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Prelude

• QCD: a central issue in the Standard Model (SM) 

• Strongly interacting matter comes in 3 generations of quarks & leptons

• Weak interaction asymmetries: CP-violation under intensive study

• Test subtler properties of SM

• Hope to see signatures of Physics beyond SM

• Experiments (strange sector): CERN, FNAL, ...

• Experiments (bottom sector): CERN, DESY, FNAL, KEK, ...

• Experiments (charm sector): Frascati, FNAL, KEK

• Theory: Dortmund, Dubna, Lund, Montpelier, Munich, Rome, Taipei, Trieste, Valencia, ...

• Main difficulty: control of strong interaction effects at low energies (non-perturbative 

QCD) 



!!i" "#!#i"

$%

&

C=(0,0) B=(1,0)

A=(!#"$

K0
L !!0"  

K0
L "  0 e  e+ -

# /#’

K !!+ +"  

B lld

B llXd
B Xd!!

|V  /V  |ub cb$

%
0-1 1 2

1 

0.5

1.5

&

'

(

A

C
B

#

B -B0 0

•several processes to check UT

•“Gold plated” decay Bd →J/Ψ + Ks gives 

sin(β)       [Belle - BaBar]

• ε-hyperbola:

• AB-side (Δ Md):

•ε’ / ε

K
0
− K̄

0(∆S = 2)

B
0

d − B̄
0

d(∆B = 2)



-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin 2!

sol. w/ cos 2! < 0
(excl. at CL > 0.95)

excluded at CL  >  0.95

"

"

#

#

$md

$ms & $md

%K

%K

|Vub/Vcb|

sin 2!

sol. w/ cos 2! < 0
(excl. at CL > 0.95)

excluded at CL  >  0.95

#

!"

&

'

excluded area has CL > 0.95

C K M
f i t t e r

FPCP 06



Lattice basics



Lattice themes

• discretization of spacetime and QCD length scales

• hadron masses and WME from the lattice

• lattice actions, fermion doubling

• renormalization & improvement

• non-perturbative renormalization

• RG-running and step scaling function

• heavy flavours on the lattice

• HQET, NRQCD

• more step scaling functions



Lattice basics
• Regularize QCD by discretizing space-time: 

• hypercube with lattice spacing a (UV cutoff) ...

• ... and linear extension L (IR cutoff)

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• PI is now well-defined for bare theory and can be computed; we can do 
experimental QCD at finite UV cutoff 



Lattice basics
• Regularize QCD by discretizing space-time: 

• hypercube with lattice spacing a (UV cutoff) ...

• ... and linear extension L (IR cutoff)

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• PI is now well-defined for bare theory and can be computed; we can do 
experimental QCD at finite UV cutoff 

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• must also ensure

ΛQCD << a -1

• [N.B. ΛQCD  ~ 300 MeV ]



Practical difficulties
• present day computers can tackle a ~ 0.04 fm and L ~ 2 fm; i.e. L/a ~ 50 lattice sites

• we have O(504) degrees of freedom

• a -1 ~ 5 GeV and L -1 ~ 100 MeV

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• OK for strange and charm mesons

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• must also ensure

ΛQCD << a -1

• [N.B. ΛQCD  ~ 300 MeV ]



Practical difficulties
• present day computers can tackle a ~ 0.04 fm and L ~ 2 fm

• we have O(504) degrees of freedom

• a -1 ~ 5 GeV and L -1 ~ 100 MeV

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.
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Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• “Goldstone” mesons mπ ~150 MeV afflicted by finite volume effects

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• compute in range ms/8 < mq < ms/2 and 
extrapolate to light quark values

• use functional form suggested by χPT in the 
extrapolation

• ensure mH L > 4



Practical difficulties
• present day computers can tackle a ~ 0.04 fm and L ~ 2 fm

• we have O(504) degrees of freedom

• a -1 ~ 5 GeV and L -1 ~ 100 MeV

where E1 =
√

M2
H1

+ (p+q)2, E2 =
√

M2
H2

+ p2 and the ellipsis represents the contributions from

heavier states. The exponential factors, exp(−E1ty) and exp ( − E2(tx − ty)), ensure that for large
time separations, ty and tx − ty, the contributions from the lightest states dominate. The three-point

correlation function is illustrated in the diagram

H1 H2

ty

O

0 tx
.

All the elements on the right-hand side of eq.(64) can be determined from two-point correlation func-

tions, with the exception of the matrix element 〈H2|O|H1〉. Thus by computing two- and three-point
correlation functions the matrix element 〈H2|O|H1〉 can be determined.

The computation of three-point correlation functions is useful, for example, in studying semilep-

tonic and radiative weak decays of hadrons, e.g. if H1 is a B-meson, H2 a D meson and O the vector

current b̄γµc, then from this correlation function we obtain the form factors relevant for semileptonic

B → D decays.

