

Physics at a Photon Collider

A.De Roeck

CERN/Antwerp University

Contents

- Introduction: experimental aspects of gamma-gamma collider
 - Machine and detector issues, kinematics, luminosity spectra
- Short review on the physics (\Rightarrow more from Maria and Lia)
 - QCD studies: photon structure
 - Higgs production at a photon collider:
 - Supersymmetry,
 - W-boson interactions, Extra Dimension, Top Quark...

Further reading: B. Badelek et al., TESLA TDR part VI appendix E. Boos et al., hep-ph/0103090 Proceedings of the ECFA/DESY '01-'03 workshop. hep-ph/0308103, hep-ph/0311138/hep-ph/0307175 80 83 PLC05 proceedings, LCWS07 and Photon2007 proceedings

Only data can help to give clarity....

H. Maruyama

The LHC is our next Hope !

- Great startup on 10/9!
- ... Serious problem on 19/9 (> 2 months to fix)
- So, a bit more patience will be required.
- But LHC will come on strongly in 2009

Linear Colliders

Two-photon interactions

Two ways to have two photon interactions at linear colliders

- Weizacker-Williams spectrum from electron beams, similar to LEP
- Convert electron beams into photon beams by Compton backscattering of laser photons \Rightarrow high energy $\gamma\gamma$ & high luminosity <u>Luminosity Spectrum of a Photon Collider</u>

A Photon Collider

Compton backscattering on low energy (eV) laser photons

- Needs crossing angle (to avoid background from disrupted beams)
- Needs second/different interaction point (lasers, optics)
- Needs only e- beams (no positrons)
 - \Rightarrow higher polarization (electrons 80% vs positrons 40-60%)

Physics at a γγ and eγ collider --General--

Cross sections for yy processes

Historically:

The Photon Linear Collider (PLC) Ginzburg, Kotkin, Serbo, Telnov, Pizma ZhETF 34 514 (1981),JETP Lett. 34 491 (1982) where the basic ideas have been elaborated

Since then:

- Over 1000 papers on physics issues of a PC
- Taken up seriously in LC studies R&D (slowly) progressing

PLC part of LC roadmap considered as possible upgrade for a Linear Collider (Jeju 2002)

Note: get eq by 1) switching of 1 laser side 2) using eq background in $\gamma\gamma$ collisions

Advantages of $\gamma\gamma$ and $e\gamma$

Higher cross sections for charged particles

- \cdot Different JPC state than in e+e-
- · Higgs can be s-channel produced
- Higher mass reach in some channels
- · Pure QED interaction (in e+e- also Z exchange)
- Higher polarization of initial state (>80%/beam)
- CP analysis opportunities (linear γ polarization...)
- \Rightarrow Physics Menu ... as for an e+e- collider
 - · Higgs
 - · Supersymmetry
 - · Alternative theories (extra dimensions, etc.)
 - EW: e.g. Triple Gauge couplings, QCD, Top,...

