In collaboration with:

Orlando Panella, INFN Perugia C. Carimalo and W. Da Silva (LPNHE, Paris VI)

SUSY Lepton flavor Violation at Photon Colliders

hep/ph 0508256, LPNHE 2005-11, Phys. Rev. D 72, 115004 (2005)

Mirco Cannoni

Università di Perugia INFN Sezione di Perugia

Frascati, May 18, 2006 LNF Spring School

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary

Mirco Cannoni SUSY LFV at Photon Colliders

イロト イヨト イヨト イヨト

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary

2 SUSY scenario for Lepton Flavor Violation

Mirco Cannoni SUSY LFV at Photon Colliders

2

< ∃ >

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary

1 Introduction

2 SUSY scenario for Lepton Flavor Violation

3 Cross sections at a Photon Collider and Backgrounds

- Photon Beams
- Signal Cross sections
- Standard Model Background

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary

1 Introduction

- 2 SUSY scenario for Lepton Flavor Violation
- 3 Cross sections at a Photon Collider and Backgrounds
 - Photon Beams
 - Signal Cross sections
 - Standard Model Background
- 4 Summary
 - Conclusions

Outline	Introduction $\circ\circ$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
\circ \cdot 1:				
Outin	ne			

1 Introduction

2 SUSY scenario for Lepton Flavor Violation

3 Cross sections at a Photon Collider and Backgrounds

- Photon Beams
- Signal Cross sections
- Standard Model Background

Summary
 Conclusions

프 > - * 프 >

Outline	Introduction $\bullet 0$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Motiv	vations			

• Neutrino masses $\neq 0$ hint to lepton flavour violation (LFV) $\ell \rightarrow \ell' + \gamma$. However in the standard Model (SM) such processes are strongly suppressed: $Br \approx \mathcal{O}(10^{-40})$

▲臣▶ ▲臣▶ 臣 のへ⊙

Outline	Introduction •0	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Mati	rationa			

Motivations

- Neutrino masses $\neq 0$ hint to lepton flavour violation (LFV) $\ell \rightarrow \ell' + \gamma$. However in the standard Model (SM) such processes are strongly suppressed: $Br \approx \mathcal{O}(10^{-40})$
- $Br(\mu \to e\gamma) < 1.2 \times 10^{-11}$ [MEGA, PRD 65 2002 112002] $Br(\tau \to e\gamma) < 3.9 \times 10^{-7}$ [BELLE hep-ex/0501068] $Br(\tau \to \mu\gamma) < 6.8 \times 10^{-8}$ [BABAR hep-ex 0502032, PRL 92 171802].

Outline	Introduction $\bullet 0$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00

Motivations

- Neutrino masses $\neq 0$ hint to lepton flavour violation (LFV) $\ell \rightarrow \ell' + \gamma$. However in the standard Model (SM) such processes are strongly suppressed: $Br \approx \mathcal{O}(10^{-40})$
- $Br(\mu \to e\gamma) < 1.2 \times 10^{-11}$ [MEGA, PRD 65 2002 112002] $Br(\tau \to e\gamma) < 3.9 \times 10^{-7}$ [BELLE hep-ex/0501068] $Br(\tau \to \mu\gamma) < 6.8 \times 10^{-8}$ [BABAR hep-ex 0502032, PRL 92 171802].
- New Physics is needed to have rates which would be detectable. The SUSY see-saw mechanism provides sources of LFV potentially observable

Outline	Introduction $\bullet 0$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00

Motivations

- Neutrino masses $\neq 0$ hint to lepton flavour violation (LFV) $\ell \rightarrow \ell' + \gamma$. However in the standard Model (SM) such processes are strongly suppressed: $Br \approx \mathcal{O}(10^{-40})$
- $Br(\mu \to e\gamma) < 1.2 \times 10^{-11}$ [MEGA, PRD 65 2002 112002] $Br(\tau \to e\gamma) < 3.9 \times 10^{-7}$ [BELLE hep-ex/0501068] $Br(\tau \to \mu\gamma) < 6.8 \times 10^{-8}$ [BABAR hep-ex 0502032, PRL 92 171802].
- New Physics is needed to have rates which would be detectable. The SUSY see-saw mechanism provides sources of LFV potentially observable
- Extend to the γγ option a previous analysis by some of the authors for the e⁺e⁻ → ℓℓ' and e⁻e⁻ → ℓℓ' processes at a Linear Collider. [M. Cannoni, S. Kolb and O. Panella, Phys. Rev. D 68, 096002 (2003) arXiv:hep-ph/0306170]

Outline	Introduction $\bullet 0$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Motiv	vations			

- Neutrino masses $\neq 0$ hint to lepton flavour violation (LFV) $\ell \rightarrow \ell' + \gamma$. However in the standard Model (SM) such processes are strongly suppressed: $Br \approx \mathcal{O}(10^{-40})$
- $Br(\mu \to e\gamma) < 1.2 \times 10^{-11}$ [MEGA, PRD 65 2002 112002] $Br(\tau \to e\gamma) < 3.9 \times 10^{-7}$ [BELLE hep-ex/0501068] $Br(\tau \to \mu\gamma) < 6.8 \times 10^{-8}$ [BABAR hep-ex 0502032, PRL 92 171802].
- New Physics is needed to have rates which would be detectable. The SUSY see-saw mechanism provides sources of LFV potentially observable
- Extend to the γγ option a previous analysis by some of the authors for the e⁺e⁻ → ℓℓ' and e⁻e⁻ → ℓℓ' processes at a Linear Collider. [M. Cannoni, S. Kolb and O. Panella, Phys. Rev. D 68, 096002 (2003) arXiv:hep-ph/0306170]
- Study the lepton flavor violating reaction $\gamma \gamma \rightarrow \ell \ell'$ with $\ell \neq \ell'$ and $\ell, \ell' = e, \mu, \tau$, (one loop order) in the SUSY see-saw scenario, at a Photon Collider.

