

Accuracy evaluation of QZS-1 orbit solutions with Satellite Laser Ranging

Kyohei Akiyama (Japan Aerospace Exploration Agency) and

Toshimichi Otsubo (Hitotsubashi University)

Introduction

QZSS-1(Quasi-Zenith Satellite-1) launched in Sep.2010

- A Japanese original positioning system using multiple satellites that have the same orbital period as geostationary satellites with about 45deg inclinations.
- Transmit <u>GPS compatible signal</u> and <u>L-band experiment signal(LEX)</u> based on Multi-GNSS scheme.

Ground trace from QZS-1 orbit

QZS-1 orbit parameters						
Semi-major Axis	42,164 km (average)					
Eccentricity	0.075 ± 0.015					
Orbital Inclination	$43^{\circ} \pm 4^{\circ}$					
Argument of	$270^{\circ} \pm 2^{\circ}$					
Perigee						
Central Longitude	$135^{\circ} \pm 5^{\circ}$ East					
of Ground Track						

QZSS monitoring stations

A QZSS tracking network of <u>9 monitoring stations</u> are currently operated.

Precise Orbit Determination tool for PPP experiment via QZSS LEX channel

MADOCA

Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis

- Multi-GNSS precise orbit/clock estimation tool
- For JAXA PPP experiment via QZSS LEX channel
- Key-technology for precise positioning with GNSS
- Requirements
 - Satellites: GPS, GLONASS, QZSS and Galileo
 - Offline (FY23) and real-time (FY24) functions
- Goal of Orbit/Clock Accuracy
 - Offline : 3 cm/0.1 ns (GPS), 7 cm/0.25 ns (GLO/QZS)
 - Real-time: 4 cm/0.1 ns (GPS), 9 cm/0.25 ns (GLO/QZS)

Development Status of MADOCA, T. Takasu, 2012

Accuracy evaluation of QZS-1 orbit

Accuracy evaluation of QZS-1 orbit solutions with SLR

- SLR residuals to the QZS-1 orbits processed with MADOCA.
- Differences between the MADOCA-orbits and those with SLR tracking data.
- The orbits with SLR tracking data are provided by JAXA and Hitotsubashi Univ. (HIT).

Evaluation Procedure

Step.1 Prior evaluation of the orbits using SLR observations

- GPS orbit determination using SLR observations. (JAXA/HIT)
- Differences between JAXA/HIT-orbits and IGS final orbits.
- Differences between JAXA-orbits and HIT-orbits.

Step.2 Evaluation of the orbits using SLR observations

- QZS-1 orbit determination using SLR observations. (JAXA/HIT)
- Differences between JAXA-orbits and HIT-orbits.

Step.3 Evaluation of the orbits processed with MADOCA

- SLR residuals to the orbits processed with MADOCA.
- Differences between the MADOCA-orbits and the JAXA/HIT-orbits using SLR obserbations.

Step.1: GPS orbit estimation with SLR

Evaluation

- Differences between JAXA/HIT-orbits and IGS final orbits.
- Differences between JAXA-orbits and HIT-orbits.

GPS orbit determination using SLR observations

• Estimation periods are selected so that the SLR data at no less than 3 stations is provided at the same time.

Models/Parameters	JAXA	HIT		
Site position	ilrsb	ITRF2008		
Satellite mass	$972.9~\mathrm{kg}$	$930.0~\mathrm{kg}$		
Difference between CoM and optical center	[862.58, -524.51, 671.7] m (common)			
Troposphere delay model	Marini-Murray model	Mendes & Pavlis model		
SRP model	CODE model	Canon ball		
Estimation parameters	Orbit elements (6)	Orbit elements (6) SRP correction coefficient (1) Constant and 1/rev accelerations in the along-track direction (3)		

Step.1: Result GPS orbit estimation with SLR

Differences between JAXA/HIT-orbits and IGS final orbits

- JAXA vs. IGS final
- HIT vs. IGS final

- Radial : ~ 5 cm
- Along track : ~20 cm

• Radial : ~ 10 cm (exc. arc1)

Step.1: Result GPS orbit estimation with SLR

Step.2: QZS-1 orbit estimation with SLR

Evaluation

- SLR residuals of the orbits determined by JAXA.
- Differences between JAXA-orbits and HIT-orbits.
- Estimation periods are selected so that the SLR data at no less than
 3 stations is provided at the same time.