			and the
	Reaction	Remarks	- Charlen -
	$\gamma\gamma ightarrow H, h ightarrow bb$	SM/MSSM Higgs, $M_{H,h} < 160 \text{ GeV}$	
	$\gamma\gamma \to H \to WW(^*)$	SM Higgs, $140 < M_H < 190$ GeV	Hiaas
	$\gamma\gamma ightarrow H ightarrow ZZ(^*)$	SM Higgs, $180 < M_H < 350$ GeV	
	$\gamma\gamma ightarrow H ightarrow \gamma\gamma$	SM Higgs, $120 < M_H < 160$ GeV	
	$\gamma\gamma \to H \to t\overline{t}$	SM Higgs, $M_H > 350 \text{ GeV}$	
rocesses	$\gamma\gamma ightarrow H, A ightarrow bb$	MSSM heavy Higgs, interm. $\tan \beta$	
a	$\gamma\gamma \to \tilde{f}\tilde{f}, \ \tilde{\chi}_i^+\tilde{\chi}_i^-$	large cross sections	
	$\gamma\gamma ightarrow ilde{g} ilde{g}$. The second secon	measurable cross sections	
ollider	$\gamma\gamma \to H^+H^-$	large cross sections	5059
	$\gamma\gamma ightarrow S[au ar{t}ar{t}]$	$ ilde{t}\overline{ ilde{t}}$ stoponium	
	$e\gamma ightarrow ilde{e}^- ilde{\chi}^0_1$	$M_{\tilde{e}^{}} < 0.9 \times 2E_0 - M_{\tilde{\chi}_1^0}$	
	$\gamma\gamma \to \gamma\gamma$	non-commutative theories	
	$e\gamma ightarrow eG$	extra dimensions	
	$\gamma\gamma ightarrow \phi_{-}$	Radions	EDS,
	$e\gamma \rightarrow \tilde{e}\tilde{G}$	superlight gravitions	
	$\gamma\gamma ightarrow W^+W^-$	anom. W inter., extra dimensions	Trilin.
	$e\gamma \rightarrow W^-\nu_e$	anom. W couplings	oounl
	$\gamma\gamma \to 4W/(Z)$	WW scatt., quartic anom. W,Z	coupi.
,	$\gamma\gamma ightarrow t t$	anomalous top quark interactions	
03090	$e\gamma ightarrow tb u_e$	anomalous Wtb coupling	Top
	$\gamma\gamma ightarrow$ hadrons	total $\gamma\gamma$ cross section	· · F
A/DESY)	$e\gamma \to e^- X, \nu_e X$	NC and CC structure functions	
11120	$\gamma g ightarrow q ar q, \ c ar c$	gluon in the photon	QCD
11138	$\gamma\gamma ightarrow J/\psi J/\psi$	QCD Pomeron	

Golden Processes for a Photon Collider

Boos et al., hep-ph/0103090

ADR (ECFA/DESY) hep-ph/0311138

Luminosity spectra

Kinematics & Photon spectra

V. Telnov/TESLA TDR

First experiments (30-35 years ago) k= N_γ/N_e ~ 10⁻⁷ (k = # electrons that interacts with a γ) Photon collider needs k~1 ⇒Needs laser with flash energy~ 1-5 J (e.g. solid state lasers)

Energy of the scattered photon ω depends on the photon scattering angle θ

$$\omega = \frac{\omega_m}{1 + (\vartheta/\vartheta_0)^2}, \quad \omega_m = \frac{x}{x+1}E_0, \quad \vartheta_0 = \frac{mc^2}{E_0}\sqrt{x+1},$$

$$x = \frac{4E_0\omega_0}{m^2c^4}\cos^2\alpha_0/2 \simeq 15.3 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\omega_0}{\text{eV}}\right] = 19 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\mu m}{\lambda}\right]$$
m is the maximum energy of the photon
Example: $E_0 = 250 \text{ GeV}, \quad \omega_0 = 1.17 \text{eV} \ (\lambda = 1.06 \text{ } \mu \text{m})$

Example:
$$E_0 = 250 \,\text{GeV}, \,\omega_0 = 1.17 \,\text{eV} \,(\lambda = 1.06 \,\mu\text{m})$$

 $\Rightarrow x = 4.5 \text{ and } \omega_m/E_0 = 0.82.$

The energy spectrum of the scattered photons is defined by the Compton cross section

$$\frac{1}{\sigma_c}\frac{d\sigma_c}{dy} = \frac{2\sigma_0}{x\sigma_c}\left[\frac{1}{1-y} + 1 - y - 4r(1-r) + 2\lambda_e P_c r x(1-2r)(2-y)\right]$$

$$y = \omega/E_0, \quad r = \frac{y}{(1-y)x}, \quad \sigma_0 = \pi r_e^2 = \pi \left(\frac{e^2}{mc^2}\right)^2 = 2.5 \cdot 10^{-25} \,\mathrm{cm}^2$$