Outline	Introduction $\bigcirc \bullet$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Signa	al features			

• $\gamma\gamma \rightarrow \ell\ell'$ has the advantage of providing a clean final state which is easy to identify experimentally (two back to back different flavor leptons), though one has to pay the price of dealing with cross sections of order $\mathcal{O}(\alpha^4)$.

< ≣ →

э.

Outline	Introduction $\bigcirc \bullet$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Signa	al features			

- $\gamma\gamma \rightarrow \ell\ell'$ has the advantage of providing a clean final state which is easy to identify experimentally (two back to back different flavor leptons), though one has to pay the price of dealing with cross sections of order $\mathcal{O}(\alpha^4)$.
- In general the $\gamma\gamma$ mode offers larger cross section respect to the other modes $(e^+e^- \text{ and } e^-e^-)$.

Outline	Introduction $\bigcirc \bullet$	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Signa	al features			

- $\gamma\gamma \rightarrow \ell\ell'$ has the advantage of providing a clean final state which is easy to identify experimentally (two back to back different flavor leptons), though one has to pay the price of dealing with cross sections of order $\mathcal{O}(\alpha^4)$.
- In general the $\gamma\gamma$ mode offers larger cross section respect to the other modes $(e^+e^- \text{ and } e^-e^-)$.
- However larger background are expected

Outline	Introduction \bigcirc	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Signa	al features			

- $\gamma\gamma \rightarrow \ell\ell'$ has the advantage of providing a clean final state which is easy to identify experimentally (two back to back different flavor leptons), though one has to pay the price of dealing with cross sections of order $\mathcal{O}(\alpha^4)$.
- In general the $\gamma\gamma$ mode offers larger cross section respect to the other modes $(e^+e^- \text{ and } e^-e^-)$.
- However larger background are expected
- In addition non-monochromaticity of the beams must be taken into account.

Outline	SUSY scenario for LFV	X-sections & Backgds	

Outline

1 Introduction

2 SUSY scenario for Lepton Flavor Violation

3 Cross sections at a Photon Collider and Backgrounds

- Photon Beams
- Signal Cross sections
- Standard Model Background

Summary

프 > - * 프 >

Outline	Introduction 00	SUSY scenario for LFV •00000	X-sections & Backgds 00000000000000	Summary 00
CTICY	⁷ ann ann n	achanism		

SUST see-saw mechanism

• The superpotential W contains three $SU(2)_L$ singlet neutrino superfields N_i with the following couplings:

$$W = (Y_{\nu})_{ij} \varepsilon_{\alpha\beta} H_2^{\alpha} N_i L_j^{\beta} + \frac{1}{2} (M_R)_i N_i N_i.$$

 H_2 is a Higgs doublet superfield, L_i are the $SU(2)_L$ doublet lepton superfields, Y_{ν} is a Yukawa coupling matrix and M_R is the $SU(2)_L$ singlet neutrino mass matrix.

< ∃ >

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
	00	•00000	000000000000000	00
SUSY	see-saw me	echanism		

• The superpotential W contains three $SU(2)_L$ singlet neutrino superfields N_i with the following couplings:

$$W = (Y_{\nu})_{ij} \varepsilon_{\alpha\beta} H_2^{\alpha} N_i L_j^{\beta} + \frac{1}{2} (M_R)_i N_i N_i.$$

 H_2 is a Higgs doublet superfield, L_i are the $SU(2)_L$ doublet lepton superfields, Y_{ν} is a Yukawa coupling matrix and M_R is the $SU(2)_L$ singlet neutrino mass matrix.

• With the additional Yukawa couplings and the new mass scale (M_R) the RGE evolution from the GUT scale down to M_R induce off-diagonal matrix elements in charged sleptons mass matrix $(m_{\tilde{L}}^2)_{ij}$.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
One	Loop result			

• In the one loop approximation the off-diagonal elements of the charged sleptons mass matrix are [Borzumati-Masiero, Hisano et al.]:

$$(m_{\tilde{L}}^2)_{ij} \simeq -\frac{1}{8\pi^2} (3+a_0^2) m_0^2 (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \ln\left(\frac{M_{GUT}}{M_R}\right).$$

where a_0 is a dimensionless parameter appearing in the matrix of trilinear mass terms $A_{\ell} = Y_{\ell} a_0 m_0$ contained in V_{soft} .

< ≣ →

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
One]	Loop result			

• In the one loop approximation the off-diagonal elements of the charged sleptons mass matrix are [Borzumati-Masiero, Hisano et al.]:

$$(m_{\tilde{L}}^2)_{ij} \simeq -\frac{1}{8\pi^2} (3+a_0^2) m_0^2 (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \ln\left(\frac{M_{GUT}}{M_R}\right).$$

where a_0 is a dimensionless parameter appearing in the matrix of trilinear mass terms $A_{\ell} = Y_{\ell} a_0 m_0$ contained in V_{soft} .

• These off diagonal matrix elements can be potentially large because they are not directly related to the mass of the light neutrinos, but only through the seesaw relation $m_{\nu} \simeq m_D^2/M_R = v^2 Y_{\nu}^2/M_R.$

Outline	SUSY scenario for LFV	X-sections & Backgds	Summary
	000000		

• Assume for the mass matrix of the charged left-sleptons (and sneutrinos):

$$\widetilde{m}_L^2 = \left(\begin{array}{cc} \widetilde{m}^2 & \Delta m^2 \\ \Delta m^2 & \widetilde{m}^2 \end{array} \right),$$

with eigenvalues: $\widetilde{m}_{\pm}^2 = \widetilde{m}^2 \pm \Delta m^2$ and maximal mixing.