I end this brief summary of lattice computations of hadronic matrix elements with a word about the

determination of the lattice spacing a. It is conventional to introduce the parameter β = 6/g2
0(a), where

g0(a) is the bare coupling constant in the theory with the lattice regularization. It is β (or equivalently
g0(a)) which is the input parameter in the simulation, and the corresponding lattice spacing is then
determined by requiring that some physical quantity (which is computed in lattice units) is equal to the

experimental value 7. For example, one may compute mρa, where mρ is the mass of the ρ-meson, and
determine the lattice spacing a by dividing the result by 769MeV.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

a

L

Fig. 12: Schematic diagram representing a lattice containing a hadron. a and L are the lattice spacing and length of the lattice

respectively.

2.3.1 Sources of Uncertainty in Lattice Computations:

Although lattice computations provide the opportunity, in principle, to evaluate the non-perturbative

QCD effects in weak decays of heavy quarks from first principles and with no model assumptions or free

parameters, in practice the precision of the results is limited by the available computing resources. For

these computations to make sense it is necessary for the lattice to be sufficiently large to accommodate

the particle(s) being studied (L % 1 fm say, where L is the spatial length of the lattice), and for the

spacing between neighbouring points (a) to be sufficiently small so that the results are not sensitive to
7The bare quark masses are also parameters which have to be determined; one has to use as many phyical quantities as there

are unknown paramters.

• heavy mesons mB ~5 GeV afflicted by finite size effects

• scales (e.g. hadron masses) must satisfy

L -1 << mH << a -1

• compute in range mc < mq < 1.5 mc and 
extrapolate to bottom quark values

• using results suggested by HQET or NRQCD 
interpolate charm up to bottom region



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• the formalism is set up in Euclidean space-time; i.e.  i S   → - Slatt

• this ensures real & bounded exponential factor

• correlation function can be computed numerically (Monte Carlo weighted averages)

• use exp[- Slatt ] as probability weight to generate a configuration ensemble

• compute observable on this ensemble

• process characterized by statistical error; this is the least source of worry

• “easily” controlled by increasing  configuration ensemble Nconf (NB: ε ~ 1 / √ Nconf )



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• the formalism is set up in Euclidean space-time; i.e.  i S   → - Slatt

• this ensures real & bounded exponential factor

• correlation function can be computed numerically (Monte Carlo weighted averages)

• use exp[- Slatt ] as probability weight to generate a configuration ensemble

• compute observable on this ensemble

• how does this work with Grassmann (fermionic) variables?



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• the non-local determinant is the costly part



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• the non-local determinant corresponds to internal fermion loops (sea quarks)



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• popular shortcut id to set det[Dlatt+m]=1; i.e. sea quarks are infinitely heavy. 

• This is the QUENCHED APPROXIMATION which has been (and still is) a 
principal source of uncontrolled errors



Lattice correlation functions

• in the lattice PI framework, we compute bare correlation functions of the form:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµDψ̄Dψ exp[−Slatt] Q(x1, · · · , xn)

• lattice (bare QCD) action in general has the form:

Slatt = a4
∑

{

[FµνFµν ]latt + ψ̄[ /Dlatt + m]ψ
}

• integrate Grassmann degrees of freedom:

< 0| Q(x1, · · · , xn) |0 > =
1

Z

∫
DAµ exp[−Sglue] det[ /Dlatt+m] Q̃(x1, · · · , xn)

• we are currently at the end of the quenched era, in the middle of Nf=2 and   
Nf=2+I, aiming at Nf=2+1+1



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

• the states |s> are those with the quantum numbers of Q(x)

• ms are the corresponding hadronic masses; mG the ground state

• < 0 | Q | G > is the vacuum-to-G  bare WME of operator Q

• higher excited states (same quantum numbers) drop out in the large-t limit

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements

• example: the operator Q is the charged axial current

• the state |G> is the charged pion;  mG →  mπ

• the matrix element defines the pion decay contant

Q → A0 = ūγ0γ5d

< 0 | A0 |π >= fπ mπ



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements

• masses and matrix elements are computed from first principles in a model 
independent way

• the computation is clean in principle, but systematic errors abound (see later)



• How do we obtain matrix elements and hadronic masses (i.e. bare low energy 
quantities)?

