(x) D(z —y) ¥(y)

® the lattice Dirac operator should satisfy:
® Locality: D(x-y) < Cexp[ - K |x-y| ]
e Continuum limit: D(p) = Yu pu + O(a p?)
® No doublers: D(p) invertible for py # 0
® chiral symmetry: D(x) Y5 + Y5 D(x) =0
Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

fermions: introduce irrelevant (D=5) operator in the action, which breaks chiral
symmetry, recovered in the true continuum limit.




Wilson fermions

Add a chiral breaking irrelevant (D=5) term to the (free) action (Wilson term):

A 1

Dz —y) — 7,0, — §aéuéu + my

ultra-local operator, fairly cheap to compute
flavour is as in the continuum

the origin of Brillouin zone [0,0,0,0] corresponds to physical fermion

the other |5 corners of Brillouin zone correspond to fermions of mass ~1/a

Disadvantage: chiral symmetry lost!!! Must be recovered in the true continuum limit

Consequence: renormalization gets much more complicated and xal limit hard

fermions with chirality OK Wilson fermions

f(g3)

Zm (95, ap) mg mq = Zm(gg,ap) [mo —

|

= Za(g5) [Aulo




Fermion “doubling”
® the problem is general: for any lattice fermion action (free massless case)

slerm = o'y P(x) D(z —y) ¥(y)

® the lattice Dirac operator should satisfy:
® Locality: D(x-y) < Cexp[ - K |x-y| ]
e Continuum limit: D(p) = Yu pu + O(a p?)
® No doublers: D(p) invertible for py # 0
® chiral symmetry,D(x) Y5 + Y5 D(x) =0
® Nielsen-Nipsmyia theorem: all 4 properties cannot be satisfied simultaneously

fermio”s“ dilute 16 spinorial degrees of freedom on hypercube points. Retain a
U(1) chiral symmetry. Loose “flavour transparency”




Staggered fermions

distribute |6 spinorial degrees of freedom on each hypercube vertex

A

D(z — y) = (@) D +mo

Nu(x) = £1 is an (even-odd) site dependent sign
ultra-local operator, very cheap to compute
4 physical fermions (4-spinors) constructed from staggered single spinors & Nu(x)

theory describes 4 degenerate flavours, or | flavour + 3 tastes !!

chiral symmetry is reduced to the U(l) group; adequate in many cases for
straightforward renormalization




Staggered fermions

distribute |6 spinorial degrees of freedom on each hypercube vertex

A

D(z — y) = (@) D +mo

Nu(n) = x1 is an (even-odd) site dependent sign
ultra-local operator, very cheap to compute
4 physical fermions (4-spinors) constructed from staggered single spinors & Nu(n)

theory describes 4 degenerate flavours, or | flavour + 3 tastes !!

chiral symmetry is reduced to the U(l) group; adequate in many cases for
straightforward renormalization

the fermion determinant det[D'“®+m] for a single staggered field describes |
flavour + 3 tastes; to get the physical reality (i.e. non-degenerate flavours) people
take its fourth root. Do you lose locality? Probably not, but the discussion is intricate

and on-going; see Sharpe, PoS(LAT2006)022




Fermion “doubling”
® the problem is general: for any lattice fermion action (free massless case)

slerm = o'y P(x) D(z —y) ¥(y)

® the lattice Dirac operator should satisfy:
® Locality: D(x-y) < Cexp[ - K |x-y| ]
e Continuum limi D(p) = Yu pu + O(a p?)
® No doublers: D(p) invertible for py # 0

chiral symmetry: D(x) Y5 + Y5 D(x) = O(a)




Lattice setup: GW (chiral) fermions

Ginsparg-Wilson fermions:

a
145
Ginsparg, Wilson 1982

Kaplan; Neuberger; Hasenfratz, Laliena, Niedermayer; ...

vsD + Dvys =a DysD, a =

Our choice: Neuberger-Dirac operator.

a

DN:l{1—( A } A=1-aDy

A+A)1/2
Neuberger 1997

Numerical treatment challenging and expensive.