< ∃⇒

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
		000000		

• Assume for the mass matrix of the charged left-sleptons (and sneutrinos):

$$\widetilde{m}_L^2 = \left(\begin{array}{cc} \widetilde{m}^2 & \Delta m^2 \\ \Delta m^2 & \widetilde{m}^2 \end{array} \right),$$

with eigenvalues: $\widetilde{m}_{\pm}^2 = \widetilde{m}^2 \pm \Delta m^2$ and maximal mixing.

• After diagonalization of the mass matrix the LFV propagator for a scalar line is

$$\langle \tilde{\ell}_i \tilde{\ell}_j^{\dagger} \rangle_0 = \frac{i}{2} \left(\frac{1}{p^2 - \tilde{m}_+^2} - \frac{1}{p^2 - \tilde{m}_-^2} \right) = i \frac{\Delta m^2}{(p^2 - \tilde{m}_+^2)(p^2 - \tilde{m}_-^2)}$$

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
		000000		

• Assume for the mass matrix of the charged left-sleptons (and sneutrinos):

$$\widetilde{m}_L^2 = \left(\begin{array}{cc} \widetilde{m}^2 & \Delta m^2 \\ \Delta m^2 & \widetilde{m}^2 \end{array} \right),$$

with eigenvalues: $\tilde{m}_{\pm}^2 = \tilde{m}^2 \pm \Delta m^2$ and maximal mixing.

• After diagonalization of the mass matrix the LFV propagator for a scalar line is

$$\langle \tilde{\ell}_i \tilde{\ell}_j^{\dagger} \rangle_0 = \frac{i}{2} \left(\frac{1}{p^2 - \tilde{m}_+^2} - \frac{1}{p^2 - \tilde{m}_-^2} \right) = i \frac{\Delta m^2}{(p^2 - \tilde{m}_+^2)(p^2 - \tilde{m}_-^2)}$$

• The quantity $\delta_{LL} = \Delta m^2 / \tilde{m}^2$ is the dimension-less parameter that controls the magnitude of the LFV effect.

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
		000000		

• Assume for the mass matrix of the charged left-sleptons (and sneutrinos):

$$\widetilde{m}_L^2 = \left(\begin{array}{cc} \widetilde{m}^2 & \Delta m^2 \\ \Delta m^2 & \widetilde{m}^2 \end{array} \right),$$

with eigenvalues: $\widetilde{m}_{\pm}^2 = \widetilde{m}^2 \pm \Delta m^2$ and maximal mixing.

• After diagonalization of the mass matrix the LFV propagator for a scalar line is

$$\langle \tilde{\ell}_i \tilde{\ell}_j^{\dagger} \rangle_0 = \frac{i}{2} \left(\frac{1}{p^2 - \tilde{m}_+^2} - \frac{1}{p^2 - \tilde{m}_-^2} \right) = i \frac{\Delta m^2}{(p^2 - \tilde{m}_+^2)(p^2 - \tilde{m}_-^2)}$$

- The quantity $\delta_{LL} = \Delta m^2 / \tilde{m}^2$ is the dimension-less parameter that controls the magnitude of the LFV effect.
- Our propagator corresponds to the one in the Mass Insertion Approximation when one assumes equal diagonal masses squred (good at the electroweak scale due to degeneracy) and $\Delta m^2 \ll \tilde{m}^2$ which is necessary for the expansion in powers of δ_{LL}

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Two	generation	model		

• This approach allows us to study the signal in a quite model-independent way by means of scans in the parameter space – the \tilde{m}, δ_{LL} plane – which is already constrained by the experimental bounds of radiative lepton decay processes.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Two	generation	model		

- This approach allows us to study the signal in a quite model-independent way by means of scans in the parameter space

 the m̃, δ_{LL} plane – which is already constrained by the experimental bounds of radiative lepton decay processes.
- assume that the two lightest neutralinos are pure Bino and pure Wino with masses M_1 and M_2 respectively, while charginos are pure charged Winos with mass M_2 , M_1 and M_2 being the gaugino masses in the soft breaking potential.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Two	generation	model		

- This approach allows us to study the signal in a quite model-independent way by means of scans in the parameter space

 the m̃, δ_{LL} plane – which is already constrained by the experimental bounds of radiative lepton decay processes.
- assume that the two lightest neutralinos are pure Bino and pure Wino with masses M_1 and M_2 respectively, while charginos are pure charged Winos with mass M_2 , M_1 and M_2 being the gaugino masses in the soft breaking potential.
- The Higgsino contribution to neutralino and charginos is suppressed, since the coupling is proportional to the lepton masses and so their contribution is neglected.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary 00
Two	generation	model		

- This approach allows us to study the signal in a quite model-independent way by means of scans in the parameter space

 the m̃, δ_{LL} plane – which is already constrained by the experimental bounds of radiative lepton decay processes.
- assume that the two lightest neutralinos are pure Bino and pure Wino with masses M_1 and M_2 respectively, while charginos are pure charged Winos with mass M_2 , M_1 and M_2 being the gaugino masses in the soft breaking potential.
- The Higgsino contribution to neutralino and charginos is suppressed, since the coupling is proportional to the lepton masses and so their contribution is neglected.
- Under these assumptions the signal cross section does not depend on $\tan \beta$ while for radiative decays gaugino-higgsino contributions are dominant ($\tan \beta$ enhanced) and considered by diagonalization of all the mass matrices

< ∃ >

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

• (a) Penguin

イロト イヨト イヨト イヨト

- (b) Self-energy
- (c) Box diagrams

- $(b) \xrightarrow{\mathcal{M}_{3}} \mathcal{M}_{4} \xrightarrow{\mathcal{M}_{4}} \mathcal{M}_{5} = \begin{cases} \overbrace{\mathcal{M}_{1}}^{\bullet} \overbrace{\mathcal{M}_{2}} \\ \overbrace{\mathcal{M}_{5}}^{\bullet} \overbrace{\mathcal{M}_{5}} \\ \overbrace{\mathcal{M}$
- (a) Penguin
- (b) Self-energy
- (c) Box diagrams
- The full black circle stands for a LFV propagator

æ

- (a) Penguin
- (b) Self-energy
- (c) Box diagrams
- The full black circle stands for a LFV propagator
- Every diagrams is accompained by an exchange graph.

