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Summary: We give a short overview of the forthcoming ESA Earth Observation (EO) and Fundamental 
Physics missions that implement highly accurate SLR tracking; discuss the ‘’SLR network effect’’ and its 
impact on the geocenter in the case of ocean altimetry with the two antipodal Sentinel-3 satellites; present 
laser retro-reflectors of the Sentinel-3 and the three Swarm satellites, and potential SLR tracking 
restrictions for Sentinel-3 mission. We discuss applications of laser retro-reflectors (LRR) with zero-
signature such as BLITS, in order to capture sub-mm LEO orbit perturbations for gravity field and POD, and 
show improvements in the GOCE orbit validation by introducing ”SLR ANTEX” file. In sequel, we discuss 
the possibility of using the highly elliptical orbit of the STE-QUEST mission for the reference frame 
realization, combining GNSS, SLR and VLBI (radio source) in HEO. In the second part, we introduce 
double-difference approach of space geodesy for SLR/LLR/VLBI/GNSS and with simulated SLR 
measurement show how common biases are removed by forming SLR double-differences, i.e. station 
range biases, common signature effects and (GNSS) orbit errors for baselines up to 5000 km. Simulated 
data show how remaining noise in the SLR measurements nicely averages out, leading to orbit-free and 
bias-free estimation of station coordinates, local ties between different space geodesy techniques and 
precise comparison of optical/microwave tropospheric effects. SLR scale is preserved by differencing.  

Prospects in SLR Tracking of ESA Earth Observation and Fundamental Physics Missions: There are 
several ESA missions that will be launched in the near future and will require highly accurate SLR 
measurements. Swarm is an ESA’s geomagnetic field mission, a constellation of three LEO satellites 
planned for launch in April 2013, whereas Sentinel-3 is the ocean/land altimetry mission (scheduled for  
2014/2015) with two antipodal satellites in the same orbital plane (with SLR LRR, GPS and DORIS 
receiver). Considering the “SLR network effect’’ (unequal global distribution of SLR stations, especially 
between northern and southern hemisphere) and associated geocenter effects (z-bias), it is recommended 
to observe both Sentinel-3 satellites in the same station tracking session. This will also preserve the 
common SLR range bias between the two satellites.  There is a potential SLR tracking restriction for 
Sentinel-3 satellites due to the onboard Ocean and Land Colour Instrument and this issue will need to be 
discussed with ILRS before the launch. STE-QUEST is a fundamental physics mission pre-selected for the 
M3 slot of the ESA Cosmic Vision Programme. If finally approved in 2013, it will be interesting to use the 
highly elliptical orbit of this satellite for the reference frame realization and combination of space geodesy 
techniques by means of SLR, GNSS and an optional onboard VLBI radio source. ESA is extremely pleased 
with the ILRS Tracking of GOCE mission, currently approaching the target orbit altitude of only 235 km. In 
addition, the first SLR tracking of Galileo satellites has been reported in [Svehla et al., 2011]. Calibration of 
CHAMP and GOCE LLRs reveals significant reflector signature in the order of 9 mm peak to peak, whereas 
for GOCE, this effect is in the order of 15 mm.  Converting this calibration table into a SLR ANTEX file (in 
analogy to GPS), bias in the SLR residuals of the GOCE Precise Science Orbit is reduced from 5.2 mm to 
0.1 mm, whereas standard deviations of the residuals is slightly improved from 14.5 mm to 14.4 mm. For 
both, the Swarm and Sentinel-3 satellites, the GFZ-design for laser retro-reflector is foreseen with the 
recommendation to possibly embark superior BLITS design with zero signature. Sentinel-3 mission is the 
first altimetry mission with antipodal satellites. Although equipped with GPS receiver, it will not be possible 
to form GPS baseline between the two satellites and get relative orbit information, since there is no 
common GPS satellite in view. In the case of GRACE mission, it was demonstrated for the first time in  
[Svehla and Rothacher 2004] that GPS baseline (or vector between two satellites) can be determined with 
the very high accuracy of only 2.8 mm  RMS when validated against the GRACE KBR measurements. With 
refined models, this RMS has been reduced to 0.7 mm. Thus, for Sentinel-3 satellites it will be very 
interesting to improve orbit quality by forming a “LEO network in space” (Sentinel-3, Swarm, Jason-2, etc.) 
in order to provide relative orbit information between the two antipodal satellites with utmost accuracy.  

Double-Difference Approach of Space Geodesy - SLR/LLR/GNSS/VLBI: Double-differences (DD) have 
been widely used in the processing of global GPS measurements, forming so-called GPS baselines, or 
vectors between IGS stations. When ETALON and LAGEOS satellites are observed by SLR, any orbit error 
propagates directly into station coordinates. However, by forming differences between two satellites and 
two ground stations this orbit error can be eliminated or to a great extent reduced.  Both satellites need to 
be observed quasi-simultaneously in the same tracking sessions in order that station range bias and 
common reflector signature effect are removed by differencing. By forming single-difference of SLR 
measurements between two stations and a common satellite, range biases are not eliminated, thus single-
difference to another satellite in a common view is needed, see Fig. 1. In this way we obtain double-
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