• Consider the lattice correlation function:

CQ(t) =
∑

!x

< 0| Q(x) Q(0) |0 >

∼
∑

s

< 0| Q(0) |s > < s| Q(0) |0 > exp[−mst]

→ | < 0| Q(0) |G > |2 exp[−mGt] + · · ·

From correlation functions to hadron masses and matrix elements

0 t

NB: gluon and sea quarks not drawn



• More general WMEs are obtained from more complicated correlation functions:

From correlation functions to hadron masses and matrix elements

C(tx, ty) =
∑

!x!y

< 0| H2(y) Q(0) H1(x) |0 >

∼ exp[−m2ty] exp[m1tx]

× < 0| H2(0) |H2 > < H2| Q(0) |H1 > < H1| H1(0) |0 >



• More general WMEs are obtained from more complicated correlation functions:

From correlation functions to hadron masses and matrix elements

Example1:                     B→D+l+ν decays have WME <D | Jμ | B >

C(tx, ty) =
∑

!x!y

< 0| H2(y) Q(0) H1(x) |0 >

∼ exp[−m2ty] exp[m1tx]

× < 0| H2(0) |H2 > < H2| Q(0) |H1 > < H1| H1(0) |0 >

Q ≡ Jµ = b̄γµc

H1 ≡ PB = d̄γ5b

H2 ≡ PD = c̄γ5d

Exclusive Semi-Leptonic B-Decays

B D(∗), π, ρ

leptons

b c, u

⇒ Vcb , Vub



Renormalization and improvement

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g02(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]
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Renormalization and improvement

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]

bare WME depends on 
bare coupling and masses

renormalized WME 
depends on dressed 

coupling, masses
and scale

renorm. constant 
diverges logarithmically 

with a

continuum limit obtained 
gradually by successive 

simulations

discretization effects due 
to cutoff finiteness 

contaminate all 
computations

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g02(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased



Renormalization and improvement

• lattice renormalization can be done either in PT or non-perturbatively (NP)

• lattice PT is tedious and badly convergent; at say LO, it introduces large O(g04) 
errors in ZQ

• NP methods introduce O(a) discretization errors is ZQ ; as also the bare 
WME has O(a) effects, this is preferable to PT

• better still: attempt to “help” continuum extrapolation by reducing all 
discretization errors to O(a2) [Symanzik improvement; see later]

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g02(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased



Lattice actions



Lattice regularization: gluons

• write a lattice action which reduces to bare QCD when a→0 

• naive continuum limit: bare quantities g0,  mq are kept fixed

• true continuum limit: physical quantities gR,  mH  are kept fixed

• arbitrariness in choice of action; it should give QCD in naive cont. limit

• naive discretization of gluonic action is not gauge invariant

• Wilson: degree of freedom is the link variable Uμ(x) ∈ SU(3)

• Writing

Uµ(xi) = exp

{

ig0Aµ(xi +
µ̂
2

)a

}

,

Wilson proposed the gauge action

S =
∑

Pµν

Pµν where Pµν = β

{

1 − 1
3

Re Tr
(

Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x)
)

}

where β = 6/g2
0 and P is called the plaquette.

x x + µ̂

x + ν̂ x + µ̂ + ν̂

µ̂

ν̂



Lattice regularization: gluons

• write a lattice action which reduces to bare QCD when a→0 

• naive continuum limit: bare quantities g0,  mq are kept fixed

• true continuum limit: physical quantities gR,  mH  are kept fixed

• arbitrariness in choice of action; it should give QCD in naive cont. limit

• naive discretization of gluonic action is not gauge invariant

• Wilson: degree of freedom is the link variable Uμ(x) ∈ SU(3)

• Writing

Uµ(xi) = exp

{

ig0Aµ(xi +
µ̂
2

)a

}

,

Wilson proposed the gauge action

S =
∑

Pµν

Pµν where Pµν = β

{

1 − 1
3

Re Tr
(

Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x)
)

}

where β = 6/g2
0 and P is called the plaquette.

x x + µ̂

x + ν̂ x + µ̂ + ν̂

µ̂

ν̂

Uμ(x) = exp[ i g0 a Aμ(x) ]≈ I + i g0 a Aμ(x) + ...

gauge field (gluon)



• basic gauge invariant element is the trace of the plaquette 

Pμν(x) = Uμ(x) Uν(x+μ) Uμ(x+μ+ν)✝ Uν(x+μ)✝    ∈ SU(3)

Pμν(x)✝ = 1 - i g02 a2 Fμν(x)2 + O(a2)

• Wilson action:

• N.B. higher order discretization effects

• gauge invariance is maintained

• Lorenz symmetry reduced to hypercubic rotations by π ⁄ 2 and translations by a

• generally, it is not the only symmetry lost on the lattice (chiral, SUSY); a central issue is 
symmetry recovery in the true continuum limit

• recovery of Lorentz symmetry appears to be straightforward while recovery of chiral 
symmetry is intricate

The gauge transformation properties of the U ’s are taken to be the same as
those of the corresponding L’s

Un,µ → VnUn,µV
†
n+µ , (28)

where the Vn ∈ SU(3) are gauge transformation matrices which live on sites. I have
adopted the abbreviated notation in which n + µ means n + aµ̂. In correspondence
with the continuum result L(x, y) = L(y, x)†, we associate U †

n,µ to the link from
n + µ to n. Note that we can multiply the U ’s along any closed loop and take the
trace, and obtain an object which is invariant under gauge transformations, since
VnV †

n = 1. These are the lattice versions of Wilson loops.
We can construct a lattice version of the pure gauge action using the smallest

Wilson loop, that around an elementary square or “plaquette”

P †
µν = Un,µUn+µ,νU

†
n+ν,µU †

n,ν . (29)

The geometry is illustrated here.