크

<ロト <部ト < 国ト < 国ト

SUSY scenario for LFV

X-sections & Backgds

Summary 00

3

Helicity Amplitudes for $\gamma \gamma \rightarrow \ell \ell'$

۹

Assume massless external fermions. The chiral nature of the coupling in the \mathcal{L}_{int} , fixes the helicity of the fermions in the final to only one configuration: thus there are only four helicity amplitudes corresponding to the possible combinations of the photon helicities.

SUSY scenario for LFV

X-sections & Backgds

э.

Helicity Amplitudes for $\gamma \gamma \rightarrow \ell \ell'$

٩

Assume massless external fermions. The chiral nature of the coupling in the \mathcal{L}_{int} , fixes the helicity of the fermions in the final to only one configuration: thus there are only four helicity amplitudes corresponding to the possible combinations of the photon helicities.

• Let $\mathcal{M}^{(\lambda,\lambda')}$ the helicity amplitudes: $\mathcal{M}^{(+,+)}$, $\mathcal{M}^{(+,-)}$, $\mathcal{M}^{(-,+)}$, $\mathcal{M}^{(-,-)}$.

-

Helicity Amplitudes for $\gamma \gamma \rightarrow \ell \ell'$

٩

Assume massless external fermions. The chiral nature of the coupling in the \mathcal{L}_{int} , fixes the helicity of the fermions in the final to only one configuration: thus there are only four helicity amplitudes corresponding to the possible combinations of the photon helicities.

• Let $\mathcal{M}^{(\lambda,\lambda')}$ the helicity amplitudes: $\mathcal{M}^{(+,+)}$, $\mathcal{M}^{(+,-)}$, $\mathcal{M}^{(-,+)}$, $\mathcal{M}^{(-,-)}$.

• The final analytical formulas of the amplitudes $\mathcal{M}^{(\lambda,\lambda')}$ are function of $s, \theta^*, \lambda, \lambda', \tilde{m}, \delta_{LL}$ and the form factors for the loop integrals.

$$\mathcal{M}^{(\lambda,\lambda')} = (s,\theta^*,\lambda,\lambda',\widetilde{m},\delta_{LL})$$
Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00

Outline

1 Introduction

2 SUSY scenario for Lepton Flavor Violation

3 Cross sections at a Photon Collider and Backgrounds

- Photon Beams
- Signal Cross sections
- Standard Model Background
- SummaryConclusions

< ∃ >

• High energy photons beams will be obtained from Compton back-scattered (CB) low energy laser photons with energy ω_0 off high energy electron beams with energy E_0 .

- High energy photons beams will be obtained from Compton back-scattered (CB) low energy laser photons with energy ω_0 off high energy electron beams with energy E_0 .
- High energy photon beams will not be monochromatic but will present instead an energy spectrum, mainly determined by the Compton cross section, up to a maximum energy $y_m E_0$, where $y_m = x/(x+1)$ with $x = 4E_0\omega_0/m_e^2$.

- High energy photons beams will be obtained from Compton back-scattered (CB) low energy laser photons with energy ω_0 off high energy electron beams with energy E_0 .
- High energy photon beams will not be monochromatic but will present instead an energy spectrum, mainly determined by the Compton cross section, up to a maximum energy $y_m E_0$, where $y_m = x/(x+1)$ with $x = 4E_0\omega_0/m_e^2$.
- Full simulations show that there will be also a low energy broad peak (multiple Compton scattering and beamstrahlung)

- High energy photons beams will be obtained from Compton back-scattered (CB) low energy laser photons with energy ω_0 off high energy electron beams with energy E_0 .
- High energy photon beams will not be monochromatic but will present instead an energy spectrum, mainly determined by the Compton cross section, up to a maximum energy $y_m E_0$, where $y_m = x/(x+1)$ with $x = 4E_0\omega_0/m_e^2$.
- Full simulations show that there will be also a low energy broad peak (multiple Compton scattering and beamstrahlung)
- However the high energy peak is well described by the analytical Compton spectrum

Outline		SUSY scenario for LFV	X-sections & Backgds	
			000000000000000000000000000000000000000	
Photon Be	ams			
Diffe	rential CB	luminosity		

The high energy peak is almost independent from technological details and \approx by the product of two CB spectra $(y_{1,2} = E_{\gamma_{1,2}/E_0})$:

$$\frac{dL_{\gamma\gamma}^{CB}}{dy_1 dy_2} = F_c(x, y_1) F_c(x, y_2)$$

★ 문 ▶ 문 문

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds $0 \bullet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	Summary 00
Photon Bean	ns			
Differe	ential CB	luminosity		

The high energy peak is almost independent from technological details and \approx by the product of two CB spectra $(y_{1,2} = E_{\gamma_{1,2}/E_0})$:

$$\frac{dL_{\gamma\gamma}^{CB}}{dy_1 dy_2} = F_c(x, y_1) F_c(x, y_2)$$

The theoretical differential luminosity spectrum is:

$$\frac{dL_{\gamma\gamma}^{CB}}{dz} = 2z \int_{-\ln\frac{ym}{z}}^{\ln\frac{ym}{z}} d\eta F_c(x, ze^{+\eta}) F_c(x, ze^{-\eta})$$