Models / Parameters	JAXA	HIT			
Site position	ilrsb	ITRF2008			
Satellite mass	2280.7 [kg] (common)				
Center of mass	$(X_s, Y_s, Z_s) = (-0.8, 2.9, 1819.3)$ [mm] (common)				
Optical reflection center	$(X_s, Y_s, Z_s) = (-1150.0, -550.0, 4517.64) [mm] (common)$				
Troposphere delay model	Marini-Murray model	Mendes & Pavlis model			
SRP model	Canon ball	Canon ball			
Cross-section area	$60.0 [m^2]$	$52.0 [m^2]$			
SPR Coefficient (Cr)	1.2				
Estimation parameters	Case-1 Orbit elements (6) SRP correction coefficient (1) Constant accelerations in the along- track direction(1) Case-2 1/rev accelerations in the along-track are estimated in addition to Case-1.	Orbit elements (6) SRP correction coefficient (1) Constant and 1/rev accelerations in the along-track direction (3)			

Step.2: Result QZS-1 orbit estimation with SLR

SLR residuals of the orbits determined by JAXA

- Long arc (5~7 days)
 - SLR residuals: ~10 cm RMS
 - Periodic variation assumed to be due to the model error ware detected.

Estimation period (Long)	SLR residuals (mm)		
Estimation period (Long)	AVE	STD	RMS
Arc1:2011/09/02:00:00	-2.9	52.4	52.5
$\sim 09/07 \ 00.00$			
$\sim 11/24\ 00:00$	-11.7	35.9	37.7
Arc3&4:2011/12/15:00:00 $\sim 12/22:00:00$	9.8	72.1	72.5

• Short arc (5~10 hours)

• SLR residuals: ~1 cm RMS

	Estimation pariod (Short)	SLR residuals (mm)		
Estimation period (Short)		AVE	STD	RMS
	Arc1:2011/09/04 10:00 - 20:00	0.01	8.5	8.5
	Arc2:2011/11/21 09:00-14:00	0.00	5.7	5.7
	Arc3:2011/12/16 15:00-21:00	0.00	5.7	5.7
	Arc4:2011/12/19 08:00 - 14:00	0.03	18.8	18.8

Step.2: Result QZS-1 orbit estimation with SLR

Differences between JAXA-orbits and HIT-orbits

- Differences
 - Radial : ~30cm
 - Along/Cross track: several meters
- Biases that have an average of 10 cm in the radial direction exist in each arc.

Step.3:Result QZS-1 orbit based on MADOCA

SLR residuals to the orbits processed with MADOCA

•U-shaped residuals that have a peak-to peak amplitude of 20 cm were detected in each arc.

•The average of SLR residuals in Arc1 were opposite in sign to those in Arc2 and 3.

Step.3:Result QZS-1 orbit based on MADOCA

Differences between the MADOCA-orbits and JAXA/HIT-orbits

- Radial biases that have an average of 20-30 cm from the orbits using SLR data were detected in each arc.
- It seems that the orbits processing with MADOCA obtain the accuracy of 20-30 cm in the radial direction.

Arc Length

- LONG (5~7 days)
- SHORT (5~10 hours)
- -1PRX
- 1/rev accelerations in along-track is additionally estimated.

Conclusion

• JAXA and HIT evaluate QZS-1 MADOCA using SLR data

<u>QZS-1 MADOCA periodic systematic error found by Residual</u> <u>Analysis</u>

- U-shaped SLR residuals of P-P 25cm and bias mean difference by each arc were found.
- The reasons of periodic appearance of SLR residuals should be studied.

QZS-1 SLR only Orbit Determination

- JAXA and HIT orbits matched by about 20cm level in the radial direction.
- Orbit determination in the cross and along direction were not so sensitive.
- More SLR data of QZS-1 is required to evaluate QZS-1 MADOCA orbit.
- QZS-1 tracking campaign is desirable to get SLR observation at 3 or more SLR stations for short arc solution.

Promotion of QZSS Project

< Basic policy on the implementation of the operational QZSS project > approved at the Cabinet meeting on September 30, 2011.

The QZSS will contribute to

•Welfare of the Asia-Pacific region

 Broad range of security including the improvement the capacity to respond to natural disasters

Promotion of QZSS Project

< Basic policy on the implementation of the operational QZSS project > approved at the Cabinet meeting on September 30, 2011.

- GOJ has decided to accelerate the deployment of the operational QZSS as expeditiously as possible.
- Four satellites constellation shall be established by the late 2010s.
- In the future, seven satellites constellation shall be completed to enable sustainable positioning.

Thank you for your attention.