Un,µ

U †
n+ν,µ

U †
n,ν Un+µ,ν
∧ ∨

>

<

It is reasonable that such a loop is related to Fµν , because the field strength is the
curvature associated with the connection Aµ. In any case, using the correspon-
dence given above for the U ’s, and after some algebra, one finds that the classical
continuum limit of the plaquette is

P †
µν = 1 − iga2Fµν − g2

2 a4F 2
µν + ia3Gµν + ia4Hµν + 0(a5), (30)

where Hµν and Gµν and are hermitian‡. Thus one can use the µν plaquette as a
discretized version of the corresponding component of the field strength, Fµν . If we
take the trace, so as to get a gauge invariant quantity, we find

Re TrPµν = Nc − g2

2 a4
Tr(F 2

µν) + 0(a6) , (31)

where Nc = 3 is the number of colors. We then have
∫

d4x
∑

µν

1
2TrFµνFµν ∼

∑

!

2
g2 (Nc − ReTr!) . (32)

The factor of 2 arises because of the mismatch between the number of plaquettes
per site, 6, and the number of terms in the sum

∑
µν , 12.

‡Exercise: derive this result. Everyone should do it once!

13

6

g2
0

∑

P

Re Tr Pµν ∼ a4
∑

x

Fµν(x) Fµν(x) + O(a2)



Lattice regularization: naive fermions 

• write a lattice action which reduces to bare QCD when a→0 

• naive discretization of fermionic derivative (free quarks)

∂latt
µ ψ(x) =

1

2

[

ψ(x + µ) − ψ(x − µ)
]

• naive fermionic Euclidean action

Sferm = a4
∑

ψ̄(x)
[

γµ∂latt
µ + M

]

ψ(x)

• Writing

Uµ(xi) = exp

{

ig0Aµ(xi +
µ̂
2

)a

}

,

Wilson proposed the gauge action

S =
∑

Pµν

Pµν where Pµν = β

{

1 − 1
3

Re Tr
(

Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x)
)

}

where β = 6/g2
0 and P is called the plaquette.

x x + µ̂

x + ν̂ x + µ̂ + ν̂

µ̂

ν̂

ψ(x) ∈ SU(3)
Uμ(x) = exp[ i g0 a Aμ(x) ]



Lattice regularization: naive fermions 

• naive free fermion propagator (limited in first Brillouin zone-BZ):  - π ∕ a < pμ ≤ π ∕ a

• “correct” naive continuum limit

S(p;M) =
[−

∑
µ

γµ sin(apµ)/a] + M

[
∑

µ
sin(apµ)2/a2] + M2

• wrong true continuum limit due to fermion doublers (i.e. 16 poles in the first BZ)

[p0, p1, p2, p3] = [0,0,0,0]

S(p;M) =

[

−
∑

µ
γµpµ

]

+ M
[

∑

µ
p2

µ

]

+ M2

+ O(a)

p0

p1
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Lattice regularization: naive fermions 

• naive free fermion propagator (limited in first Brillouin zone-BZ):  - π ∕ a < pμ ≤ π ∕ a

• “correct” naive continuum limit

S(p;M) =
[−

∑
µ

γµ sin(apµ)/a] + M

[
∑

µ
sin(apµ)2/a2] + M2

• wrong true continuum limit due to fermion doublers (i.e. 16 poles in the first BZ)

[p0, p1, p2, p3] = 4×[π/a,π/a,π/a,0]        [p0, p1, p2, p3] = [π/a,π/a,π/a, π/a]        

S(p;M) =

[

−
∑

µ
γµpµ

]

+ M
[

∑

µ
p2

µ

]

+ M2

+ O(a)

p0

p1



• the problem is general: for any lattice fermion action (free massless case)

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) =0

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously



• the problem is general: for any lattice fermion action (free massless case)

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) =0

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• Wilson fermions: introduce irrelevant (D=5) operator in the action, which breaks chiral 
symmetry, recovered in the true continuum limit. 

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 



Wilson fermions

• Add a chiral breaking irrelevant (D=5) term to the (free) action (Wilson term):

• ultra-local operator, fairly cheap to compute

•  flavour is as in the continuum

• the origin of Brillouin zone [0,0,0,0] corresponds to physical fermion

• the other 15 corners of Brillouin zone  correspond to fermions of mass ~1/a

• Disadvantage: chiral symmetry lost!!! Must be recovered in the true continuum limit

• Consequence: renormalization gets much more complicated and χal limit hard

mq = Zm(g2

0 , aµ) m0 mq = Zm(g2

0 , aµ)
[

m0 −

f(g2
0)

a

]