< ∃ → 3

 $(z = \sqrt{y_1 y_2} = W_{\gamma \gamma}/2E_0 = \sqrt{s_{\gamma \gamma}/s_{ee}}$ and the "pseudorapidity" $\eta = \ln \sqrt{y_1/y_2}$

Outline		SUSY scenario for LFV	X-sections & Backgds	
			000000000000000000000000000000000000000	
Photon Be	ams			
_ ~				
Diffei	rential CR	luminosity		

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00
Photon Bea	ms			
ът	1	ст • •		

Normalization of Luminosity spectrum

• Simulated values of luminosities $L_{\gamma\gamma}$ at the peak: $L_{\gamma\gamma}(z > 0.8z_m)$ [Telnov] :

$\sqrt{s_{ee}} = 2E_0$	$\frac{L_0}{10^{34} \text{ cm}^{-2} \text{ s}^{-1}}$	$\frac{L_{\gamma\gamma}}{10^{34} \text{ cm}^{-2} \text{ s}^{-1}}$	$\frac{L_{\gamma\gamma}}{\text{fb}^{-1}\text{yr}^{-1}}$
200 GeV	4.8	19.1	130
$500 {\rm GeV}$	0.44	1.15	340

• Normalization condition:

$$L_{\gamma\gamma}(z > z_{max}) = \int_{0.8z_{max}}^{z_{max}} dz \frac{dL_{\gamma\gamma}}{dz}$$

ミ▶ ▲ ミ▶ ミニー のへの

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds $000000000000000000000000000000000000$	Summary 00
Photon Beau	ms			
ът	1	ст • •		

Normalization of Luminosity spectrum

• Simulated values of luminosities $L_{\gamma\gamma}$ at the peak: $L_{\gamma\gamma}(z > 0.8z_m)$ [Telnov] :

$\sqrt{s_{ee}} = 2E_0$	L_0	$L_{\gamma\gamma}$	$L_{\gamma\gamma}$
	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	$\rm fb^{-1}yr^{-1}$
$200 {\rm GeV}$	4.8	19.1	130
$500 {\rm GeV}$	0.44	1.15	340

• Normalization condition:

$$L_{\gamma\gamma}(z > z_{max}) = \int_{0.8z_{max}}^{z_{max}} dz \frac{dL_{\gamma\gamma}}{dz}$$

• Define both for signal and background the *effective* cross section

$$\sigma^{effective} = \int_{z_{min}}^{z_{max}} dz \frac{dL_{\gamma\gamma}^{norm}}{dz} \sigma(W_{\gamma\gamma})$$

 t_{c}

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds $000000000000000000000000000000000000$	Summary 00
Photon Beau	ms			
ът	1	ст • •		

Normalization of Luminosity spectrum

• Simulated values of luminosities $L_{\gamma\gamma}$ at the peak: $L_{\gamma\gamma}(z > 0.8z_m)$ [Telnov] :

$\sqrt{s_{ee}} = 2E_0$	$\frac{L_0}{10^{34} \text{ cm}^{-2} \text{ s}^{-1}}$	$\frac{L_{\gamma\gamma}}{10^{34} \text{ cm}^{-2} \text{ s}^{-1}}$	$\frac{L_{\gamma\gamma}}{\text{fb}^{-1}\text{yr}^{-1}}$
200 GeV 500 GeV	$4.8 \\ 0.44$	$19.1 \\ 1.15$	$\frac{130}{340}$

• Normalization condition:

$$L_{\gamma\gamma}(z > z_{max}) = \int_{0.8z_{max}}^{z_{max}} dz \frac{dL_{\gamma\gamma}}{dz}$$

• Define both for signal and background the *effective* cross section

$$\sigma^{effective} = \int_{z_{min}}^{z_{max}} dz rac{dL_{\gamma\gamma}^{norm}}{dz} \sigma(W_{\gamma\gamma})$$

to be:

• The total number of events is given by

• Photons also show an helicity spectrum.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00
Photon Beams	5			
Ideal C	CB helicity	spectrum		

- Photons also show an helicity spectrum.
- in the high energy peak $(y \approx y_m)$ photons have a high degree of circular polarization $P_{\gamma} = -P_{\ell} = P_{laser}$

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00
Signal Cross	sections			
Signal	l cross sect	tions		

• The differential cross sections as a function the scattering angle in the photon-photon CMF (case of monochromatic and polarized photons) are given by:

$$\frac{d\hat{\sigma}^{\lambda\lambda'}}{d\cos\theta^*} = \frac{1}{32\pi\hat{s}} \big| \mathcal{M}^{\lambda\lambda'}(\hat{s}, \hat{t}, \hat{u}, \widetilde{m}, \delta_{LL}) \big|^2,$$

< ∃ >

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00
Signal Cross	s sections			
Signa	l cross sect	ions		

• The differential cross sections as a function the scattering angle in the photon-photon CMF (case of monochromatic and polarized photons) are given by:

$$\frac{d\hat{\sigma}^{\lambda\lambda'}}{d\cos\theta^*} = \frac{1}{32\pi\hat{s}} \left| \mathcal{M}^{\lambda\lambda'}(\hat{s}, \hat{t}, \hat{u}, \widetilde{m}, \delta_{LL}) \right|^2,$$

• The realistic effective differential cross sections as a function scattering angle in the laboratory system (e^-e^- center of mass system) are obtained by boosting to the lab-system with the luminosity spectrum

$$\frac{d\sigma^{\lambda\lambda'}}{d\cos\theta} = \int_{z_{min}}^{z_{max}} dz \ \frac{dL_{\gamma\gamma}^{norm}}{dz} |J| \frac{(1-\langle\lambda\rangle)}{2} \frac{(1-\langle\lambda'\rangle)}{2} \frac{d\hat{\sigma}^{\lambda\lambda'}}{d\cos\theta^*}$$

- < ∃ →

э.