Giusti, Hoelbling, Luscher, Wittig 2002




Lattice setup: GW (chiral) fermions

Ginsparg-Wilson fermions:

a
145
Ginsparg, Wilson 1982

Kaplan; Hasenfratz, Laliena, Niedermayer; Neuberger; ...

vsD + Dvys =a DysD, a =

Lattice QCD action enjoys an exact chiral symmetry:

op =iefsyp, Fs=ys5(1—aD)

D — il
lP’YS Luscher 1998

Renormalisation and mixing patterns as in the formal continuum theory,
provided:

p - p=>1-3aD)yp, ¢ —¢

In particular, there is no dangerous mixing with lower dim. operators.




Fermion “doubling”
® the problem is general: for any lattice fermion action (free massless) case)

slerm = o'y P(x) D(z —y) ¥(y)

® the lattice Dirac operator should satisfy:
® |ocality: D(x-y) < Cexp[ - K |x-y| ]
e Continuum limit: D(p) = Yu pu + O(a p?)
® No doublers: D(p) invertible for py # 0
® chiral symmgtry: D(x) Y5 + Ys D(x) = O(a)
® Nielsen-Ningmyia theorem:all 4 properties cannot be satisfied simultaneously

Domain wall Xermions: An equivalent formulation to GW fermions: introduce a fifth
dimension; the 4-D lattice is a hypersurface (a defect) where both chiralities merge.
Fairly costly (computationally); chirality is recovered at infinitely large DW




O(a) Symanzik improvement

systematic way to improve approach to continuum limit by eliminating 0(0) effects

< fIQr(w) i > = lim [Zg(au,g8) < f1Q(g5)|i > + O(a®) ]

—0

the gauge action is already free of 0( da ) effects

same is true for staggered fermion action, but 0(02) effects are very big

® they can be reduced by modifying the action in RG-inspired ways

also GW fermions start from 0(02) discretization errors

Wilson fermions suffer from 0((1) effects

this is a big disadvantage




O(a) Symanzik improvement

systematic way to improve approach to continuum limit by eliminating 0(0) effects

< fIQr(w) i > = lim [Zg(au,g8) < f1Q(g5)|i > + O(a®) ]

—0
modify Wilson fermion action by adding counterterms of the form [a X Qdim=5 ]

one such counterterm is adequate for the improvement of physical (“on-shell)
quantities (hadron masses)

£Wilson _ LWilson + a cow (gg) [QLO-MVFMVw]




O(a) Symanzik improvement

systematic way to improve approach to continuum limit by eliminating 0(0) effects

< fIQr(w) i > = lim [Zg(au,g8) < f1Q(g5)|i > + O(a®) ]

—0
modify Wilson fermion action by adding counterterms of the form [a X Qdim=5 ]

one such counterterm is adequate for the improvement of physical (“on-shell)
quantities (hadron masses)

£Wilson _ LWilson 1 qa Comr (gg) [QLO-MVFMVw]
A

Clover term




O(a) Symanzik improvement

systematic way to improve approach to continuum limit by eliminating 0(0) effects

< fIQr(W i > = lim [Zg(ap.g5) < f1Q(g)|i > + O(a®) ]

—0
modify Wilson fermion action by adding counterterms of the form [a X Qdim=5 ]

one such counterterm is adequate for the improvement of physical (“on-shell)
quantities (hadron masses)

£Wilson _ LWilson + a cow (9(2)) [?;OMVFMV¢]

the improvement of matrix elements of operators Qdim requires similar

modifications, adding counterterms: Qdim— Qdim T @ Qdim+1

A, — [1 + bA(gg)amq] [Au + acA(gg)ﬁuP]




O(a) Symanzik improvement

systematic way to improve approach to continuum limit by eliminating 0(0) effects

< fIQr(w) i > = lim [Zg(au,g8) < f1Q(g5)|i > + O(a®) ]

—0
modify Wilson fermion action by adding counterterms of the form [a X Qdim=5 ]

one such counterterm is adequate for the improvement of physical (“on-shell)
quantities (hadron masses)

