The perturbative regime of QCD BFKL evolution from GLAP Conclusions

High energy evolution in QCD

Simone Marzani

School of Physics University of Edinburgh

Spring School "Bruno Touschek" Frascati, May 2006

Outline

The perturbative regime of quantum chromodynamics

- Hard processes in QCD and Altarelli-Parisi evolution
- The high energy limit and the BFKL equation

2 BFKL evolution from GLAP

- Naive duality
- Running coupling case

3 Conclusions

Outline

- The perturbative regime of quantum chromodynamics
 Hard processes in QCD and Altarelli-Parisi evolution
 - The high energy limit and the BFKL equation
- 2 BFKL evolution from GLAP
 - Naive duality
 - Running coupling case

3 Conclusions

The theory of strong interactions

- QCD is a non-Abelian gauge theory with gauge group $SU(3)_c$.
- The coupling constant is a decreasing function of the energy: *asymptotic freedom and confinement*. (Gross, Politzer, Wilckez).
- Computations of strong processes (at sufficiently high energy) are feasible in PT.

Factorization theorem

The factorization theorem (DIS)

$$\sigma = \int \frac{dz}{z} \hat{\sigma}\left(\frac{x}{z}, Q^2\right) G(z, Q^2)$$

- Convolution between hard partonic cross section and PDFs.
- The cross section is affected by $\alpha_s^n \ln^n \frac{Q^2}{\mu^2}$.
- These collinear logs are resummed if $G(x, Q^2)$ is the solution of GLAP evolution equation.

< 17 ▶

GLAP evolution

• The Gribov-Lipatov-Altarelli-Parisi equation is an integro-differential one in (x, t) space:

$$\frac{\partial}{\partial t} \begin{pmatrix} q_i(x,t) \\ g(x,t) \end{pmatrix} = \alpha_s(t) \sum_{q_j, \bar{q}_j} \int_x^1 \frac{d\xi}{\xi} \begin{pmatrix} q_j(\xi,t) \\ g(\xi,t) \end{pmatrix} \\ \times \begin{pmatrix} P_{q_iq_j}\left(\frac{x}{\xi}, \alpha_s(t)\right) & P_{q_ig}\left(\frac{x}{\xi}, \alpha_s(t)\right) \\ P_{gq_j}\left(\frac{x}{\xi}, \alpha_s(t)\right) & P_{gg}\left(\frac{x}{\xi}, \alpha_s(t)\right) \end{pmatrix}$$

where $t = ln \frac{Q^2}{\mu^2}$ and $P_{a,b}(x, \alpha_s)$ are the splitting functions.

• The study of the GLAP equation is simplified in Mellin space:

$$\hat{f}(N,t) = \int_0^1 \frac{dx}{x} x^N f(x,t)$$

 Convolutions become products and GLAP equation an ordinary differential one.

$$\frac{d}{dt}G(N,t)=\gamma(\alpha_{s}(t),N)G(N,t)$$

G(N, t) is the eigenvector with the biggest eigenvalue γ in the singlet sector.

 The anomalous dimension are known at NNLO accuracy. (Vogt, Moch, Vermaseren).

Outline

- The perturbative regime of quantum chromodynamics
 Hard processes in QCD and Altarelli-Parisi evolution
 The high energy limit and the BFKL equation
- 2 BFKL evolution from GLAP
 - Naive duality
 - Running coupling case

3 Conclusions

Small-x physics

- PT works in QCD in the presence of a hard scale (eg Q^2 in DIS, m_f in heavy flavour production).
- GLAP equation resums large logs of this scale.
- Define x as the ratio of the hard scale and the collision energy.
- In the high energy limit $(s \to \infty)$ cross sections are affected by large logs of x.
- We need a formalism to compute cross sections in the small-x limit.

- - I - - I I

The perturbative regime of QCD BFKL evolution from GLAP Conclusions

Hard processes in QCD and Altarelli-Parisi evolution The high energy limit and the BFKL equation

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Cross sections in the high energy limit

The k_T factorization theorem (DIS)

$$\sigma = \int \frac{dz}{z} d^2 k_T \hat{\sigma} \left(\frac{x}{z}, k_T^2\right) \mathcal{G}(z, k_T^2)$$

- $\hat{\sigma}\left(\frac{x}{z}, k_T^2\right)$ is the off-shell partonic cross section.
- $\mathcal{G}(z, k_T^2)$ is the parton density not integrated over transverse momenta.