Where λ_e is the (mean) electron helicity and P_c that of the laser photon

Total cross section $\sigma_c = \sigma_c^0 + 2\lambda_e P_c \sigma_c^1$,

$$\sigma_c^0 = \frac{2\sigma_0}{x} \left[\left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln(x+1) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(x+1)^2} \right],$$

$$\sigma_c^1 = \frac{2\sigma_0}{x} \left[\left(1 + \frac{2}{x} \right) \ln(x+1) - \frac{5}{2} + \frac{1}{x+1} - \frac{1}{2(x+1)^2} \right]$$

Spectrum of the Compton scattered photons

The averaged helicity of the photons after Compton Scattering

$$\langle \lambda_{\gamma} \rangle = \frac{-P_c(2r-1)[(1-y)^{-1}+1-y] + 2\lambda_e xr[1+(1-y)(2r-1)^2]}{(1-y)^{-1}+1-y-4r(1-r) - 2\lambda_e P_c xr(2-y)(2r-1)}$$

If the laser light has linear polarization then the high energy photons are polarised in the same direction

$$\langle l_{\gamma} \rangle = \frac{2r^2 P_l}{(1-y)^{-1} + 1 - y - 4r(1-r) - 2\lambda_e P_c xr(2-y)(2r-1)}$$

Interaction Region and Detector

Lasers & Optical Cavity

Use lasers with 0.1J Flash energy/bx, ~ 1 ps flash, recycle ~ 200-300 times ⇒ Technically feasible today !

Photon Linear Collider

Similar physics drives the main detector requirements

ilc.

Higher backgrounds B-tagging is more difficult MBI/DESY laser stacking cavity design: - 369 ns path length

 factor 300 reduction in total laser power

Detector must be modified to accommodate the laser and to remove the disrupted electron beam

Interaction region

Mask and laser optical paths

Backgrounds

Under control

- Low energy electrons
- Incoherent e+e- pairs
- $\gamma\gamma \rightarrow$ hadrons (overlaid events)
- X-rays
- Neutron background

The Photon Linear collider must have a 25 mr crossing angle

 Physical overlap between the extraction line and the final focus quad sets the minimum crossing angle

Bend at 700m has cheaper conventional facilities but has operational issues

Physics Processes QCD Higgs EW **SUSY** Alternatives

Total Cross Section

Fixed x = 4.8
ightarrow change laser energy

Pancheri, Grau, Godbole, ADR

Detector level study: Can measure $\sigma(\gamma\gamma)_{tot}$ to 7-15% at several energies

Unique: the polarised structure of the photon Use of polarised beams in e+e- or $\gamma\gamma/e\gamma$

Stratmann and Vogelsang

Higgs

Production Mechanism for Neutral Higgs Bosons

Higgs produced in the s-channel

Enters only at the loop level Mainly sensitive to tH and WH couplings

All charged particles (also new, unseen ones) contribute! These will affect the partial width $\Gamma(\gamma\gamma)$

Heralded as THE key measurement for the gamma-gamma option

Cross section larger than in e+e-

LEP/Tevatron data: SM Higgs M_H > 114 GeV and M_H < ~200 GeV (95 %CL) 31

Suppose Higgs found a the LHC: what would you like to know

- Mass
- Spin & parity
- CP properties/Violation?
- How does it decay
 - Confirm Yukawa-like pattern (allow for up/down differences)
 - Can observe rare decays? ($H \rightarrow \gamma \gamma, \gamma Z, \mu \mu$)?
 - Confirm relations between fermion couplings and gauge couplings
 - Unexpected decay modes? Signs/confirmation of new physics?
 - What is the total width?
 - Are there new production modes ($\gamma\gamma \rightarrow \gamma h$ or Zh)?
 - Higgs self coupling ... etc,..

