
NGSLR EXPERIENCE WITH GNSS RANGING: McGarry

• Had been extremely difficult with eyes-afe laser energies: had to be above 60 degrees elevation at night, and even then wasn't guaranteed.

- With NASA 1 mJ laser and Hamamatsu 40% QE detector it has been much easier:
 - Several passes tracked during daylight
 - Have ranged down to 40 degrees elevation
 - Night time is much easier to acquire than with eye-safe laser
- Caveat right now:
 - Need recent starcal to make acquisition possible
 - Acquisition during daylight is harder than night
- New GLONASS satellites are the easiest to acquire.
- Return rate at NGSLR not where it should be. We are investigating but believe good part of this is the pointing error (and we are working this).
- With 3x more energy from the new PI laser and gains from work done above, we should be getting > 1% return rate (rather than our current 0.1%).

NGSLR GNSS (& ETALON) RANGING APRIL– JUNE 2012

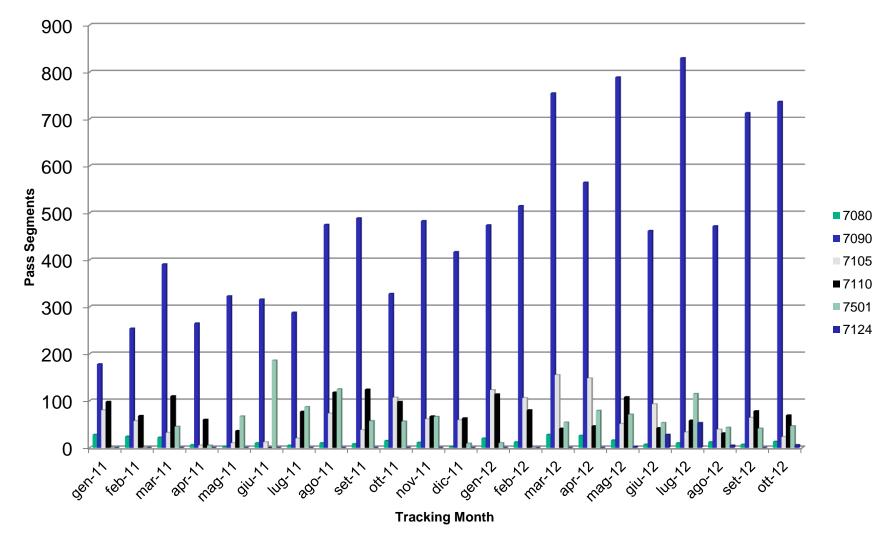
Satellite	SIC	DOY	HH:MM	#obs	RR%	#NPTS	# segs
ETALON-2	4146	094	02:15	5374	0.2	8	3
ETALON-2	4146	102	01:55	3026	0.1	6	3
ETALON-2	4146	147	02:55	759	0.1	2	1
Galileo-101	7101	090	01:36	8010	0.3	5	1
Galileo-102	7102	097	00:34	573	<0.1	3	1
Galileo-102	7102	168	00:44	1210	<0.1	5	1
GLONASS-109	9109	093	23:00 DAY	4644	0.1	12	1
GLONASS-115	9115	094	18:15 DAY	778	0.1	3	1
GLONASS-122	9122	090	02:08	11181	0.8	12	1
GLONASS-122	9122	152	01:55	2293	0.1	6	1
GLONASS-122	9122	153	00:16	589	<0.1	4	1
GLONASS-123	9123	108	02:40	2568	0.1	4	1
GLONASS-123	9123	139	01:35	1046	0.1	4	1
GLONASS-123	9123	147	02:14	409	0.1	4	2
GLONASS-123	9123	150	18:27 DAY	3767	0.1	9	1

