Measurement of the π⁰ Lifetime Frascati Spring School May 16, 2006

A.M. Bernstein MIT

- Spontaneous Chiral symmetry breaking \Rightarrow pions
- $\pi^0 \rightarrow \gamma \gamma$: Axial anomaly
- •NLO chiral corrections: isospin breaking ~m_d-m_u
- •Previous experiments
- Primex Experiment at Jefferson Lab

Spontaneous Breaking(Hiding) of Chiral Symmetry in QCD

- •For massless particles $h = \sigma \bullet p = \pm 1$ is conserved
- •For massless quarks $L_{QC D}$ conserves chiral symmetry

•Therefore each state has an opposite parity partner: Wigner - Weyl manisfestation of the symmetry

•Since this is not observed in nature chiral symmetry has been spontaneously hidden

- •The symmetry is exhibited by the appearance of massless, pseudoscalar (Nambu- Goldstone) Bosons
- lp> $1/2^+$, lp> $1\pi> 1/2^-$ are degenerate

Symmetry becomes Dynamics

- πh system has to have gradient coupling due to the pseudoscalar nature of the pion
- weak in the s wave, generally strong in the p wave
- At low energies the interaction vanishes
- this can be systematically exploited
 ⇒ effective field theory of QCD (ChPT)

hadron mass spectrum

π not a pure Goldstone Boson

 $\begin{array}{l} m_{u} \,,\, m_{d},\, m_{s} \neq \, 0 \quad \mbox{chiral symmetry broken} \\ m_{u} \approx \, 5 \,\, \mbox{MeV},\, m_{d} \approx \, 9 \,\, \mbox{MeV},\, m_{s} \approx \, 140 \,\, \mbox{MeV} \\ m_{\pi}^{2} \,\, = \,\, \mbox{B}(m_{u} + m_{d}) \approx 140 \,\, \mbox{MeV} \rightarrow 0 \quad \mbox{as } m_{q} \rightarrow 0 \\ \mbox{B} \propto \, < \, 0 \,\, \mbox{I} \, \mbox{Q} \,\, \mbox{I} \, 0 > \,\, \mbox{"vacuum cond ensate"} \end{array}$

⋆ π-hadron interaction small as p_π → 0, how small?
 σ(θ) → a(πh)² a(πh) = s wave πh scattering length pure Gold stone Boson: a(πh) = 0 strong interactions: a(πh) ≈ 1/m_π ≈ 1 fm

intuitively for a "Gold stone Boson" $a(\pi h) \approx 1/\Lambda \approx 0.1 \text{fm}$ $\Lambda = \text{chiral sym. breaking scale} \approx 4 \pi F_{\pi} \approx 1 \text{ GeV}$ pion decay constant $F_{\pi} = 92 \text{ MeV}$

PCAC calculation by Weinberg (1966)

 $a^{I}(\pi h) = -I_{\pi} \bullet I_{h} \quad m_{\pi} / (\Lambda F_{\pi}) \approx 1/\Lambda$ $\rightarrow 0 \quad \text{as} \quad m_{\pi} \rightarrow 0$ $I = I_{\pi} + I_{h}$

This is the lowest order ChPT calculation Expect chiral corrections of order $(m_{\pi/\Lambda}) \approx 0.02$

• π^0 decay rate is a fundamental prediction of confinement scale QCD.

Chiral Anomaly

Presence of closed loop triangle diagram results in nonconserved axial vector current, even in the limit of vanishing quark masses.

 \rightarrow In the leading order (chiral limit), the anomaly leads to the decay amplitude:

$$A_{\pi^0 \to \gamma\gamma} = \frac{\alpha_{em}}{4\pi F_{\pi}} \varepsilon_{\mu\nu\rho\sigma} k^{\mu} k^{\prime\nu} \varepsilon^{*\rho} \varepsilon^{*\sigma}, \qquad (1)$$

or the reduced amplitude,

$$A_{\gamma\gamma} = \frac{\alpha_{em}}{4\pi F_{\pi}} = 0.02513 \text{ GeV}^{-1}$$
(2)

where $F_{\pi} = 92.42 \pm 0.25$ MeV is the pion decay constant.

•axial anomaly predicts $\Gamma(\pi 0 \rightarrow \gamma \gamma) \sim |A\gamma\gamma|^2 m_{\pi}^3 = 7.725 \text{ eV}$

- chiral corrections due to finite quark masses
 Calculated by J.Goity, AB, B. Holstein, PRD 2002
 in NLO: ChPT in large Nc limit
- largest effect is π , η , η ' mixing
- •Isospin mixing ~ m_d - m_u
- •4.5±1 % increasein width
- Γ(π0 →γγ) =8.04 ±0.08 eV

Primakoff Effect

- π^0 photoproduction from Coulomb field of nucleus.
- Equivalent production $(\gamma\gamma^* \to \pi^0)$ and decay $(\pi^0 \to \gamma\gamma)$ mechanism implies Primakoff cross section proportional to π^0 lifetime.
- Primakoff π^0 produced at very forward angles.

Experiment Overview

- Tagged photons of energy 4.9 5.5 GeV were used to measure the absolute cross section of small angle π^0 photoproduction from the coulomb field of two nuclei (${}^{12}C$ and ${}^{208}Pb$).
- The invariant mass and production angle of the pion were reconstructed by detecting the two π⁰ decay photons in a highly segmented calorimeter centered on the beamline.
- The number of tagged photons reaching the target was calibrated using a Total Absorption Counter (TAC) and monitored with an e⁺e⁻ pair spectrometer.