The discovery of an unexpected CP nature of the H would be very exciting

H→bb study

- Detailed analyses for Light SM Higgs
 - Realistic photon spectra: Tune
 collider energy such that maximum
 of the peak is at the Higgs mass
 - NLO QCD backgrounds (Jikia)
 - B-tagging via a neural network
 - Mass corrected for neutrinos
 - Add overlap QCD events (~1 per B.C.)
- Typical Cuts:
 - Durham jet algo. (y_{cut} = 0.02); θ_{min} = 450 mrad
 - |Pz|/Evis <0.15

$$\frac{\Delta\sigma(\gamma\gamma\to h\to b\overline{b})}{\sigma(\gamma\gamma\to h\to b\overline{b})} = \frac{\Delta\left[\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\overline{b})\right]}{\left[\Gamma(h\to\gamma\gamma)\mathrm{Br}(h\to b\overline{b})\right]} = \frac{\sqrt{N_{obs}}}{N_{obs}-N_{bkgd}}.$$

Several analyses

Br(H \rightarrow bb) in e+e- known to better than 2%

arXiv:0705.1259 \Rightarrow 2-3%

OE: overlap events Low energy ~ 1 extra events High energy ~ 2 extra events 34

MSSM Higgs: H,A

e+e- collider: H,A produced in pairs, hence M_A reach is $\sqrt{s_{ee}}/2$ $\gamma\gamma$ collider: s-channel production, hence M_A reach is $0.8 \cdot \sqrt{s_{ee}}$

Measurement of $\Delta\sigma/\sigma$ to 10-20% (1 year running)

MSSM H/A Higgs Reach

Study for a e+e- collider at 630 GeV

US study D.Asner/J.Gunion (LCWS02)

- Extends e+e- reach
- Need few years to close the LHC wedge

Linear polarized beams

If $\vec{\epsilon}_1$ and $\vec{\epsilon}_2$ are the photon polarization vectors (which are perpendicular to the beam), then

 $\vec{\epsilon}_i$ are parallel \longrightarrow produce *CP*-even only \longrightarrow

 $\vec{\epsilon}_i$ are perpendicular \longrightarrow produce CP-odd only $\longrightarrow A$

Linear polarization to produced either H or A (or mixture)

Next-to-MSSM Study

Going beyond the simplest model e.g. NMSSM: \Rightarrow 7 Higgs particles: 3 CP even (h1,h2,h3), 2CP odd (a1,a2) and 2 charged

Point Number	1	2	3	4	5	6
Bare Parameters						
λ	0.2872	0.2124	0.3373	0.3340	0.4744	0.5212
κ	0.5332	0.5647	0.5204	0.0574	0.0844	0.0010
an eta	2.5	3.5	5.5	2.5	2.5	2.5
μ_{eff} (GeV)	200	200	200	200	200	200
A_{λ} (GeV)	100	0	50	500	500	500
A_{κ} (GeV)	0	0	0	0	0	0
CP-even Higgs Boson Masses and Couplings						
m_{h_1} (GeV)	115	119	123	76	85	51
Relative gg Production Rate	0.97	0.99	0.99	0.00	0.01	0.08
$BR(h_1 ightarrow b\overline{b})$	0.02	0.01	0.01	0.91	0.91	0.00
$BR(h_1 o au^+ au^-)$	0.00	0.00	0.00	0.08	0.08	0.00
$BR(h_1 ightarrow a_1 a_1)$	0.98	0.99	0.98	0.00	0.00	1.00
m_{h_2} (GeV)	516	626	594	118	124	130
Relative gg Production Rate	0.18	0.09	0.01	0.98	0.99	0.90
$BR(h_2 ightarrow b\overline{b})$	0.01	0.04	0.04	0.02	0.01	0.00
$BR(h_2 o au^+ au^-)$	0.00	0.01	0.00	0.00	0.00	0.00
$BR(h_2 ightarrow a_1 a_1)$	0.04	0.02	0.83	0.97	0.98	0.96
m_{h_3} (GeV)	745	1064	653	553	554	535
CP-odd Higgs Boson Masses and Couplings						
m_{a_1} (GeV)	56	7	35	41	59	7
Relative gg Production Rate	0.01	0.03	0.05	0.01	0.01	0.05
$BR(a_1 ightarrow b\overline{b})$	0.92	0.00	0.93	0.92	0.92	0.00
$BR(a_1 ightarrow au^+ au^-)$	0.08	0.94	0.07	0.07	0.08	0.90
m_{a_2} (GeV)	528	639	643	560	563	547
Charged Higgs Mass (GeV)	528	640	643	561	559	539
Most Visible Process No.	$2(h_1)$	$2(h_1)$	$8(h_1)$	$2(h_2)$	$8(h_2)$	$8(h_2)$
Significance at 300 fb^{-1}	0.48	0.26	0.55	0.62	0.53	0.16