[Aµ ]R = [Aµ ]0 [Aµ ]R = ZA(g2

0) [Aµ ]0

fermions with chirality OK Wilson fermions

D(x − y) → γµ ∂̂µ −

1

2
a ∂̂µ∂̂µ + m0



• the problem is general: for any lattice fermion action (free massless case)

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) =0

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• staggered fermions: dilute 16 spinorial degrees of freedom on hypercube points. Retain a 
reduced U(1) chiral symmetry. Loose “flavour transparency”



Staggered fermions

• distribute 16 spinorial degrees of freedom on each hypercube vertex

• ημ(x) = ±1 is an (even-odd) site dependent sign

• ultra-local operator, very cheap to compute

• 4 physical fermions (4-spinors) constructed from staggered single spinors & ημ(x)

• theory describes 4 degenerate flavours, or 1 flavour + 3 tastes !!

• chiral symmetry is reduced to the U(1) group; adequate in many cases for 
straightforward renormalization

mq = Zm(g2

0 , aµ) m0

D(x − y) → ηµ(x) ∂̂µ + m0

χ1

χ4

χ3
χ2



Staggered fermions

• distribute 16 spinorial degrees of freedom on each hypercube vertex

• ημ(n) = ±1 is an (even-odd) site dependent sign

• ultra-local operator, very cheap to compute

• 4 physical fermions (4-spinors) constructed from staggered single spinors & ημ(n)

• theory describes 4 degenerate flavours, or 1 flavour + 3 tastes !!

• chiral symmetry is reduced to the U(1) group; adequate in many cases for 
straightforward renormalization

• the fermion determinant det[Dlatt+m] for a single staggered field describes 1 
flavour + 3 tastes; to get the physical reality (i.e.  non-degenerate flavours) people 
take its fourth root. Do you lose locality? Probably not, but the discussion is intricate 
and on-going; see Sharpe, PoS(LAT2006)022

D(x − y) → ηµ(x) ∂̂µ + m0



• the problem is general: for any lattice fermion action (free massless case)

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) = O(a)

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• Ginsparg-Wilson fermions: break chirality mildly to O(a), give up strict locality; costly in 
practice. Known as overlap fermions



Ginsparg-Wilson fermions:

γ5D + Dγ5 = a Dγ5D , a =
a

1 + s

Our choice: Neuberger-Dirac operator.

DN =
1

a

{

1 −
A

(A† A)1/2

}

, A = 1 − aDw

Neuberger 1997

Giusti, Hoelbling, Lüscher, Wittig 2002

Ginsparg, Wilson 1982

Kaplan; Neuberger; Hasenfratz, Laliena, Niedermayer; ...

Numerical treatment challenging and expensive.

Lattice setup: GW (chiral) fermions



Ginsparg-Wilson fermions:

Renormalisation and mixing patterns as in the formal continuum theory, 
provided:

ψ → ψ̃ = (1 −
1
2 aD) ψ , ψ̄ → ψ̄

In particular, there is no dangerous mixing with lower dim. operators.

γ5D + Dγ5 = a Dγ5D , a =
a

1 + s

Lattice QCD action enjoys an exact chiral symmetry:

δψ̄ = iεψ̄γ5

δψ = iεγ̂5ψ , γ̂5 = γ5(1 − aD)

Ginsparg, Wilson 1982

Kaplan; Hasenfratz, Laliena, Niedermayer; Neuberger; ...

Lüscher 1998

Lattice setup: GW (chiral) fermions



• the problem is general: for any lattice fermion action (free massless) case)

• the lattice Dirac operator should satisfy:

Locality:        D(x-y) < C exp[ - κ |x-y| ]

Continuum limit:          D(p) = γμ pμ + O(a p2) 

No doublers:           D(p) invertible for pμ ≠ 0 

chiral symmetry:  D(x) γ5 + γ5 D(x) = O(a)

• Nielsen-Ninomyia theorem: all 4 properties cannot be satisfied simultaneously

• Domain wall fermions:  An equivalent formulation to GW fermions: introduce a fifth 
dimension; the 4-D lattice is a hypersurface (a defect) where both chiralities merge. 
Fairly costly (computationally); chirality is recovered at infinitely large DW

Sferm = a4
∑

x,y

ψ̄(x) D(x − y) ψ(y)

Fermion “doubling” 



O(a) Symanzik improvement

• systematic way to improve approach to continuum limit by eliminating O(a) effects

< f |QR(µ) | i > = lim
a→0

[

ZQ(aµ, g2

0) < f |Q(g2

0) | i > + O(a2)
]

• the gauge action is already free of O(a) effects

• same is true for staggered fermion action, but O(a2) effects are very big

• they can be reduced by modifying the action in RG-inspired ways

• also GW fermions start from O(a2) discretization errors

• Wilson fermions suffer from O(a) effects

• this is a big disadvantage
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• modify Wilson fermion action by adding counterterms of the form [a × Qdim=5 ]

