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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

The theory of strong interactions

@ QCD is a non-Abelian gauge theory with gauge group SU(3)..

@ The coupling constant is a decreasing function of the energy:
asymptotic freedom and confinement.
(Gross, Politzer, Wilckez).

o Computations of strong processes (at sufficiently high energy)
are feasible in PT.
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution
The high energy limit and the BFKL equation

Factorization theorem

The factorization theorem (DIS)

@ Convolution between hard partonic cross section and PDFs.
. . 2
@ The cross section is affected by ag’/n”%.

@ These collinear logs are resummed if G(x, @?) is the solution
of GLAP evolution equation.
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

GLAP evoultion

@ The Gribov-Lipatov-Altarelli-Parisi equation is an
integro-differential one in (x, t) space:

aliin) = o0X [€(H :3)

q;,9;

qu,-(%’as (t) ) q,g<

qu/(g’o‘s t)) Peg

X

where t = In and P, b(x, as) are the splitting functions.
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

@ The study of the GLAP equation is simplified in Mellin space:

1
R d
F(N, t) = / ZxNE(x, )
0 X

@ Convolutions become products and GLAP equation an
ordinary differential one.

< GN,£) = 1(as(1), N)G(N, 1

G(N, t) is the eigenvector with the biggest eigenvalue =y in the
singlet sector.

@ The anomalous dimension are known at NNLO accuracy.
(Vogt, Moch, Vermaseren).
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

Small-x physics

@ PT works in QCD in the presence of a hard scale
(eg Q2 in DIS, my in heavy flavour production).

GLAP equation resums large logs of this scale.

Define x as the ratio of the hard scale and the collision energy.

In the high energy limit (s — oco) cross sections are affected
by large logs of x.

(]

We need a formalism to compute cross sections in the small-x
limit.
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

Cross sections in the high energy limit

The kt factorization theorem (DIS)

a_/ dszo ,k%) G(z, k2)

& (%, k%) is the off-shell partonic cross section.

® G(z, k%) is the parton density not integrated over transverse
momenta.
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

The BFKL equation

@ The evolution of G is described by BFKL equation:
d
d_fg(g’ M) = X(Ma Ots)g(f, M)

o This equation resums (at LO) a2¢" = of/n"1

M
@ Already Mellin transformed with respect to (Q—j)

=
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

The BFKL equation

@ The evolution of G is described by BFKL equation:
d
d_fg(g’ M) = X(Ma Ots)g(f, M)

o This equation resums (at LO) a2¢" = of/n"1
M
@ Already Mellin transformed with respect to (S—;)

@ The introduction of the running coupling is nontrivial:

Qs N Qs

al(t) = —— — Ge=—— >
S() 1+a5,60t S l—asﬂoaiM
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The perturbative regime of QCD Hard processes in QCD and Altarelli-Parisi evolution

The high energy limit and the BFKL equation

BFKL kernel

The BFKL kernel is known at NLO accuracy:

X(M, &s) = asxo(M) + 6‘§X1(M) +...

(]

The LO contribution is symmetric with respect M <+ 1 — M
(exchange of the initial virtualities)

This symmetry is broken at NLO: running coupling effect.

(]

It can be restored by a symmetric choice of the running (by a
suitable order of the operators).

Unstable expansion due to large unresummed @ logs: double
leading resummation (see Altarelli, Ball, Forte).
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Naive duality

BFKL evolution from GLAP R Gl @
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© BFKL evolution from GLAP
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Naive duality

BFKL evolution from GLAP Running coupling case

Duality relations

@ In the fixed coupling case, if x and ~y are related by

x(Y(N,as),a5) = N
Y(x(M,as),as) = M

BFKL and GLAP equation admit the same solution, provided
that BC are suitably chosen.

@ The proof of this statement is easily performed in the double
Mellin (N, M) space.

@ It is clear that we can recover information about x from v and
viceversa.
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BFKL evolution from GLAP W Gl

Running coupling case

The target is the computation of the NNLO BFKL kernel x5 in the
collinear approximation from the anomalous dimensions.

@ Computation of the naive dual through fixed coupling duality
relations.

@ Analysis of the running coupling case.
@ Inclusion of kinematic variable contributions.

xo and 1 are also computed in this approximation and their
expressions are compared to the complete ones.
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Naive duality

BFKL evolution from GLAP Running coupling case

Explicit computations

@ Starting point: anomalous X
dimensions up to NNLO S| e “

@ Computation through " “ J]///xm
duality of the first three o / o
terms of the expansion of x L e i .
in powers of as at fixed ;. ) o

@ Extraction of the 0 o o
contributions to the » o
standard expansion up to »
NNLO. vt R e s
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Naive duality

BFKL evolution from GLAP Running coupling case

Outline

© BFKL evolution from GLAP

@ Running coupling case
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Naive duality

BFKL evolution from GLAP Running coupling case

The running coupling case

® The introduction of the running coupling in BFKL is
problematic and the extension of the naive duality to the
general case in nontrivial.