- 1) $gg \rightarrow h/a \rightarrow \gamma\gamma;$
- 2) associated Wh/a or $t\bar{t}h/a$ production with $\gamma\gamma\ell^{\pm}$ in the final state;
- 3) associated $t\bar{t}h/a$ production with $h/a \rightarrow b\bar{b}$;
- 4) associated $b\bar{b}h/a$ production with $h/a \rightarrow \tau^+ \tau^-$;
- 5) $gg \to h \to ZZ^{(*)} \to 4$ leptons;
- 6) $gg \to h \to WW^{(*)} \to \ell^+ \ell^- \nu \bar{\nu};$

7)
$$WW \to h \to \tau^+ \tau^-;$$

8)
$$WW \to h \to WW^{(*)}$$
.

Some of these Higgses cannot be seen at the LHC, if decay $h \rightarrow a_1 a_1 \rightarrow bbbb$ large

Low significance at the highest lumi

Scenario	m_h (GeV)	m_a (GeV)	$\sigma(\gamma\gamma \rightarrow h)$ (fb)	Acceptance	No. events / 10^6s
(1)	115	56	112	0.26	139
(3)	123	35	9.1	0.33	14.7
(4)	118	41	46	0.28	63
(5)	124	59	6.0	0.24	7.1

Asner et al.

Signals and background for Four of the difficult LHC scenarios

Study $h \rightarrow a_1 a_1 \rightarrow bbbb$

Clear signals confirming/discovering these low mass Higgses

Note e+e- \rightarrow Zh should see these without problems

Higgs Wrap-up

- Mass
 - ~ 100 MeV/ 1 year running
- Partial width $\Gamma(\gamma\gamma)$
 - 2-7% in bb channel (needs $H \rightarrow bb$ from e+e-)
 - 3-10% in WW,ZZ channel (needs BR from e+e-)
- Determination of the phase of the $\gamma\gamma \rightarrow$ Higgs amplitude
 - 3-10% in WW,ZZ channel
- CP analysis: many posibilities
 - $h \rightarrow ZZ,WW$ angular analysis
 - h →tt interference with QED background, lepton charge asymmetries
 - Linear polarization
- Rare decay modes
 - $H \rightarrow \gamma \gamma !, H \rightarrow \gamma Z$?
- Discovery reach for H,A
 - Up to 0.8 $\sqrt{s_{ee}}$ for $\sqrt{s_{ee}} \sim 800 \text{ GeV}$

See M. Krawczyk talk ~e^e-

15% in e+e-

~e+e-

Unique?

More handles than in e+e-Clean tests!