Data Collection

- HyCal Calibration: "snake" scan before and after experiment (for gain alignment and energy calibration)
- Periodic TAC/luminosity runs-measure absolute tagging efficiency for photon flux determination
- Periodic Compton runs (to measure absolute Compton coss section)–used fe systematic studies of experimental setup (detector alignment, π⁰ yield normalization, and monitor Hycal gain drifts).
- π^0 photoproduction from 5% χ_0 ¹²C and ²⁰⁸Pb targets using ~ 100nA e-beam current wich generated ~ 5MHz tagged photon rate.
- DAQ event readout triggered by HyCal total ADC sum in coincidence with tagger hodoscope hit (produced a rate of ~ 1.5kHz)

12 GeV JLab Program: The PrimEx Collaboration

- Two-Photon Decay Widths: $\Gamma(\pi^0 \to \gamma\gamma)$, $\Gamma(\eta \to \gamma\gamma)$, $\Gamma(\eta' \to \gamma\gamma)$
- Transition Form Factor $F_{\gamma\gamma^*P}$ of π^0 , η , η' at low Q^2 (0.001–0.5 GeV²)

12 GeV Experimental Setup

Experimental Setup with Use Light targets: **11 GeV Photon Tagger** ¹H and ⁴He New High Energy **PbWO Calorimeter** Photon Tagger LH/LHe Targets with Veto scint. **Pb Shielding Wall** Upgrade HYCAL Calorimeter with all Second C-Dipole $PbWO_4$ **Tagger Focal Plane** Detectors **First C-Dipole** Bremst. Rad.

•

•

Decay Width $\Gamma(\eta \rightarrow \gamma \gamma)$

Quark Mass Determination

$$Q^2 = \frac{m_s^2 - \bar{m}^2}{m_d^2 - m_u^2}$$
, $\bar{m} = \frac{m_u + m_d}{2}$

Transition form factor F($\gamma \gamma^* \rightarrow \eta$)

Outlook: measurement of the π^0 lifetime: testing a prediction axial anomaly and NLO chiral correction $\sim m_d - m_u$ \Rightarrow spontaneous chiral symmetryhiding, quark mass effects

- •Spontaneous Chiral symmetry hiding \Rightarrow Goldstone Bosons has been verified in π - π , π -N, γ N $\rightarrow \pi$ N
- quark mass effects: $(m_d + m_u)$
- pion cloud effects: non-spherical effects in N, Δ

Opportunities : IS breaking (m_d - m_u)

• π -N scattering, $\gamma N \rightarrow \pi N$

Spokesperson Spokesperson and contact person

A. Afanasev ^p, A. Ahmidouch ^m, M. Alexanian ^u, A. Asratyan ⁱ, I. Aznauryan ^x, K. Baker ^f, J. Ball ^a, A.M. Bernstein ^k, T. Black ^u, W. Briscoe ^e, J.P. Chen ^p, O. Chernyshov ⁱ, M. Christy ^f, E. Chudakoff ^p, E. Clinton ^t, P.L. Cole ^v, H. Crannell ^b, D. Dale ^s, S. Danagoulian ^m, G. Davidenko ⁱ, A. Dolgolenko ⁱ, M. Dugger ^a, G. Dzyubenko ⁱ, H. Egiyan ^p, K. Egiyan ^x, M. Elaasar ^o, R. Ent ^p, A. Evdokimov ⁱ, A.I. Fix ^q, M. Gabrielyan ^s, L. Gan ^u, A. Gasparian ^m, S. Gevorgyan ^x, A. Glamazdin ^j, J. Goity ^f, Yu. Goncharenko ^h, V. Goryachev ⁱ, P. Gueye ^f, V. Gyurjyan ^p, R. Hakobyan ^b, D. Hasell ^k, J. He ^g, R. Hicks ^t, M. Hollister ^u, B. Hu ^s, M. Ito ^p, C. Jackson ^m, A. Kamenskii ⁱ, C. Keppel ^f, A. Ketikyan ^x, M. Khandaker ¹, W. Korsch ^s, S. Kowalski ^k, M. Kubantsev ⁱ, V. Kubarovsky ^h, I. Larin ⁱ, D. Lawrence ^t, C. Li ^c, Z. Liu ^c, S. Lu ^c, A. Margaryan ^x, V. Matveev ⁱ, A. Meschanin ^h, B. Milbrath ^d, R. Minehart ^w, R. Miskimen ^t, S. Mtingwa ^m, A. Nathan ^r, A. Omelaenko ^j, E. Pasyuk ^a, A. Petrosyan ^x, V. Punjabi ¹, B.G. Ritchie ^a, C. Salgado ¹, V. Semyachkin ⁱ, A. Shahinyan ^x, Y. Sharabian ^p, A. Sitnikov ⁱ, E. Smith ^p, D. Sober ^b, L. Soloviev ^h, B. Stevens ^w, R. Suleiman ^k, L. Tang ^f, A. Teymurazyan ^s, V.A. Tryasuchev ^q, J. Underwood ^m, A. Vasiliev ^h, V. Verebryusov ⁱ, V. Vishnyakov ⁱ, H. Voskanyan ^x, J. Yuan ^c, L. Yuan ^f, J. Zhou ^c, S. Zhou ^c, X. Zhu ^c, P. Zolnierczuk ^s

•
^m North Carolina A&T State University, Greensboro, NC
ⁿ North Carolina Central University, Durham, NC
^o Southern University at New Orleans, New Orleans, LA
^p Thomas Jefferson National Accelerator Facility, Newport News, VA
^q Tomsk Polytechnical University, Tomsk, Russia
^r University of Illinois, Urbana, IL
^s University of Kentucky, Lexington, KY
^t University of Massachusetts, Amherst, MA
^u University of North Carolina at Wilmington, Wilmington, NC
^v University of Texas at El Paso, El Paso, TX
W University of Virginia, Charlottesville, VA
^x Yerevan Physics Institute, Yerevan, Armenia