£Wilson _ LWilson + a cow (gg) [QLO-MVFMVw]

the improvement of matrix elements of operators Qdim requires similar

modifications, adding counterterms: Qdim— Qdim * a Qdim+I

A, — [1 + ba(93) amq] [Au + aca(gp) 8MP]

T

adequate in the chiral limit




O(a) Symanzik improvement

systematic way to improve approach to continuum limit by eliminating 0(0) effects

< fIQr(w) i > = lim [Zg(au,g8) < f1Q(g5)|i > + O(a®) ]

—0
modify Wilson fermion action by adding counterterms of the form [a X Qdim=5 ]

one such counterterm is adequate for the improvement of physical (“on-shell)
quantities (hadron masses)

£Wilson _ LWilson + a cow (gg) [QLO-MVFMVw]

the improvement of matrix elements of operators Qdim requires similar

modifications, adding counterterms: Qdim— Qdim * a Qdim+I

A, — [1 + ba(93) amq] [Au + aca(gp) 8MP]

A

arises off chiral limit




Twistad mass QCD

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058

® Wilson fermions appear to suffer from contorted renormalizations and 0((1) effects

® one can cure everything in one go: tmQCD

A

. 1 - |
D(CIZ — y) — ’yluau — 5&(9”8” + Mo + 17Y5T3M0

Break flavour symmetry in non-trivial direction in flavour space —
preserve different subgroup.
No free lunch: break PT, flavour symmetries.

® universality implies that this is equivalent to QCD in the continuum limit, provided
the twist angle tan(x) = Pr/mr is fixed




Twistad mass QCD

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058

® Wilson fermions appear to suffer from contorted renormalizations and 0((1) effects

® one can cure everything in one go: tmQCD

A A

A 1 _
D(x—y) — 7.0, — 5@ WO + Mo + 175730

Break flavour symmetry in non-trivial direction in flavour space —
preserve different subgroup.
No free lunch: break PT, flavour symmetries.

universality implies that this is equivalent to QCD in the continuum limit, provided
the twist angle tan(x) = Pr/mr is fixed

Control of chiral symmetry breaking allows for simpler renormalisation properties

of many operators and allows a closer approach to the chirla limit = “mimic” exact
chiral symmetry.

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058 Pena, Sint, AV JHEP09(2004)069




Twistad mass QCD

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058

® Wilson fermions appear to suffer from contorted renormalizations and 0((1) effects

® one can cure everything in one go: tmQCD

A

. 1 - |
D(CIZ — y) — ’yluau — 5&(9”8” + Mo + 17Y5T3M0

Break flavour symmetry in non-trivial direction in flavour space —
preserve different subgroup.
No free lunch: break PT, flavour symmetries.

universality implies that this is equivalent to QCD in the continuum limit, provided
the twist angle tan(x) = Pr/mr is fixed

at twist angle 11/2, many quantities are automatically improved

Frezzotti, Rossi JHEP08(2004)007




Renormalization




Hadronic renormalization scheme

for simplicity consider a lattice theory with isospin symmetry and 3 flavours
the 3 bare parameters are go, mq=muy =md < ms
they run with the lattice spacing a in the RG sense

the hadronic scheme renormalization conditions are simply stated: tune all 3 bare

parameters so as to ensure that 3 physical quantities are fixed to their
(experimentally) known values

amp

_ 2, .
exp a(QO? mQ7 mS) T exp
mP am p mP am p

am, m: P amig




Hadronic renormalization scheme

for simplicity consider a lattice theory with isospin symmetry and 3 flavours

the 3 bare parameters are go, mq=muy =md < ms
they run with the lattice spacing a in the RG sense

the hadronic scheme renormalization conditions are simply stated: tune all 3 bare

parameters so as to ensure that 3 physical quantities are fixed to their
(experimentally) known values

amp

_ 2, .
exp\ a(g07 mqa ms)
mP am p

amy

fixed by experiment




Hadronic renormalization scheme

for simplicity consider a lattice theory with isospin symmetry and 3 flavours

the 3 bare parameters are go, mq = muy = md > ms
they run with the lattice spacing a in the RG sense

the hadronic scheme renormalization conditions are simply stated: tune all 3 bare