Difficult in e+e-

e+e-:√s/2- 50 GeV

K. Moenig et al. arXiv:physics/0601204

Sensitivity to anomalous $WW\gamma$ for different machines

A. Manteuffel

Anomalous Couplings in yy -> WW

Gauge and gauge-Higgs anomalous couplings

 $\begin{aligned} \mathscr{L}_{2} &= \frac{1}{v^{2}} \begin{pmatrix} h_{W} O_{W} + h_{\bar{W}} O_{\bar{W}} + h_{\varphi W} O_{\varphi W} + h_{\varphi \bar{W}} O_{\varphi \bar{W}} + h_{\varphi \bar{B}} O_{\varphi \bar{B}} + h_{\varphi \bar{B}} O_{\varphi \bar{B}} \\ &+ h_{W \bar{B}} O_{W \bar{B}} + h_{\bar{W} \bar{B}} O_{\bar{W} \bar{B}} + h_{\varphi \bar{U}}^{(1)} O_{\varphi}^{(1)} + h_{\varphi}^{(3)} O_{\varphi}^{(3)} \end{pmatrix}, \\ O_{W} &= \epsilon_{ijk} W_{\mu}^{i\nu} W_{\nu}^{j\lambda} W_{\lambda}^{k\mu}, \qquad O_{\bar{W}} = \epsilon_{ijk} \tilde{W}_{\mu}^{i\nu} W_{\nu}^{j\lambda} W_{\lambda}^{k\mu}, \\ O_{\varphi W} &= \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) W_{\mu\nu}^{i} W^{i\mu\nu}, \qquad O_{\varphi \bar{W}} = \left(\varphi^{\dagger} \varphi \right) \tilde{W}_{\mu\nu}^{j} W^{i\mu\nu}, \\ O_{\varphi \bar{B}} &= \frac{1}{2} \left(\varphi^{\dagger} \varphi \right) B_{\mu\nu} B^{\mu\nu}, \qquad O_{\varphi \bar{B}} = \left(\varphi^{\dagger} \varphi \right) \tilde{B}_{\mu\nu} B^{\mu\nu}, \\ O_{W \bar{B}} &= \left(\varphi^{\dagger} \tau^{i} \varphi \right) W_{\mu\nu}^{j} B^{\mu\nu}, \qquad O_{W \bar{B}} = \left(\varphi^{\dagger} \tau^{j} \varphi \right) \tilde{W}_{\mu\nu}^{j} B^{\mu\nu}, \\ O_{\varphi \bar{U}}^{(1)} &= \left(\varphi^{\dagger} \varphi \right) (D_{\mu} \varphi)^{\dagger} (D^{\mu} \varphi), \qquad O_{\varphi \bar{U}}^{(3)} &= \left(\varphi^{\dagger} D_{\mu} \varphi \right)^{\dagger} \left(\varphi^{\dagger} D^{\mu} \varphi \right) \end{aligned}$

Sensitivity with polarized beams

Comparison of Sensitivities

	LEP & SLD (*)	$ee \rightarrow WW~(")$	$\gamma\gamma \rightarrow WW$ unpolarised	$\begin{array}{l} \gamma\gamma \rightarrow WW \\ J_Z = 0 \end{array}$
	h [10 ⁻³]	$\delta h_l [10^{-3}]$	$\delta h_i [10^{-3}]$	δh [10 ⁻³]
hw	-69 ± 39	0.3	0.6	0.3
hws	-0.06 ± 0.79	0.3	1.6	0.7
how8	×	×	2.2	0.9
$h_{\varphi}^{(3)}$	-1.15 ± 2.39	36.4	×	×
h _w	68 ± 81	0.3	0.7	0.3
h _{WB}	33 ± 84	2.2	2.0	0.9
h _{çWB}	х	×	2.0	0.6

Anomalous Top Couplings

Search for deviations in the top couplings

		f_2^L	$f_2^{I\!\!R}$
	Tevatron ($\Delta_{ m sys.} \sim 10\%$)	$-0.18 \div +0.55$	$-0.24 \div +0.25$
ev aives good	LHC ($\Delta_{ m sys.}\sim 5\%$)	$-0.052 \div +0.097$	$-0.12 \div +0.13$
	$e^+e^-~(\sqrt{s}_{ee}=0.5~{ m TeV})$	$-0.025 \div +0.025$	$-0.2 \div +0.2$
Sensitivity	$\gamma e \ (\sqrt{s_{ee}} = 0.5 \text{ TeV})$	$-0.045 \div +0.045$	$-0.045 \div +0.045$
(1 year running)	$\gamma e \left(\sqrt{s_{ee}}=2 \; { m TeV} ight)$	$-0.008 \div +0.008$	$-0.016 \div +0.016$
Roos et al	The γe collider is more the	an competitive!	

 $f_2^L \& f_2^R$ anomalous terms in the eff. Langrangian, $\propto 1/\Lambda$ (new physics scale)

γγ→tt Electric dipole moment Godbole et al. Beam energy: 250 GeV. L=20 fb⁻¹. Cut-off angle 30 deg.

No. of events	Charge asymmetry	Limit on dipole Moment
Ideal: 533	-0.031	$6.5 \ge 10^{-17} ecm$
Zarnecki: 238	-0.023	$1.3 \ge 10^{-16} ecm$

Limits will better by factor 5 for 500 fb⁻¹.