• $\mathcal{M}^{(+,-)}$ peaked in the backward direction $\mathcal{M}^{(-,+)}$ peaked in the forward direction $(J_z = \pm 2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

- $\mathcal{M}^{(+,-)}$ peaked in the backward direction $\mathcal{M}^{(-,+)}$ peaked in the forward direction $(J_z = \pm 2)$
- Dominance of diagrams with exchange of a massless lepton in t and u channel

- $\mathcal{M}^{(+,-)}$ peaked in the backward direction $\mathcal{M}^{(-,+)}$ peaked in the forward direction $(J_z = \pm 2)$
- Dominance of diagrams with exchange of a massless lepton in t and u channel
- M^{++} and M^{--} $(J_z = 0)$ are suppressed !

- $\mathcal{M}^{(+,-)}$ peaked in the backward direction $\mathcal{M}^{(-,+)}$ peaked in the forward direction $(J_z = \pm 2)$
- Dominance of diagrams with exchange of a massless lepton in t and u channel
- M^{++} and M^{--} $(J_z = 0)$ are suppressed !

The values of the masses are: $M_1 = 200, M_2 = 100, \langle \tilde{m}_\ell \rangle = 150 \text{ GeV}, \Delta m^2 = 6000 \text{ GeV}^2, \sqrt{s_{\gamma\gamma}} = 128 \text{ GeV}$

• Configurations with opposite helicity photons $\sigma_{(+,-)}$ and $\sigma_{(-,+)}$ ($J_z = \pm 2$) in the initial state dominate the signal.

- Configurations with opposite helicity photons $\sigma_{(+,-)}$ and $\sigma_{(-,+)}$ ($J_z = \pm 2$) in the initial state dominate the signal.
- Those with same helicity photons $(J_z = 0)$ give a negligible cross sections

- Configurations with opposite helicity photons $\sigma_{(+,-)}$ and $\sigma_{(-,+)}$ ($J_z = \pm 2$) in the initial state dominate the signal.
- Those with same helicity photons $(J_z = 0)$ give a negligible cross sections
- Signal cross section decreases with energy!

- Configurations with opposite helicity photons $\sigma_{(+,-)}$ and $\sigma_{(-,+)}$ ($J_z = \pm 2$) in the initial state dominate the signal.
- Those with same helicity photons $(J_z = 0)$ give a negligible cross sections
- Signal cross section decreases with energy!

<ロ> (日) (日) (日) (日) (日)

- 2

The values of the masses are: $M_1 = 200$, $M_2 = 100$, $\langle \tilde{m}_{\ell} \rangle = 150$ GeV, $\Delta m^2 = 6000$ GeV².

Deviations from the complete formula depend on the angle;
 ⇒less important where the angular distribution is largest.

- Deviations from the complete formula depend on the angle;
 ⇒less important where the angular distribution is largest.
- The effect of the helicity spectra is less important;

문▶ 문

• Solid: with spectra; Dashed: monochromatic;

- Solid: with spectra; Dashed: monochromatic;
- The complete formula agrees within a few % with the monochromatic calculation with $E_{\gamma} = (E_{\gamma})_{max}$

Scan of the SUSY parameter space (\tilde{m}, δ_{LL}) : $\sqrt{s_{\gamma\gamma}} = 128 \text{GeV}, \ \sqrt{s_{ee}} = 200 \text{GeV}, \ L_{\gamma\gamma} = 136 \text{ fb}^{-1} \text{ yr}^{-1}$

- \tilde{m} and $\delta_{LL} = \Delta m^2 / \tilde{m}^2$ are varied freely, for fixed value of gaugino masses;
- Cyan region (\approx whole plane) is allowed by $Br(\tau \rightarrow \mu \gamma) < 6.8 \times 10^{-8}$ $Br(\tau \rightarrow e \gamma) < 3.9 \times 10^{-7}$
- Red region is allowed by $Br(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$
- magenta region is where a PC can provide a positive signal of LFV:

 $N_{events} = L_{\gamma\gamma} \times \sigma_{signal} > 5$

The $(e\mu)$ channel is essentially excluded by the non observation of the $\mu \to e\gamma$ decay. LFV observable only in the $e\tau$ or $(\mu\tau)$ channels.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00		
Standard Model Background						
Stand	lard Model	Background				

• Production of charged leptons will be copious in $\gamma\gamma$ collisions, and the SM provides several background processes:

(a)
$$\gamma \gamma \to \tau^- \tau^+ \to \tau^- \nu_e \bar{\nu}_\tau e^+$$

(b) $\gamma \gamma \to W^{-*} W^{+*} \to \tau^- \bar{\nu}_\tau e^+ \nu_e$
(c) $\gamma \gamma \to e^+ e^- \tau^+ \tau^-$

with similar processes for the production of $\mu\tau$ pairs.

< ≣ →

Outline		SUSY scenario for LFV	X-sections & Backgds			
		000000	000000000000000000000000000000000000000			
Standard Model Background						
Standard Model Background						

• Production of charged leptons will be copious in $\gamma\gamma$ collisions, and the SM provides several background processes:

(a)
$$\gamma \gamma \to \tau^- \tau^+ \to \tau^- \nu_e \bar{\nu}_\tau e^+$$

(b) $\gamma \gamma \to W^{-*} W^{+*} \to \tau^- \bar{\nu}_\tau e^+ \nu_e$
(c) $\gamma \gamma \to e^+ e^- \tau^+ \tau^-$

with similar processes for the production of $\mu\tau$ pairs.