parameters so as to ensure that 3 physical quantities are fixed to their
(experimentally) known values

exp
T

exp
mp

m ampg

computed non-perturbatively|




Hadronic renormalization scheme

for simplicity consider a lattice theory with isospin symmetry and 3 flavours

the 3 bare parameters are go, mq = muy = md > ms
they run with the lattice spacing a in the RG sense
the hadronic scheme renormalization conditions are simply stated: tune all 3 bare

parameters so as to ensure that 3 physical quantities are fixed to their
(experimentally) known values

lattice calibration




Hadronic renormalization scheme

for simplicity consider a lattice theory with isospin symmetry and 3 flavours

the 3 bare parameters are go, mq = muy = md > ms
they run with the lattice spacing a in the RG sense

the hadronic scheme renormalization conditions are simply stated: tune all 3 bare
parameters so as to ensure that 3 physical quantities are fixed to their
(experimentally) known values

amp am, m: P

_ 2, . _
exp a(QO? mQ7 mS) T exp
mP am p mP am p

amig

all other physical quantities (hadronic masses) can now be predicted (i.e. computed)
since QCD is a renormalizable theory

predictions must be repeated at smaller couplings go i.e. smaller lattice spacings
(asymptotic freedom)

NB: this is explicitly non-perturbative and yields QCD mass spectrum




Hadronic renormalization scheme

for simplicity consider a lattice theory with isospin symmetry and 3 flavours

the 3 bare parameters are go, mq = muy = md > ms
they run with the lattice spacing a in the RG sense

the hadronic scheme renormalization conditions are simply stated: tune all 3 bare
parameters so as to ensure that 3 physical quantities are fixed to their
(experimentally) known values

exp
amp -

_ 2, .
exp a(QO? mQ7 mS) T exp
mP am p mP am p

amy m ampg

all other physical quantities (hadronic masses) can now be predicted (i.e. computed)
since QCD is a renormalizable theory

predictions must be repeated at smaller couplings go i.e. smaller lattice spacings
(asymptotic freedom)

several “practical” problems have induced variants of this procedure




Operator renormalization scheme

there are also quantities which depend on (“run with”) renormalization scale p (e.q.
renormalized coupling and quark masses, operator WME etc.)

need to impose extra renormalization conditions (renormalization schemes)
these can be standard PT schemes (e.g. MOM or even MS) with lattice regularization
but lattice PT is badly converging

® example I: MILC collaboration found that the strange quark mass was raised by
4% once its renormalization constant, known in |-loop PT, was calculated at 2-
loops

example 2: Gockeler et al. found that the strange quark mass was raised by 24%
once its renormalization constant, known in |-loop PT, was calculated by a NP
method

two NP renormalization schemes have been devised for these renormalizations

® RI/MOM scheme G.Martinelli et al. Nucl.Phys.B445(1995)81

® Schrodinger Functional (SF) scheme M.Luscher et al. Nucl.Phys.B478(1996)365



Operator RG-running

suppose a quantity Q(M) (quark mass, operator VWME) is renormalized in a NP
scheme

= lim Zg(g5, ap) Qo)

if you use a hadronic scheme, the renormalization scale is going to be low P~ mn

you need to know Q(l) at a larger scale either for conventional reasons (i.e. people
are used to MS-scheme quark masses mg(H) with U~2GeV) or for matching with

perturbative scales, as in the OPE:

QP = Y Ow(p) lim [ Zg(gh,an) < f1Q(g5) i > ]

a—0




Operator RG-running

suppose a quantity Q(M) (quark mass, operator VWME) is renormalized in a NP
scheme

= lim Zg(g5, ap) Qo)

if you use a hadronic scheme, the renormalization scale is going to be low P~ mH

you need to know Q(l) at a larger scale either for conventional reasons (i.e. people
are used to MS-scheme quark masses mg(H) with U~2GeV) or for matching with

perturbative scales, as in the OPE:

QP = ¥ Cwl(p) lim [ Zo(g3,ap) < f1Q(g5) i > ]

T a—0

4 ) 4 )