Supersymmetry

Cross sections for SUSY particles at a LC

Note: couplings only to photon

E.g. charginos at 150 GeV

	$\int \mathcal{L}_{th} \ (\mathrm{fb}^{-1}/10^7)$	s) σ (fb)	Event yield
Spin-0	30	3000	90,000
Spin-2	5	1000	$5,\!000$
e^+e^-	160	300	48,000

Two times as many events in $\gamma\gamma!$

Klasen, Berge

Gluino Production

Berge, Klasen , fife ἔ Υννιφ----**, fife ἔ Υννιφ** , €660 8 Ynn Gluinos couple only strongly! Suppressed in e+e- and cannot Y کر میں FAR ா∕∿ு----சπா ĝ Ym γw be measured Can be produced at ¥rrrr ĝ • the loop level in direct $\gamma\gamma$ collisions γ_{CZ} <u>€666</u> 8 • the tree level in resolved $\gamma\gamma$ collisions `∳660 ĝ γ5 m_{SUSY} Dependence of Direct/Resolved Contributions 10 recenter 8 $\sqrt{s_{\gamma\gamma}} = 500 \text{ GeV}$ $\tilde{m}_{2} = 200 \text{ GeV}$ • 000000 Direct+Resolved 1 nnnnn ----- Direct Resolved (qq+gg) 10 ----- Resolved (gg only) σ [fb] 10 g (S 's ∕oossoo, sssoo 8 g 🖓 ចេចចេញ 10 ន 🤆 ចេចចេច 10 = squark mass 400 600 1000 1200 1400 800m_{SUSV} [GeV] 48

Gluino Production

- between 20 events for squarks of 800 GeV and 2000 events per year for light squarks of 325 GeV
- about 20 events per year for heavy squarks (1500 GeV) by resolved contribution

Determination of $Tan\beta$

 $\mathbf{2}$

Methods to determine $\tan \beta$ for large values beyond $\tan \beta = 10$

(a) charginos / neutralinos	⇒	$\cos 2eta $	β Choi et al
(b) τ polarization etc	\Rightarrow	$\sim 10\%$	Boos et al
(c) $bbH/A, H/A$ widths etc	\Rightarrow	${\rm LHC}/300 fb^{-1}~: 12$ to 4%	Gunion et al
	\Rightarrow	$LC/2,000fb^{-1}:5$ to 3%	at $M_A = 200 \text{GeV}$
(d) LHC sim $H/A \rightarrow \tau \tau$	\Rightarrow	$30 f b^{-1} \sim 20\%$	Kinnunen et al
(e) $\gamma\gamma \to H/A \to b\bar{b}$	⇒	~ 4 to 10% [estimate] s	ee: Niezurawski et al and Velasco et al

Additional methods strongly required for precision analysis of $\tan \beta$

S.Y.Choi,J.Kalinowski,J.S.Lee, M.M. Muhlleitner, M.Spira,P.M.Zerwas hep-ph/0404119

Tau fusion -> tan beta New method: Tauon fusion of Higgs h/H/A/ at $\gamma\gamma$ collider: $\gamma \gamma \rightarrow (\tau^+ \tau^-)(\tau^+ \tau^-) \rightarrow \tau^+ \tau^- + h/H/A$ 7 WWW. = - h/H/A2 11111 couplings: for large $\tan \beta$ $A\tau\tau = \tan\beta, \ H\tau\tau \simeq \tan\beta$ for A, H heavy $h\tau\tau \simeq \tan\beta$ A light Higgs decays: $h/H/A \rightarrow bb$ at 90% level \Rightarrow SPS1b In analysis tan beta 10-50 and mass 100 -500 GeV Δ tan $\beta \sim 0.9$ -1.3 lum 100 (200) fb⁻¹ for energy 500 (1000) GeV (background included)

Extra Dimensions

Why is gravity weak? Has more than 4 dimensions to spread out Extra dimensions small, μm to TeV^1 scale

