Prospects of γ Measurement Using $B^0 \rightarrow D^0 K^{*0}$ Decays at LHCb

1

Kazu Akiba

Instituto de Física - UFRJ

- ✓ CP Violation
- ✓ How to extract γ using $B^0 \rightarrow D^0 K^{*0}$ decays
- ✓ The LHCb experiment
- ✓ MC data analysis
- ✓ Sensitivity Studies

CP Violation

K.Akiba · xi Frascati Spring School May · 2006

CKM Matrix

K.Akiba · xi Frascati Spring School May · 2006

How to extract γ

$$A_1 \equiv A(\mathbf{B}^0 \to \overline{\mathbf{D}}^0 \mathbf{K}^{*0}) \propto V_{cb}^* V_{us} e^{i\delta_1} \mathcal{A}_1$$
$$A_2 \equiv A(\mathbf{B}^0 \to \mathbf{D}^0 \mathbf{K}^{*0}) \propto V_{ub}^* V_{cs} e^{i\delta_2} \mathcal{A}_2$$

$$\Rightarrow |A_1| = (\rho^2 + \eta^2)^{-\frac{1}{2}} e^{i\gamma} e^{i\delta_2 - i\delta_1} |A_2|$$

$$D^{0} \to K^{+}K^{-}, \pi^{+}\pi^{-} \leftarrow \overline{D}^{0}$$
$$D^{0} \to D_{CP} \leftarrow \overline{D}^{0}$$
$$D_{CP} = \frac{1}{\sqrt{2}}(D^{0} + \overline{D}^{0})$$

K.Akiba · xi Frascati Spring School May · 2006

How to Extract γ

$$\begin{aligned} A(\mathbf{B}^{0} \to \mathbf{D}_{\mathrm{CP}} \mathbf{K}^{*0}) &= \frac{1}{\sqrt{2}} [A(\mathbf{B}^{0} \to \overline{\mathbf{D}}^{0} \mathbf{K}^{*0}) + A(\mathbf{B}^{0} \to \mathbf{D}^{0} \mathbf{K}^{*0})] \\ &= \frac{1}{\sqrt{2}} [A_{1} + A_{2} \mathbf{e}^{i(\delta + \gamma)}] \equiv \frac{1}{\sqrt{2}} A_{3} \end{aligned}$$

$$A(\overline{\mathbf{B}}^0 \to \mathbf{D}_{\mathrm{CP}}\overline{\mathbf{K}}^{*0}) = \frac{1}{\sqrt{2}} [A(\overline{\mathbf{B}}^0 \to \mathbf{D}^0\overline{\mathbf{K}}^{*0}) + A(\overline{\mathbf{B}}^0 \to \overline{\mathbf{D}}^0\overline{\mathbf{K}}^{*0})]$$
$$= \frac{1}{\sqrt{2}} [A_1 + A_2 \mathrm{e}^{i(\delta - \gamma)}] \equiv \frac{1}{\sqrt{2}} A_4$$

It's possible to extract γ measuring only decay rates!

K.Akiba \cdot xi Frascati Spring School May \cdot 2006

B⁰ Reconstruction

- ★ 3 Different sets of cuts
 to select the different D⁰ final states
- ★ Reconstructed K^{*0} and D⁰ tracks to fit a vertex with a maximum χ^2
- Kinematical cuts are done to require this event topology
- \star B⁰ has to come from the PV
- ★ K^{*0}, D⁰, K, π are required not to come from the PV

Selection Results

Channel	Analised	$\varepsilon_{ m tot}$ (%)	Event per year	B/S
$\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{0}(\mathrm{K}^{+}\pi^{-})\mathrm{K}^{*0}$	49.5k	0.31(3)	3.0(3)k	$\left[\left. 0, 0.58 \right] \right.$
$\mathrm{B}^0 \rightarrow \mathrm{D_{CP}}(\mathrm{K^+K^-})\mathrm{K^{*0}}$	49k	0.35(3)	0.540(45)k	[0, 2.93]
$\mathrm{B}^0 \rightarrow \mathrm{D_{CP}}(\pi^+\pi^-)\mathrm{K}^{*0}$	30k	0.41(4)	0.221(22)k	[0, 8.51]

0 events selected out of 10M $b\overline{b}$ *inclusive* sample in a \pm 500 MeV/ c^2 mass window, around known B⁰ mass. this corresponds to 4 min of real data taking!