• The $e\mu$ final state, (which from the experimental point of view is the easiest to reconstruct), is almost completely excluded by the strong bounds from the non observation of the radiative decay $\mu \rightarrow e\gamma$.

∃ > 3

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00			
Standard M	Standard Model Background						
Stand	Standard Model Background						

• Production of charged leptons will be copious in $\gamma\gamma$ collisions, and the SM provides several background processes:

(a)
$$\gamma \gamma \to \tau^- \tau^+ \to \tau^- \nu_e \bar{\nu}_\tau e^+$$

(b) $\gamma \gamma \to W^{-*} W^{+*} \to \tau^- \bar{\nu}_\tau e^+ \nu_e$
(c) $\gamma \gamma \to e^+ e^- \tau^+ \tau^-$

with similar processes for the production of $\mu\tau$ pairs.

- The $e\mu$ final state, (which from the experimental point of view is the easiest to reconstruct), is almost completely excluded by the strong bounds from the non observation of the radiative decay $\mu \rightarrow e\gamma$.
- Thus we are bound to consider signals with τ 's in the final state.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00	
Standard Model Background					
Appli	ed kinemat	tical cuts			

• The signal has two back-to-back leptons without missing transverse momentum and energy.

æ

- ₹ 3 →

-

$\mathbf{Outline}$	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
			000000000000000000000000000000000000000	
Standard M	lodel Background			
Annli	ied kinemat	tical cuts		
	icu kincina	uicai cuus		

- The signal has two back-to-back leptons without missing transverse momentum and energy.
- The angular cut $|\cos(\theta)| < 0.9$ ($\theta < 25.8^{\circ}$) applied to the signal is also applied to the background.

< ≣ →

$\mathbf{Outline}$	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
			000000000000000000000000000000000000000	
Standard M	lodel Background			
Annli	ed kinemat	tical cuts		
	icu kinema	uicai cuus		

- The signal has two back-to-back leptons without missing transverse momentum and energy.
- The angular cut $|\cos(\theta)| < 0.9$ ($\theta < 25.8^{\circ}$) applied to the signal is also applied to the background.
- We impose the back-to-back condition on the background processes requiring $180^{\circ} \theta_{\ell\ell'} < 5^{\circ}$.

< ≣ →
Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00
Standard N	Aodel Background			
Appli	ied kinemat	tical cuts		

- The signal has two back-to-back leptons without missing transverse momentum and energy.
- The angular cut $|\cos(\theta)| < 0.9$ ($\theta < 25.8^{\circ}$) applied to the signal is also applied to the background.
- We impose the back-to-back condition on the background processes requiring $180^{\circ} \theta_{\ell\ell'} < 5^{\circ}$.
- Leptons are required to have energy close to E_{γ} , at least 85% of the maximum photons energy $E_{max}^{\gamma} = y_{max}E_0$.

< ≣ →

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds $000000000000000000000000000000000000$	Summary 00
Standard Mod	lel Background			
SM Ba	ckground			

Total cross section without (above) and with cuts (below) for the background processes.

$2E_0$ (GeV)	$\gamma\gamma \to \tau\tau$	$\gamma\gamma \rightarrow WW$	$\gamma\gamma \to \tau\tau ee$
	$\rightarrow \tau e \nu \bar{\nu}$	$\rightarrow e \tau \nu \bar{\nu}$	
200	$0.58~{\rm fb}$	2.3×10^{-1}	36.7 pb
	$1.49 \times 10^{-6} \text{ fb}$	//	$4.4 \times 10^{-2} \text{ fb}$
300	$3.1~{\rm fb}$	0.48 pb	38.9 pb
	$16.3 \times 10^{-6} \text{ fb}$	//	$3.7 \times 10^{-2} \text{ fb}$
400	4.9 fb	0.69 pb	39.5 pb
	$3.9 \times 10^{-4} \text{ fb}$	2.1×10^{-2}	$2.9 \times 10^{-2} \text{ fb}$
500	6.1 fb	0.77 pb	39.9 pb
	$9.7 \times 10^{-4} \text{ fb}$	1.0×10^{-1}	$2.4 \times 10^{-2} \text{ fb}$

The configuration that mimics the signal arises if one $e\tau$ pair is emitted at small angles along the collision axis and *is not* detected (we require $\theta_{\ell}^{untagged} < 25.8^{\circ}$), while the other pair is tagged. After cuts the cross section is effectively reduced by orders of magnitudes, it is still at the level of 10^{-2} fb SUSY LEV at Photon Colliders

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00
Standard N	Iodel Background			
Stati	istical Sign	ificance		

• However as a final step the SM background can be estimated requiring instead that the detected τ and electron be of the *same* charge, and eventually it could be subtracted.

< ≣ →

э.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary 00		
Standard Model Background						
Stati	istical Signi	ificance				

- However as a final step the SM background can be estimated requiring instead that the detected τ and electron be of the *same* charge, and eventually it could be subtracted.
- Finally consider the statistical significance (SS) and require:

$$SS = \frac{\mathcal{L}\sigma_{cut}^{Sig}}{\sqrt{\mathcal{L}\sigma_{cut}^{BG}}} \ge 3$$

This implies (with simulated annual luminosity for TESLA):

$$\sqrt{s_{ee}} = 200 \text{ GeV} \Rightarrow \sigma_{cut}^{Sig} > 5.4 \times 10^{-2} \text{ fb} \Rightarrow \delta_{LL} \gtrsim 10^{-1}$$
$$\sqrt{s_{ee}} = 500 \text{ GeV} \Rightarrow \sigma_{cut}^{Sig} > 2.5 \times 10^{-2} \text{ fb} \Rightarrow \delta_{LL} \gtrsim 10^{-1}$$

Outline	Introduction	SUSY scenario for LFV	X-sections & Backgds	Summary
	00	000000	00000000000000	00

Outline

1 Introduction

2 SUSY scenario for Lepton Flavor Violation

3 Cross sections at a Photon Collider and Backgrounds

- Photon Beams
- Signal Cross sections
- Standard Model Background

4 Summary• Conclusions

< ∃ >

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 00000000000000	Summary ●0		
Conclusions						
Concl	usions					

 We have studied the LFV reactions γγ → ℓℓ' (ℓ, ℓ' = e, μ, τ, ℓ ≠ ℓ') which arise at the one loop order of perturbation theory of interest for the γγ option of the future ILC.