• one such counterterm is adequate for the improvement of physical (“on-shell) 
quantities (hadron masses)
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• systematic way to improve approach to continuum limit by eliminating O(a) effects
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• the improvement of matrix elements of operators Qdim requires similar 

modifications, adding counterterms: Qdim→ Qdim + a Qdim+1

Aµ →

[

1 + bA(g2

0) amq

] [

Aµ + acA(g2
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O(a) Symanzik improvement

• systematic way to improve approach to continuum limit by eliminating O(a) effects

< f |QR(µ) | i > = lim
a→0

[

ZQ(aµ, g2

0) < f |Q(g2

0) | i > + O(a2)
]

• modify Wilson fermion action by adding counterterms of the form [a × Qdim=5 ]

• one such counterterm is adequate for the improvement of physical (“on-shell) 
quantities (hadron masses)

L
Wilson

→ L
Wilson + a cSW (g2

0)
[

ψ̄σµνFµνψ
]

• the improvement of matrix elements of operators Qdim requires similar 

modifications, adding counterterms: Qdim→ Qdim + a Qdim+1

arises off chiral limit

Aµ →

[

1 + bA(g2

0) amq

] [

Aµ + acA(g2

0) ∂µP
]



• Wilson fermions appear to suffer from contorted renormalizations and O(a) effects

• one can cure everything in one go: tmQCD

• universality implies that this is equivalent to QCD in the continuum limit, provided 
the twist angle tan(α) = μR/mR is fixed

Twistǝd mass QCD

D(x − y) → γµ∂̂µ −

1

2
a∂̂µ∂̂µ + m0 + iγ5τ3µ0

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058

Break flavour symmetry in non-trivial direction in flavour space → 
preserve different subgroup.
No free lunch: break P,T, flavour symmetries.



• Wilson fermions appear to suffer from contorted renormalizations and O(a) effects

• one can cure everything in one go: tmQCD

• universality implies that this is equivalent to QCD in the continuum limit, provided 
the twist angle tan(α) = μR/mR is fixed

• Control of chiral symmetry breaking allows for simpler renormalisation properties 
of many operators and allows a closer approach to the chirla limit → “mimic” exact 
chiral symmetry.
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• Wilson fermions appear to suffer from contorted renormalizations and O(a) effects

• one can cure everything in one go: tmQCD

• universality implies that this is equivalent to QCD in the continuum limit, provided 
the twist angle tan(α) = μR/mR is fixed

• at twist angle π/2, many quantities are automatically improved

Twistǝd mass QCD

D(x − y) → γµ∂̂µ −

1

2
a∂̂µ∂̂µ + m0 + iγ5τ3µ0

ALPHA Frezzotti, Grassi, Sint & Weisz, JHEP08(2001)058

Break flavour symmetry in non-trivial direction in flavour space → 
preserve different subgroup.
No free lunch: break P,T, flavour symmetries.

Frezzotti, Rossi JHEP08(2004)007



Renormalization



Hadronic renormalization scheme

• for simplicity consider a lattice theory with isospin symmetry and 3 flavours

• the 3 bare parameters are g0, mq = mu = md < ms 

• they run with the lattice spacing a in the RG sense

• the hadronic scheme renormalization conditions are simply stated: tune all 3 bare 
parameters so as to ensure that 3 physical quantities are fixed to their 
(experimentally) known values

a mP

m
exp
P

= a(g2
0 ;mq;ms)

a mπ

amP

=
m

exp
π
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amP

=
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P
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Hadronic renormalization scheme

• for simplicity consider a lattice theory with isospin symmetry and 3 flavours

• the 3 bare parameters are g0, mq = mu = md > ms 

• they run with the lattice spacing a in the RG sense

• the hadronic scheme renormalization conditions are simply stated: tune all 3 bare 
parameters so as to ensure that 3 physical quantities are fixed to their 
(experimentally) known values
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• all other physical quantities (hadronic masses) can now be predicted (i.e. computed) 
since QCD is a renormalizable theory

• predictions must be repeated at smaller couplings g0 i.e. smaller lattice spacings 
(asymptotic freedom)

• NB: this is explicitly non-perturbative and yields QCD mass spectrum



Hadronic renormalization scheme

• for simplicity consider a lattice theory with isospin symmetry and 3 flavours

• the 3 bare parameters are g0, mq = mu = md > ms 

• they run with the lattice spacing a in the RG sense

• the hadronic scheme renormalization conditions are simply stated: tune all 3 bare 
parameters so as to ensure that 3 physical quantities are fixed to their 
(experimentally) known values
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amP
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exp
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m
exp
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a mK

amP

=
m

exp
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m
exp
P

• all other physical quantities (hadronic masses) can now be predicted (i.e. computed) 
since QCD is a renormalizable theory

• predictions must be repeated at smaller couplings g0 i.e. smaller lattice spacings 
(asymptotic freedom)

• several “practical” problems have induced variants of this procedure



Operator renormalization scheme

• there are also quantities which depend on (“run with”) renormalization scale μ (e.q. 
renormalized coupling and quark masses, operator WME etc.)