γ Sensitivity Studies

- **X** Two different approaches were used to estimate the sensitivity on γ :
 - Fast Monte Carlo
 - Joint Probability density function
- \mathbf{X} the uncertainty on the amplitudes is given by:

$$\sigma_A = \frac{1}{2}\sqrt{1 + B/S} \frac{1}{\sqrt{S}}A,$$

were we assume background rate at half of the B/S upper limit.

- X A_3 and A_4 , and their uncertainties are obtained with a γ and δ first guess.
- ★ The B⁰ → D_{CP}(K⁺K⁻)K^{*0} and B⁰ → D_{CP}($\pi^+\pi^-$)K^{*0} are statistically combined to give the best estimate on the B⁰ → D_{CP}K^{*0} amplitude

Fast Monte Carlo

- ✗ A random number based on a gaussian is added to each amplitude according to its respective uncertainty.
- $\checkmark \gamma$ is then extracted using:

$$\gamma = \frac{1}{2} \Big\{ \cos^{-1} \Big(\frac{A_3^2 - A_1^2 - A_2^2}{2A_1 A_2} \Big) - \cos^{-1} \Big(\frac{A_4^2 - A_1^2 - A_2^2}{2A_1 A_2} \Big) \Big\},$$

- X this procedure is repeated 100000 times
- X A gaussian fit is performed to the final γ distribution and the uncertainty is obtained from the width.
- × IF $|\cos(\delta + \gamma)|$ or $|\cos(\delta \gamma)|$ are greater than 1 the event is counted as a failure.

γ Uncertainty for different γ guesses

K.Akiba · xi Frascati Spring School May · 2006

Joint Probability Density Function

The Joint Probability Density Function (JPDF) of γ and δ is obtained from the χ^2 function of the 4 independent sides of the triangle.

$$\chi^2(A_1, A_2, A_3, A_4) = \sum_{i=1}^4 \left(\frac{A_i - \bar{A}_i}{\sigma(\bar{A}_i)}\right)^2,$$

Where \overline{A}_i represent the expected values A_i given a fixed γ and δ value. For each γ and δ a numerical integration is performed to obtain the JPDF:

$$\mathcal{J}(\gamma,\delta) = N \int dA_1 \int dA_2 e^{-\frac{1}{2}\chi^2(A_1,A_2,\gamma,\delta)}$$

The results are plotted as the $3\frac{rd}{r}$ coordinate of a 2D histogram, δ vs γ . The $n\sigma$ contours are given by:

$$C_n = \mathcal{J}_{max} \mathrm{e}^{-\frac{1}{2}n^2}$$

K.Akiba · xi Frascati Spring School May · 2006

JPDF Results

K.Akiba · xi Frascati Spring School May · 2006

Results Summary

γ	55°	65°	75°	85°	95°	105°		
1 year								
MC σ_{γ}	8.9°	8.0°	7.3°	6.9°	6.7°	6.8°		
JPDF σ_{γ}	10.1°	8.4°	8.1°	7.6°	7.4°	7.5°		
5 years								
MC σ_{γ}	4.0°	3.6°	3.3°	3.1°	3.0°	3.0°		
JPDF σ_{γ}	4.5°	3.9°	3.6°	3.4°	3.3°	3.4°		

Conclusion

- ✓ We estimate that LHCb will be able to reconstruct correctly: ≈ 3000 $B^0 \rightarrow \overline{D}^0(K^+\pi^-)K^{*0}$, ≈ 540 $B^0 \rightarrow D_{CP}(K^+K^-)K^{*0}$ and ≈ 221 $B^0 \rightarrow D_{CP}(\pi^+\pi^-)K^{*0}$ per year
- \checkmark Two methods were used to estimate the uncertainty on γ , giving compatible results.
- ✓ The overall precision to measure γ is about from 7° to 8° for the first year of data taking and from 3° to 4° in 5 years.