 \Rightarrow Deviations in SM cross sections

ADD: Planck scale in TeV range Photon collider has a large

sensitivity	Reaction	$M_{m{S}}$ Reach (TeV units) for $L=100{ m fb}^{-1}$	
	$e^+e^- ightarrow f\overline{f}$	$6.5\sqrt{s}$	TRizzo
	$e^+e^- ightarrow e^+e^-$	$6.2\sqrt{s}$	
	$e^-e^- ightarrow e^-e^-$	$6.0\sqrt{s}$	
\ \	$pp ightarrow \ell^+ \ell^-$ (LHC)	5.3	
\ \	pp ightarrow jj (LHC)	9.0	
WW production:	$pp ightarrow \gamma\gamma$ (LHC)	5.4	Also studies
	$\gamma\gamma ightarrow \ell^+\ell^-/t\overline{t}/jj$.	$4\sqrt{s}$	on Radions in
-Large statistics	$\gamma\gamma ightarrow \gamma\gamma/ZZ$	$4-5\sqrt{s}$	
-Many observable <mark>s</mark>	$\gamma\gamma ightarrow W^+W^-$	$11\sqrt{s}$	RS-models

Extra Dimensions

Using luminosity measurements process to detect KK graviton in ADD at PLC ; Zhou,Ma,Han,Zhang hep-ph/07081195

∎ γγ → e⁺e⁻G_n

For J=2 large cross section Polarization efficiency $P_{\gamma}=(N_{+}-N_{-})/(.+.)$

Fund. scale M_s=1.5 TeV

Extra Dimensions

Signal and background

Table 1: Total cross sections for the process $\gamma\gamma \rightarrow e^+e^-G_n$, with and without photon polarization. M_S is set to be 1 TeV, the polarization efficiency $P_{\gamma} = 0.9$, and the cross sections are in *fb*.

\sqrt{s} [GeV]		$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$
	unpol.	46.46	13.92	4.692	1.700
500	+ -	60.01	19.35	6.853	2.576
	++	32.91	8.493	2.532	0.821
	unpol.	371.7	222.7	150.1	108.8
1000	+ -	480.8	309.6	219.3	164.9
	++	262.6	135.8	80.93	52.75

Full bakground simulation

We conclude that by adopting an unpolarized $\gamma\gamma$ collision machine with $\sqrt{s} = 1$ TeV in the case of $\delta = 3$ and $\mathcal{L} = 100 f b^{-1}$, the graviton signal can be detected when $M_S \leq 2.67$ TeV, while in the case of $\sqrt{s} = 500$ GeV, the graviton signal can be detected only when $M_S \leq 1.40$ TeV. If we adopt a $\gamma\gamma$ collider machine in +- polarized photon collision mode, the detecting upper limits on the fundamental scale can be improved up to 2.79 TeV when $\sqrt{s} = 1$ TeV, and 1.44 TeV when $\sqrt{s} = 0.5$ TeV.

Unparticles

(a)

arXiv:0802.0236

Effect of virtual unparticle contribution to the $\gamma\gamma \rightarrow$ tt cross section

Timeline for ILC options?

Year: 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

We need to be ready to make decisions for the baseline machine to maximize it's physics potential for the long term.

J. Gronberg LCWS07

Conclusions

Many detailed studies on the physics case for the photon collider

- R&D for a photon collider & detectors ongoing
 - Have to keep up support for these activities (LC & photon workshops!)
- Detail results on physics
 - QCD studies on the structure of the photon and $\sigma(\gamma\gamma)_{tot}$
 - The light Higgs results confirmed and extended $\rightarrow \Delta \Gamma_{\gamma\gamma} / \Gamma_{\gamma\gamma} \sim 2\%$
 - H/A study confirms reach for high masses, beyond e+e-
 - Detailed study of the TGCs $\rightarrow \lambda$ measurement competitive with e+e-
 - Excellent sensitivity to SUSY and Extra Dimensions/alternative theories

A photon collider is an excellent machine for physics
It is strongly coupled to the faith of ILC/CLIC and hence >2020
Some of its program can be probably be initiated at the LHC with two-photon physics studies...

Backup