

Retroreflector systems used in laser ranging of geodetic and navigation satellites

GFZ-1 / Russia

LARETS / Russia

WESTPAC / Russia

METEOR / Russia

Ajisai / Japan

ETALON / Russia

A

GLONASS / Russia

Compas / China

GIOVE / Russia

GPS Nº35,36 / Russia

Main Laser Retroreflector Systems of "RPC "PSI"

Type of spacecraft	Altitude, km	Launching	Number of spacecrafts	Number of CCR on a spacecraft	Type of reflective coating
Etalon - 1, -2 (Russia)	19 100	1989	2	2142	AI
GPS - 35, - 36 (USA)	20 150	1993, 1994	2	32	AI
GLONASS (Russia)	19 100	2000 - 2006	8	132	AI
REFLECTOR (Russia - USA)	1 020	2002	1	32	AI
Meteor-3M-1 (Russia)	1 020	2002	1	sphere	AI
LARETS (Russia)	690	2003	1	60	AI
Mozhaets (Russia)	690	2003	1	6	AI
GLONASS-M (Russia)	19100	from 2003 to present	17	112	AI
GLONASS-M № 729 (Russia)	19100	2008	1	112	TIR
GIOVE-A (ESA) (Galileo)	23 916	2006	1	76	AI
GIOVE-B (ESA) (Galileo)	23 916	2008	1	67	AI
GOCE (ESA)	295	2009	1	7	AI
BLITS 2009 (Russia)	832	2009	1	autonomous sphere	AI
GLONASS-K	19100	2010	1	123	TIR
SPECTOR-R(Russia)	до 330 000	2010	1	100	Ag

The main trends of laser retroreflector systems (LRS) optimization:

Goals:

- decrease of the correction to the results of measurement;
- increase of cross-section.

1. New interference coatings (generally – gradient) with a view to:

- optimize FFDP of reflected radiation to compensate speed aberrations;
- reduce solar heating influence;
- decrease a loss of light in CCR;
- 2. Remote control of FFDP
- Rotation of CCR array;
- Variation of the polarization state of laser radiation.
- 3. Size of CCR and value of CCR dihedral angles.
- 4. LRS configuration for an accurate correspondence to the center of mass of the satellite.
- Glass spherical satellites of BLITS type absolute correspondence of measurements to the center of mass of the spacecraft.

1 : FFDP and cross-section of CCR (TIR). Diameter – 28 mm

CS of one CCR

Average CS for the four turned CRR

1: New interference coatings

CCR's far field diffraction patterns as a function of the phase shift on reflection

 $\delta = 0$

$$\delta = 20$$

$$\delta = 45$$

 $\delta = 60$

 $\delta = 90$

1 : FFDP of CCR with dielectric interference coatings of faces (the phase shift = 0)

1: Reduce solar heating influence

2 : Remote control of FFDP

3 : CCR with the controlled DAO (dihedral angle offsets)

Optimization of FFDP:

- for low-orbit three-axis attitude spacecrafts;
- for HEO spacecrafts with a ring-shape LR-array;
- for geostationary satellites.

3 : CCR with DAO + coatings. Diameter 50 mm. Dihedral angle 2,4"

Range of 24 CCR

3 : CCR with different DAO. Diameters: 28 mm and 50 mm

DAO	Equivalent diameter - 28 mm		Equivalent diameter - 50 mm	
DAO	One CCR	Range of CCR	One CCR	Range of CCR
2,2″			-	\cdot
2,4″			-	0
2,6″				0

3 : Influence of incident angle on two-spots CCRs

4 : Optimization of LR array configuration

5: Spherical glass nanosatellite «BLITS-M»

Expected target parameters of the nanosatellite «BLITS-M»					
goal error	no more than 0.1 mm				
CS	0.3·10 ⁶ - 1·10 ⁶ m ²				
time of service under the condition of a flight	at least 10 years				
orbital altitude (will be chosen)	1500 km – 3000 km				
diameter	no more than 250 mm				
mass	at least 20 kg				

Thank you for your attention!