@ BFKL equation still admits a GLAP type solution, but naive
duality has to be corrected by so called running coupling
contributions.
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Naive duality

BFKL evolution from GLAP Running coupling case

Algebraic approach

@ Let us consider the GLAP equation in (N, M) space at fixed
running:

MG(N, M) = v(as, Nas 1)G(N, M)

@ With running coupling this algebraic equation become an
operatorial one:

MG(N, M) = y(&s, N&g ') G(N, M)
@ It is of the form:
§ G(N, M) =p G(N,M), §=n(as,Na5"),p=M
@ Given f(§), we want the function g(p), such that:
f(q) G(N,M) = g(p) G(N, M),
@ g # f since p and § do not commute.
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Naive duality

BFKL evolution from GLAP Running coupling case

@ Baker-Campbell-Hausdorff formula enables to express g in
terms of f and commutators:

FEGIN,M) = (F(B) ~ 151" () + 54 [a BIIF"(3) +

+5(8,8DF" (B) + .. )G(N, M).

o If we apply to GLAP equation the function f = x such that
x(7(&s, Nag1)) = N, we recover the BFKL equation:

NG(N, M) = [x(&, M) + Ax(&, M))] G(N, M)

@ RC contributions completely expressed in terms of derivative
of the naive dual y and multiple commutators of y(&s, Nég 1)
and M.
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Naive duality

BFKL evolution from GLAP Running coupling case

Explicit computation of RC contributions

o Compute the commutators at the order in &g required.
@ Consider the 1-loop accuracy for the running coupling:

bl = a—s—ﬁo +51( asﬁo 6 (Oésﬁo) 8M2)+O( 3)-
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Naive duality

BFKL evolution from GLAP Running coupling case

Explicit computation of RC contributions

o Compute the commutators at the order in &g required.
@ Consider the 1-loop accuracy for the running coupling:

645 = a—s—ﬁo +,81( asﬁo 3 (as/BO) 8M2)+O( 3)

@ The result for the NNLO contribution is:

. 2 1 "
(M) = () + G5 EE D X8

X0 3 2
+—ﬂ§% (12 () —2X6X6'X6”+3(x6) xo")
XXt g oaxg 1o xoxex
XO XO ( o)
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. Naive duality
BFKL evolution from GLAP Running coupling case

Further contributions

Three more contributions have to be included:
@ Unintegrated parton density

@ Kinematic variables
These transformations are easily implemented in the
operatorial formalism: straightforward computation of the

contributions to the kernel.
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. Naive duality
BFKL evolution from GLAP Running coupling case

Further contributions

Three more contributions have to be included:
@ Unintegrated parton density

@ Kinematic variables
These transformations are easily implemented in the
operatorial formalism: straightforward computation of the

contributions to the kernel.

@ Factorization scheme
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Naive duality

BFKL evolution from GLAP Running coupling case

Factorization schemes

@ There is a mismatching of normalization between the scheme
MS and Q°

@ The relation between the two scheme is known only at NLO
(Catani, Hautmann 1994)

@ The unknown NNLO function should be free of poles in
M = 0, not affecting the collinear approximation of x»

@ A full description of the scheme change with the operator
analysis has not been understood yet.

@ We are testing the argument doing Catani’'s computation at
NNLO.
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. Naive duality
BFKL evolution from GLAP Running coupling case

Symmetrization

@ We have the collinear approximation (around M = 0) of the
BFKL kernel at NNLO accuracy in symmetric variables.

@ The symmetry between the gluon virtualities in the Mellin
space is M <+ 1 — M: we can extend the result in the region

M~ 1:
x(bs, M) = asxg™(M) + &2x7(M) + &2x3™ (M) +
+x3"(1 — M)éas + x7™(1 — M)a2 +
+x3™(1 - M)&3.
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Naive duality

BFKL evolution from GLAP Running coupling case

The BFKL kernel up to order a3
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Figure: Plots of collinear approximation of the BFKL kernel. The blue
line is the major result: x°° = asxo + a2x1 + alx2, as = 0.2.
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Naive duality

BFKL evolution from GLAP Running coupling case

Comparison of LO and NLO
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A = 100X X' < 1.5, in both cases.

Simone Marzani High energy evolution in QCD



Conclusions

Summary and conclusions

@ Introduction to PT in QCD: factorization and GLAP evolution.

@ Description of the high energy limit of QCD and the BFKL
equation.

@ Connection between GLAP and BFKL evolution: duality
relations.

@ Use of these relation to extract the high energy kernel from
the anomalous dimensions up to NNLO.

@ The scheme change at NNLO: work in progress.
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