NGSLR GNSS McGarry Nov 2012

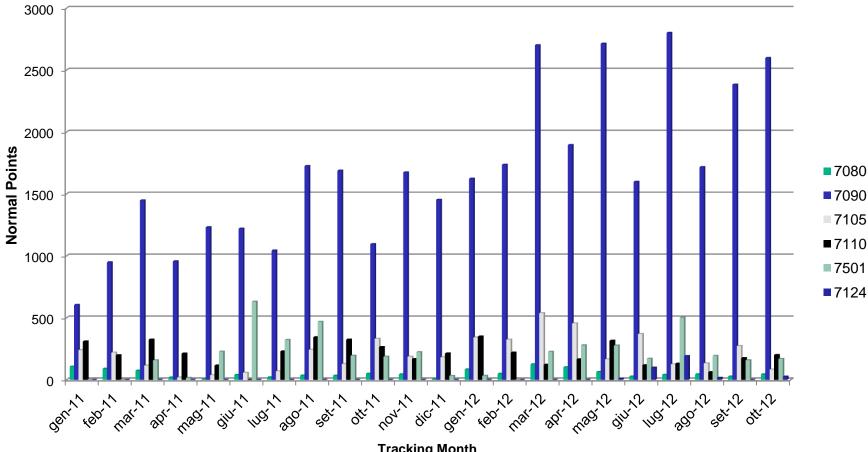
NGSLR GNSS McGarry Nov 2012

NASA Network Experience with GNSS Tracking

ILRS Technical Workshop, Frascati, Italy 7 November 2012


Dave McCormick, NASA GSFC Jan McGarry, NASA GSFC Dr. Thomas Varghese **Nikki Desch, Exelis Inc.**

- ➤ Capability
 - 5 MOBLAS Stations (Day/Night)
 - Monument Peak 7110
 - Yarragadee **7090**
 - Hartebeesthoek 7501
 - Greenbelt **7105**
 - Tahiti **7124**
 - > MLRS 7080 (Day/Night)
 - > 2 TLRS Systems *future* (Night)
 - Arequipa **7403**
 - Haleakala 7119
- Tracking Constraints
 - Transmit Link (Large beam divergence)
 - Repetition Rate (4pps)
 - Receiver gain



NASA Network GNSS Pass Segment Total for 2011-2012

NASA Network GNSS Normal Point Total for 2011-2012

Tracking Month

- Event Timer Upgrade throughout the network to support 10 pps and higher operations
- Servo-system upgrade for improved acquisition, tracking, and points
- > TLRS upgrade to improve link and pointing

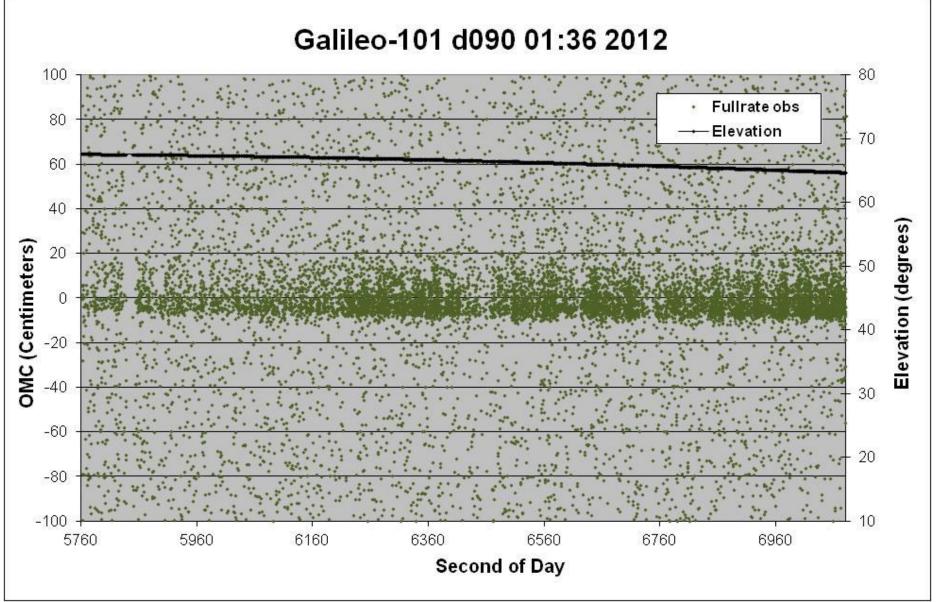
NGSLR EXPERIENCE WITH GNSS RANGING:

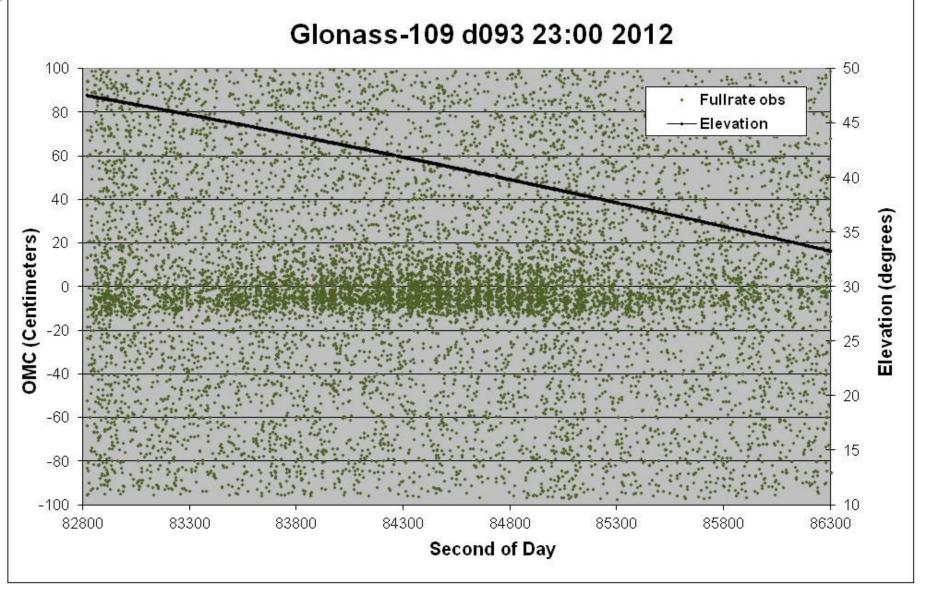
• Had been extremely difficult with eyes-safe laser energies: had to be above 60 degrees elevation at night, and even then wasn't guaranteed.

• With NASA 1 mJ laser and Hamamatsu 40% QE detector it has been much easier:

- Several passes tracked during daylight
- Have ranged down to 40 degrees elevation
- Night time is much easier to acquire than with eye-safe laser
- Caveat right now:
 - Need recent starcal to make acquisition possible
 - Acquisition during daylight is harder than night
- New GLONASS satellites are the easiest to acquire.

• Return rate at NGSLR not where it should be. We are investigating but believe good part of this is the pointing error (and we are working this).


• With 3x more energy from the new PI laser and gains from work done above, we should be getting > 1% return rate (rather than our current 0.1%).


NGSLR GNSS (& ETALON) RANGING APRIL– JUNE 2012

Satellite	SIC	DOY	HH:MM	#obs	RR%	#NPTS	# segs
ETALON-2	4146	094	02:15	5374	0.2	8	3
ETALON-2	4146	102	01:55	3026	0.1	6	3
ETALON-2	4146	147	02:55	759	0.1	2	1
Galileo-101	7101	090	01:36	8010	0.3	5	1
Galileo-102	7102	097	00:34	573	<0.1	3	1
Galileo-102	7102	168	00:44	1210	<0.1	5	1
GLONASS-109	9109	093	23:00 DAY	4644	0.1	12	1
GLONASS-115	9115	094	18:15 DAY	778	0.1	3	1
GLONASS-122	9122	090	02:08	11181	0.8	12	1
GLONASS-122	9122	152	01:55	2293	0.1	6	1
GLONASS-122	9122	153	00:16	589	<0.1	4	1
GLONASS-123	9123	108	02:40	2568	0.1	4	1
GLONASS-123	9123	139	01:35	1046	0.1	4	1
GLONASS-123	9123	147	02:14	409	0.1	4	2
GLONASS-123	9123	150	18:27 DAY	3767	0.1	9	1