글 > : < 글 > :

-

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 000000000000000	Summary ●0
Conclusions				
Concl	usions			

- We have studied the LFV reactions γγ → ℓℓ' (ℓ, ℓ' = e, μ, τ, ℓ ≠ ℓ') which arise at the one loop order of perturbation theory of interest for the γγ option of the future ILC.
- The LFV mechanism is provided by non diagonal entries of the charged slepton mass matrices ascribed

★ 3 → 3

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds	Summary ●0	
Conclusions					

- We have studied the LFV reactions γγ → ℓℓ' (ℓ, ℓ' = e, μ, τ, ℓ ≠ ℓ') which arise at the one loop order of perturbation theory of interest for the γγ option of the future ILC.
- The LFV mechanism is provided by non diagonal entries of the charged slepton mass matrices ascribed
- We have studied the signal in a model independent way in order to pin down regions of the SUSY parameter space $(\tilde{m}_{\ell}, \delta_{LL})$ plane, allowed by the present experimental limits.

E = 1

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 000000000000000	Summary 0●
Conclusions				
Conclu	isions			

• In the range $\sqrt{s_{ee}} \approx 200 - 500$ GeV the cross section of the signal is $\sigma(\gamma\gamma \to \ell\ell') \approx \mathcal{O}(10^{-1} - 10^{-2})$ fb, (sparticle masses $\approx 100 - 400$ GeV) i.e. a light SUSY spectrum somehow hinted to by fits on standard model parameters and SUSY benchmark points.

< ≣ →

э.

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 000000000000000	Summary 0●
Conclusions				
Conclu	isions			

- In the range $\sqrt{s_{ee}} \approx 200 500$ GeV the cross section of the signal is $\sigma(\gamma\gamma \to \ell\ell') \approx \mathcal{O}(10^{-1} - 10^{-2})$ fb, (sparticle masses $\approx 100 - 400$ GeV) i.e. a light SUSY spectrum somehow hinted to by fits on standard model parameters and SUSY benchmark points.
- **2** Observation of $\gamma\gamma \to e\tau$, $(\mu\tau)$ is not excluded by present bounds on the radiative lepton decays $\tau \to e\gamma$, $\tau \to \mu\gamma$. However a $\delta_{LL} = \Delta m^2 / \tilde{m}_{\ell}^2 \approx \mathcal{O}(10^{-1})$ is required, (possible only within some specific models of the SUSY see-saw framework).

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 000000000000000	Summary 0●
Conclusions				
Conclu	isions			

- In the range $\sqrt{s_{ee}} \approx 200 500$ GeV the cross section of the signal is $\sigma(\gamma\gamma \to \ell\ell') \approx \mathcal{O}(10^{-1} - 10^{-2})$ fb, (sparticle masses $\approx 100 - 400$ GeV) i.e. a light SUSY spectrum somehow hinted to by fits on standard model parameters and SUSY benchmark points.
- **2** Observation of $\gamma \gamma \to e\tau$, $(\mu \tau)$ is not excluded by present bounds on the radiative lepton decays $\tau \to e\gamma$, $\tau \to \mu\gamma$. However a $\delta_{LL} = \Delta m^2 / \tilde{m}_{\ell}^2 \approx \mathcal{O}(10^{-1})$ is required, (possible only within some specific models of the SUSY see-saw framework).
- [●] The $e\mu$ final state is almost excluded by $Br(\mu \to e\gamma) \le 1.2 \times 10^{-11}$, four orders of magnitude smaller than $Br(\tau \to e\gamma), Br(\tau \to \mu\gamma).$

Outline	Introduction 00	SUSY scenario for LFV 000000	X-sections & Backgds 000000000000000	Summary 0●
Conclusions				
Conclusions				

- In the range $\sqrt{s_{ee}} \approx 200 500$ GeV the cross section of the signal is $\sigma(\gamma\gamma \to \ell\ell') \approx \mathcal{O}(10^{-1} - 10^{-2})$ fb, (sparticle masses $\approx 100 - 400$ GeV) i.e. a light SUSY spectrum somehow hinted to by fits on standard model parameters and SUSY benchmark points.
- **2** Observation of $\gamma\gamma \to e\tau$, $(\mu\tau)$ is not excluded by present bounds on the radiative lepton decays $\tau \to e\gamma$, $\tau \to \mu\gamma$. However a $\delta_{LL} = \Delta m^2 / \tilde{m}_{\ell}^2 \approx \mathcal{O}(10^{-1})$ is required, (possible only within some specific models of the SUSY see-saw framework).
- [●] The $e\mu$ final state is almost excluded by $Br(\mu \to e\gamma) \le 1.2 \times 10^{-11}$, four orders of magnitude smaller than $Br(\tau \to e\gamma)$, $Br(\tau \to \mu\gamma)$.
- The SM process $\gamma \gamma \rightarrow ee(\mu \mu)\tau \tau$ with an undetected $e\tau$ pair is potentially large. It can be reduced at the level of $\sigma_{back} \approx \mathcal{O}(10^{-2})$ fb. However $SS \gtrsim 3$ provided that $\delta_{LL} \gtrsim 10^{-1}$.