· < /₽ > < ≥ > <

The BFKL equation

• The evolution of $\mathcal G$ is described by BFKL equation:

$$\frac{d}{d\xi}\mathcal{G}(\xi,M) = \chi(M,\alpha_{s})\mathcal{G}(\xi,M)$$

- This equation resums (at LO) $\alpha_s^n \xi^n = \alpha_s^n l n^n \frac{1}{x}$
- Already Mellin transformed with respect to $\left(\frac{Q^2}{\mu^2}\right)^M$
- The introduction of the running coupling is nontrivial:

$$\alpha_s(t) = \frac{\alpha_s}{1 + \alpha_s \beta_0 t} \implies \hat{\alpha}_s = \frac{\alpha_s}{1 - \alpha_s \beta_0 \frac{\partial}{\partial M}}$$

· < /₽ > < ≥ > <

The BFKL equation

• The evolution of $\mathcal G$ is described by BFKL equation:

$$\frac{d}{d\xi}\mathcal{G}(\xi,M) = \chi(M,\alpha_{s})\mathcal{G}(\xi,M)$$

- This equation resums (at LO) $\alpha_s^n \xi^n = \alpha_s^n l n^n \frac{1}{x}$
- Already Mellin transformed with respect to $\left(\frac{Q^2}{\mu^2}\right)^M$
- The introduction of the running coupling is nontrivial:

$$\alpha_{s}(t) = \frac{\alpha_{s}}{1 + \alpha_{s}\beta_{0}t} \implies \hat{\alpha}_{s} = \frac{\alpha_{s}}{1 - \alpha_{s}\beta_{0}\frac{\partial}{\partial M}}$$

< 17 >

→ Ξ →

BFKL kernel

• The BFKL kernel is known at NLO accuracy:

$$\chi(M, \hat{\alpha}_s) = \hat{\alpha}_s \chi_0(M) + \hat{\alpha}_s^2 \chi_1(M) + \dots$$

- The LO contribution is symmetric with respect $M \leftrightarrow 1 M$ (exchange of the initial virtualities)
- This symmetry is broken at NLO: running coupling effect.
- It can be restored by a symmetric choice of the running (by a suitable order of the operators).
- Unstable expansion due to large unresummed Q² logs: double leading resummation (see Altarelli, Ball, Forte).

Outline

The perturbative regime of quantum chromodynamics
 Hard processes in QCD and Altarelli-Parisi evolution
 The high energy limit and the BFKL equation

- BFKL evolution from GLAP
 - Naive duality
 - Running coupling case

3 Conclusions

Duality relations

 \bullet In the fixed coupling case, if χ and γ are related by

 $\chi(\gamma(N, \alpha_s), \alpha_s) = N$ $\gamma(\chi(M, \alpha_s), \alpha_s) = M$

BFKL and GLAP equation admit the same solution, provided that BC are suitably chosen.

- The proof of this statement is easily performed in the double Mellin (N, M) space.
- It is clear that we can recover information about χ from γ and viceversa.

・ロト ・同ト ・ヨト ・ヨト

The target is the computation of the NNLO BFKL kernel χ_2 in the collinear approximation from the anomalous dimensions.

- Computation of the naive dual through fixed coupling duality relations.
- Analysis of the running coupling case.
- Inclusion of *kinematic variable* contributions.

 χ_0 and χ_1 are also computed in this approximation and their expressions are compared to the complete ones.

→ ∃ →

Naive duality Running coupling case

Explicit computations

- Starting point: anomalous dimensions up to NNLO
- Computation through duality of the first three terms of the expansion of χ in powers of α_s at fixed α_s/M.
- Extraction of the contributions to the standard expansion up to NNLO.

Outline

The perturbative regime of quantum chromodynamics
 Hard processes in QCD and Altarelli-Parisi evolution
 The high energy limit and the BFKL equation

- 2 BFKL evolution from GLAP
 - Naive duality
 - Running coupling case

3 Conclusions

∃ ▶ ∢

The running coupling case

- The introduction of the running coupling in BFKL is problematic and the extension of the naive duality to the general case in nontrivial.
- BFKL equation still admits a GLAP type solution, but naive duality has to be corrected by so called *running coupling contributions*.