• need to impose extra renormalization conditions (renormalization schemes)

• these can be standard PT schemes (e.g. MOM or even MS) with lattice regularization

• but lattice PT is badly converging

• example 1: MILC collaboration found that the strange quark mass was raised by 
14% once its renormalization constant, known in 1-loop PT, was calculated at 2-
loops

• example 2: Göckeler et al. found that the strange quark mass was raised by 24% 
once its renormalization constant, known in 1-loop PT, was calculated by a NP 
method

• two NP renormalization schemes have been devised for these renormalizations

• RI/MOM scheme

• Schrödinger Functional (SF) scheme

 G.Martinelli et al. Nucl.Phys.B445(1995)81

 M.Lüscher et al. Nucl.Phys.B478(1996)365



Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP 
scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ~ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people 
are used to MS-scheme quark masses mq(μ) with μ~2GeV) or for matching with 

perturbative scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

QR(µ) = lim
a→0

ZQ(g2

0 , aµ) Q(g2

0)
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• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP 
scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ~ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people 
are used to MS-scheme quark masses mq(μ) with μ~2GeV) or for matching with 

perturbative scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

Wilson coefficients
calculated in PT

long-distance effects 

renormalization scale
must be large; say 10GeV
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Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP 
scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ~ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people 
are used to MS-scheme quark masses mq(μ) with μ~2GeV) or for matching with 

perturbative scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

must be smaller than 1
for avoiding discretization errors

QR(µ) = lim
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Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP 
scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ~ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people 
are used to MS-scheme quark masses mq(μ) with μ~2GeV) or for matching with 

perturbative scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

• if we wish to compute everything at one go (a single lattice) we must also ensure 
that mH L >> 1, in order to avoid finite size errors

• i.e. we must satisfy L >> 1/mH ~ 1/(0.15 GeV) >> 1/μ ~ 1/(10 GeV) >> a

• IMPOSSIBLE on present day resources

QR(µ) = lim
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ZQ(g2

0 , aµ) Q(g2
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Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP 
scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ~ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people 
are used to MS-scheme quark masses mq(μ) with μ~2GeV) or for matching with 

perturbative scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

• need to compute  the renormalized WME at a hadronic (low) scale μmin and then do 
RG-running all the way to a perturbative (high) scale μmax

• the SF scheme, combined with finite size techniques, is the only one used so far for 
this RG-running

QR(µ) = lim
a→0

ZQ(g2

0 , aµ) Q(g2

0)



Schrödinger Functional (SF) and step scaling function (SSF)

• work in finite (small) physical volumes, as they are OK for the determination of 
renormalization constants, which are local UV quantities

• use finite size as renormalization scale; i.e. μ = 1/L (this is NOT the L of the WME)

• impose SF renormalization condition on a suitably constructed lattice (Dirichlet 
b.c.’s in time; periodic in space), which allows us to work with mass-
independent renormalization scheme and compute Z(g02,a/L)

• this is done at a hadronic scale μmin = 1/Lmax 

• we run all the way to μmax = 1/Lmin in stepwise manner, 
through the step scaling function

Here, m, is to be taken from eq. (I.1.36) inserted into an arbitrary correlation function
and ZA can be determined from a proper chiral Ward identity [20–22]. Note that m
does not depend on which correlation function is used because the PCAC relation is an
operator identity. The definition of m is completed by supplementing eq. (I.1.37) with
a specific normalization condition for the pseudo-scalar density. The running mass m
then inherits its scheme- and scale-dependence (µ) from the corresponding dependence of
PR. Such a normalization condition may be imposed through infinite volume correlation
functions. Since we want to be able to compute m(µ) for large energy scales µ, we do,
however, need a finite volume definition (see Sect. II.1.2). This is readily given in terms
of correlation functions in the SF.

space

time

Figure 2: fP (left) and f1 (right) in terms of quark propagators.

To start with, let us define (iso-vector) pseudo-scalar fields at the boundary of the
SF,

Oa =
∫

d3u

∫
d3v ζ(u)γ5

1
2τaζ(v),

O ′a =
∫

d3u

∫
d3v ζ ′(u)γ5

1
2τaζ ′(v) , (I.1.39)

to build up the correlation functions

fP(x0) = −1
3〈P

a(x)Oa〉 ,

f1 = 〈O ′aOa〉 , (I.1.40)

which are illustrated in Fig. 2.
We then form the ratio

ZP = const.
√

f1/fP(x)|x0=L/2 , (I.1.41)

such that the renormalization of the boundary quark fields, eq. (I.1.31), cancels out.
The proportionality constant is to be chosen such that ZP = 1 at tree level. To define
the scheme completely one needs to further specify the boundary values C,C ′ and the
boundary conditions for the quark fields in space. These details are of no importance,
here.