Wilson coefficients
calculated in PT renormalization scale

long-distance effects must be large; say 10GeV
. J . J




Operator RG-running

suppose a quantity Q(M) (quark mass, operator VWME) is renormalized in a NP
scheme

= lim Zg(g5, ap) Qo)

if you use a hadronic scheme, the renormalization scale is going to be low P~ mH

you need to know Q(l) at a larger scale either for conventional reasons (i.e. people
are used to MS-scheme quark masses mg(H) with U~2GeV) or for matching with

perturbative scales, as in the OPE:

QP = ¥ Cw(p) lim [ Zo(g3,ap) < f1Q(g5) i > ]

a—0 T

must be smaller than |
for avoiding discretization errors




Operator RG-running

suppose a quantity Q(M) (quark mass, operator VWME) is renormalized in a NP
scheme

= lim Zg(g5, ap) Qo)

if you use a hadronic scheme, the renormalization scale is going to be low P~ mH

you need to know Q(l) at a larger scale either for conventional reasons (i.e. people
are used to MS-scheme quark masses mg(H) with U~2GeV) or for matching with

perturbative scales, as in the OPE:

QP = ¥ Cw(p) lim [ Zo(g3,ap) < fl1Q(g5) i > ]

a—0

if we wish to compute everything at one go (a single lattice) we must also ensure
that my L >> |, in order to avoid finite size errors

i.e. we must satisfy L >> I/mnp~ 1/(0.15 GeV) >> I/p ~ [/(10 GeV) >>a

IMPOSSIBLE on present day resources




Operator RG-running

suppose a quantity Q(M) (quark mass, operator VWME) is renormalized in a NP
scheme

= lim Zg(g5, ap) Qo)

if you use a hadronic scheme, the renormalization scale is going to be low P~ mH

you need to know Q(l) at a larger scale either for conventional reasons (i.e. people
are used to MS-scheme quark masses mg(H) with U~2GeV) or for matching with

perturbative scales, as in the OPE:

QP = ¥ Cw(p) lim [ Zo(g3,ap) < fl1Q(g5) i > ]

a—0

need to compute the renormalized WME at a hadronic (low) scale pPmin and then do
RG-running all the way to a perturbative (high) scale Pmax

the SF scheme, combined with finite size techniques, is the only one used so far for
this RG-running




Schrodinger Functional (SF) and step scaling function (SSF)

work in finite (small) physical volumes, as they are OK for the determination of
renormalization constants, which are local UV quantities

use finite size as renormalization scale;i.e. p = I /L (this is NOT the L of the WME)

impose SF renormalization condition on a suitably constructed lattice (Dirichlet
b.c’s in time; periodic in space), which allows us to work with mass-

independent renormalization scheme and compute Z(go?,alL) .

]
this is done at a hadronic scale PUmin = |/Lmax

time
we run all the way to Pmax = |/Lmin in stepwise manner, T
through the step scaling function

_ Qr(gg;2L)
Qr(gp; L) |g3=fixed

Q|9 ]

a discrete version of the anomalous dimension, for a change of scale by a factor of 2
compute this iteratively until you arrive at Pmax Which amount to RG-running

it is a continuum quantity; can be calculated on the lattice with modest lattice volumes




Schrodinger Functional (SF) and step scaling function (SSF)




Schrodinger Functional (SF) and step scaling function (SSF)

ALPHA, |. Heitger et al. Nucl.Phys.Proc.Suppl.106 (2002) 859

o)

1.2

SF scheme, N.=0

2/3—1oop B

SF scheme, N,=2
-3—-loop

| 250MeV

Lol Lol Lol 0 vl Lol Co il

10! 102, /p 10°  1Q0 10! 102 1, /A 10°




Schrodinger Functional (SF) and step scaling function (SSF)

ALPHA M. Della Morte et al. Nucl.Phys.B729(2005) 117

T llllllll T llllllll T llllllll

\
SF scheme, N,=2

— 2/3-1oop
---1/2-1oop

1 llllllll 1 llllllll 1 llllllll

10 100 1000
/A

NB: these results depend on Nf, but NOT on the quark mass values
(mass independent renormalization, carried out explicitly at zero quark mass)