▲ □ ▶ ▲ □ ▶ ▲

Algebraic approach

• Let us consider the GLAP equation in (*N*, *M*) space at fixed running:

$$MG(N, M) = \gamma(\alpha_s, N\alpha_s^{-1})G(N, M)$$

With running coupling this algebraic equation become an operatorial one:

$$MG(N, M) = \gamma(\hat{\alpha}_s, N\hat{\alpha}_s^{-1})G(N, M)$$

• It is of the form:

 $\hat{q} G(N, M) = \hat{p} G(N, M), \quad \hat{q} = \gamma(\hat{\alpha}_s, N\hat{\alpha}_s^{-1}), \hat{p} = M$

• Given $f(\hat{q})$, we want the function $g(\hat{p})$, such that:

$$f(\hat{q}) \ G(N,M) = g(\hat{p}) \ G(N,M) \,,$$

• $g \neq f$ since \hat{p} and \hat{q} do not commute.

- The perturbative regime of QCD BFKL evolution from GLAP Conclusions
- Baker-Campbell-Hausdorff formula enables to express g in terms of f and commutators:

$$f(\hat{q})G(N,M) = (f(\hat{p}) - \frac{1}{2}[\hat{p},\hat{q}]f''(\hat{p}) + \frac{1}{6}[\hat{q},[\hat{q},\hat{p}]]f'''(\hat{p}) + \frac{1}{8}([\hat{p},\hat{q}])^2 f'^V(\hat{p}) + \dots)G(N,M).$$

• If we apply to GLAP equation the function $f = \chi$ such that $\chi(\gamma(\hat{\alpha}_s, N\hat{\alpha}_s^{-1})) = N$, we recover the BFKL equation:

 $NG(N, M) = [\chi(\hat{\alpha}, M) + \Delta\chi(\hat{\alpha}, M))] G(N, M)$

• RC contributions completely expressed in terms of derivative of the naive dual χ and multiple commutators of $\gamma(\hat{\alpha}_s, N\hat{\alpha}_s^{-1})$ and M.

Explicit computation of RC contributions

- Compute the commutators at the order in $\hat{\alpha}_s$ required.
- Consider the 1-loop accuracy for the running coupling:

$$\hat{\alpha}_{s}^{-1} = \frac{1}{\alpha_{s}} - \beta_{0} \frac{\partial}{\partial M} + \beta_{1} \left(-\alpha_{s} \beta_{0} \frac{\partial}{\partial M} - \frac{1}{2} (\alpha_{s} \beta_{0})^{2} \frac{\partial^{2}}{\partial M^{2}} \right) + O(\alpha_{s}^{3}) \,.$$

• The result for the NNLO contribution is:

$$\begin{split} \tilde{\chi}_{2}(M) &= \chi_{2}(M) + \frac{1}{4}\beta_{0}^{2}\frac{\chi_{0}(\chi_{0}'')^{2}}{(\chi_{0}')^{2}} - \frac{1}{2}\beta_{0}\beta_{1}\frac{\chi_{0}\chi_{0}''}{\chi_{0}'} \\ &+ \frac{1}{24}\beta_{0}^{2}\frac{(\chi_{0})^{2}}{(\chi_{0}')^{4}} \left(12\left(\chi_{0}''\right)^{3} - 2\chi_{0}'\chi_{0}''\chi_{0}''' + 3\left(\chi_{0}'\right)^{2}\chi_{0}'^{V}\right) \\ &- \frac{1}{2}\beta_{0}\frac{\chi_{0}\chi_{1}''}{\chi_{0}'} - \beta_{0}\frac{\chi_{1}\chi_{0}''}{\chi_{0}'} + \frac{1}{2}\beta_{0}\frac{\chi_{0}\chi_{0}'\chi_{1}'}{(\chi_{0}')^{2}} \,. \end{split}$$