13

σQ[ g2
R ] =

QR( g2
R; 2L)

QR( g2
R;L)

∣

∣

∣

g2

R
=fixed

• a discrete version of the anomalous dimension, for a change of scale by a factor of 2

• compute this iteratively until you arrive at μmax which amount to RG-running

• it is a continuum quantity; can be calculated on the lattice with modest lattice volumes



Schrödinger Functional (SF) and step scaling function (SSF)

Figure 17: The QCD β–function in the SF scheme.

uncertainties. For example just averaging data at all values of a/L produces an unreal-
istically small statistical error, because one has then assumed that a-effects are entirely
absent, although the data tell only that they are smaller than statistical uncertainties.
One possible strategy for the continuum extrapolation is thus a fit to a constant that
uses the lattices with L/a = 6, 8 only. As a check of this procedure, different variants of
a combined continuum extrapolation of all the data sets, but excluding L/a = 4 were
carried out. For example the ansatz

Σ(2)(2, u, a/L) = σ(2, u) + ρu4 (a/L)2

with a constant ρ was fitted to the data. The final conclusion was that the simple fit to
a constant (for L/a = 6, 8) yields realistic error estimates for the existing data set [70].
A further check of this procedure is Fig. 15 where the dotted lines represent the error
band obtained in this way and the four points at smaller lattice spacing are in perfect
agreement with this band.

After this long – but important – discussion of cutoff effects, we are convinced
that we have continuum results for the step scaling function with realistic uncertainties.
They are ready to be used to construct the running coupling and the Λ-parameter.

II.2.4 The running of the coupling

The numerical values of σ(u) are next represented by a smooth interpolating function
(a polynomial in u). With this function the running coupling ḡ2(2−iLmax) ≡ ui can be
constructed from the recursion

umax ≡ u0 = ḡ2(Lmax) , σ(ui+1) = ui , i = 0 . . . n ; (II.2.10)
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Schrödinger Functional (SF) and step scaling function (SSF)

the result is shown in Fig. 18 for the (arbitrary) choice umax = 5.5. One can also set up
a recursion for the β-function itself [70],

β(
√

ui) =
√

ui+1/ui σ′(ui+1)β(
√

ui+1) . (II.2.11)

Together with a start value for the β-function taken from perturbation theory (3-loop)
at the weakest coupling (α ≈ 0.08) this yields the numerical results Fig. 17. Their
agreement with perturbation theory is excellent at weak couplings α < 0.2, while at the
largest couplings significant deviations from perturbation theory are present for Nf = 2.
Indeed the difference between non-perturbative points and 3-loop can’t be described by
an effective 4-loop term with a reasonable coefficient. At the same time the perturbative
series just by itself does not show signs of its failure at, say, α ≈ 0.3: instead successive
orders yield smaller and smaller corrections.

We return to the running couplings shown in Fig. 18. In the zero flavor case,
also the region of µ of around 250MeV was investigated with a specifically adapted
strategy [113]. In this region, the SF coupling shows the rapid growth expected from a
strong coupling expansion.

Initially, the graphs Fig. 18 are obtained for µ in units of µmin = 1/Lmax. One
chooses umax relatively large, but within the range covered by the non-perturbative
computation of σ(u). The artificial scale Lmax has been replaced by the Λ parameter
by use of eq. (II.1.4). We proceed to explain this step.

Figure 18: Running coupling for Nf = 2 (left) and Nf = 0 (right).
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Schrödinger Functional (SF) and step scaling function (SSF)

Figure 21: The running quark mass as a function of µ ≡ 1/L for Nf = 2.

of the strange quark mass has been reported in the literature, one can presently not
exclude that this is due to perturbative uncertainties or discretization errors. Note that
the quark masses computed in the quenched approximation were in a similar stage in
1996 but very soon afterward the uncertainties shrunk by an order of magnitude due
to NP renormalization and continuum extrapolations. This remains to be achieved for
the real theory with Nf > 0!

II.4 Renormalization scale dependence of other composite operators

Due to our definition of the renormalized quark mass, its scale dependence is given by the
one of the composite operator P a(x). Other composite operators can be considered and
indeed the strategy described here has been applied to 4-fermion operators in the weak
effective Hamiltonian [11, 99–101], the HQET axial current [9, 10] and in the operator
which yields 〈x〉 of the non-singlet structure functions [125–127]. It is worth pointing

i Nf input Mi/GeV ref.

strange 0 mK, r0 0.137(05) [33]
strange 2 mK, r0 0.137(27) [23]
charm 0 mD, r0 1.654(45) [123]
beauty 0 mBs

, mB∗

s
, r0 6.771(99) [124]

Table 4: Quark masses determined with full NP renormalization and continuum limit.
We use r0 = 0.5 fm.
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NB: these results depend on Nf , but NOT on the quark mass values
(mass independent renormalization, carried out explicitly at zero quark mass) 

 ALPHA M. Della Morte et al. Nucl.Phys.B729(2005)117