Explicit computation of RC contributions

- Compute the commutators at the order in $\hat{\alpha}_{\rm s}$ required.
- Consider the 1-loop accuracy for the running coupling:

$$\hat{\alpha}_{s}^{-1} = \frac{1}{\alpha_{s}} - \beta_{0} \frac{\partial}{\partial M} + \beta_{1} \left(-\alpha_{s} \beta_{0} \frac{\partial}{\partial M} - \frac{1}{2} (\alpha_{s} \beta_{0})^{2} \frac{\partial^{2}}{\partial M^{2}} \right) + O(\alpha_{s}^{3}) \,.$$

• The result for the NNLO contribution is:

$$\begin{split} \tilde{\chi}_{2}(M) &= \chi_{2}(M) + \frac{1}{4}\beta_{0}^{2}\frac{\chi_{0}(\chi_{0}')^{2}}{(\chi_{0}')^{2}} - \frac{1}{2}\beta_{0}\beta_{1}\frac{\chi_{0}\chi_{0}''}{\chi_{0}'} \\ &+ \frac{1}{24}\beta_{0}^{2}\frac{(\chi_{0})^{2}}{(\chi_{0}')^{4}} \left(12\left(\chi_{0}''\right)^{3} - 2\chi_{0}'\chi_{0}''\chi_{0}'' + 3\left(\chi_{0}'\right)^{2}\chi_{0}'^{\prime\prime}\right) \\ &- \frac{1}{2}\beta_{0}\frac{\chi_{0}\chi_{1}''}{\chi_{0}'} - \beta_{0}\frac{\chi_{1}\chi_{0}''}{\chi_{0}'} + \frac{1}{2}\beta_{0}\frac{\chi_{0}\chi_{0}''\chi_{1}'}{(\chi_{0}')^{2}} \,. \end{split}$$

Further contributions

Three more contributions have to be included:

- Unintegrated parton density
- Kinematic variables

These transformations are easily implemented in the operatorial formalism: straightforward computation of the contributions to the kernel.

• Factorization scheme

• = • •

Further contributions

Three more contributions have to be included:

- Unintegrated parton density
- Kinematic variables

These transformations are easily implemented in the operatorial formalism: straightforward computation of the contributions to the kernel.

Factorization scheme

Factorization schemes

- There is a mismatching of normalization between the scheme \overline{MS} and Q^0
- The relation between the two scheme is known only at NLO (Catani, Hautmann 1994)
- The unknown NNLO function should be free of poles in M = 0, not affecting the collinear approximation of χ_2
- A full description of the scheme change with the operator analysis has not been understood yet.
- We are testing the argument doing Catani's computation at NNLO.

→ Ξ →

Symmetrization

- We have the collinear approximation (around M = 0) of the BFKL kernel at NNLO accuracy in symmetric variables.
- The symmetry between the gluon virtualities in the Mellin space is $M \leftrightarrow 1 M$: we can extend the result in the region $M \sim 1$:

$$\begin{split} \chi(\hat{\alpha}_{s}, M) &= \hat{\alpha}_{s} \chi_{0}^{sym}(M) + \hat{\alpha}_{s}^{2} \chi_{1}^{sym}(M) + \hat{\alpha}_{s}^{3} \chi_{2}^{sym}(M) + \\ &+ \chi_{0}^{sym}(1-M)\hat{\alpha}_{s} + \chi_{1}^{sym}(1-M)\hat{\alpha}_{s}^{2} + \\ &+ \chi_{2}^{sym}(1-M)\hat{\alpha}_{s}^{3} \,. \end{split}$$

< ロ > < 同 > < 回 > < 回

The perturbative regime of QCD BFKL evolution from GLAP Conclusions

Naive duality Running coupling case

The BFKL kernel up to order α_s^3

Figure: Plots of collinear approximation of the BFKL kernel. The blue line is the major result: $\chi^{coll} = \alpha_s \chi_0 + \alpha_s^2 \chi_1 + \alpha_s^3 \chi_2$, $\alpha_s = 0.2$.

____ ▶

The perturbative regime of QCD BFKL evolution from GLAP Conclusions

Naive duality Running coupling case

Comparison of LO and NLO

Simone Marzani

High energy evolution in QCD

Summary and conclusions

- Introduction to PT in QCD: factorization and GLAP evolution.
- Description of the high energy limit of QCD and the BFKL equation.
- Connection between GLAP and BFKL evolution: duality relations.
- Use of these relation to extract the high energy kernel from the anomalous dimensions up to NNLO.
- The scheme change at NNLO: work in progress.