

Extended far field diffraction pattern characterization of LAGEOS and LARES retroreflectors in isothermal conditions

A. Boni, S. Dell'Agnello, C. Lops, S. Berardi, M. Martini, G. Patrizi, C. Cantone, G. O. Delle Monache, M. Garattini, N. Intaglietta

Laboratori Nazionali di Frascati (LNF) dell'INFN, Frascati (Rome), Italy

ITLW 2012, Frascati (Italy) 05-09/11/2012

Outline

- FFDP tests in air at the SCF_Lab
- LAGEOS Sector
- Early acceptance test for SLR retroreflectors
- FFDP average intensity analysis
- LARES
- Industrial acceptance test of LARES flight CCRs
- FFDP average intensity analysis
- Conclusions

FFDP tests in air at the SCF_Lab

Optical tables arrangements

He-Ne λ=632.8 nm

Nd:Yag frequency doubled λ =532 nm

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

The "LAGEOS Sector"

Courtesy of NASA-GSFC

- Spherical sector of LAGEOS satellite
- Aluminum base, 380 mm diam.
- Weight ~1.5 Kg
- 37 uncoated CCRs of good optical quality
- 1.5" front face diam.
- DAO: (1.25 1.25 1.25) ±0.5 arcsec

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

finding distinctive features from FFDP

- LAGEOS simulated FFDP at 632.8 nm
- vertical edge
- horizontal polarization

Two distinct peaks horizontally located

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

Monday, November 5, 12

5

SCA

early acceptance test of retroreflectors

error band $\pm 25\%$ on relative intensity LAGEOS Sector CCRs FFDP intensity

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

early acceptance test of retroreflectors

error $band_{0,32} \pm 25\%$ on relative intensity LAGEOS Sector CCRs FFDP intensity

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

Monday, November 5, 12

7

LAGEOS Sector FFDPs

not the same grid size

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

FFDP average intensity analysis

What if we change polarization direction?

Average intensity plots remain the same despite the polarization orientation

Roma, 06-11-2012

Velocity aberration (µrad)

Alessandro Boni - ITLW 2012, Frascati

Roma, 06-11-2012

0.14

LAGEOS sector ave intensity vs simulations

Alessandro Boni - ITLW 2012, Frascati

10

20

30

Velocity aberration (µrad)

40

50

60

Monday, November 5, 12

Roma, 06-11-2012

LARES

Courtesy of ASI

- Tungsten sphere of 182 mm diam.
- 92 uncoated retroreflectors (Suprasil311)
- 1.5" front face diam.
- DAO: (1.5 1.5 1.5) ±0.5 arcsec

INFN performed in December 2008 industrial optical acceptance test of the all 110 LARES flight CCRs requested by ASI (ASI reference document: DC-OSU-2009-012)

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

LARES CCRs optical acceptance test

FFDP tests performed with He-Ne laser (λ = 632.8 nm)

13

LARES CCRs optical acceptance test

S C K LAB

LARES CCRs FFDP peaks' distance (laser λ =632.8 nm)

LARES CCRs FFDPs

grid limits $\pm 70 \ \mu rad$

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

Roma, 06-11-2012

Alessandro Boni - ITLW 2012, Frascati

Conclusions

- We recognized FFDP measurements in air important to asses CCR compliance with vendor specifications (apart from interferometric measurements).
- FFDP measurements in air are moreover important to test the circuit
- Basic acceptance test based on peaks distance check.
- LARES CCRs acceptance is based on this early test.
- Both LAGEOS Sector 37 CCRs and LARES 110 CCRs agreed with specs.
- Average intensity comparison (sim vs meas) give further informations detached from laser polarization.
- In addition to average intensity plots intensity must be checked at some indicative velocity aberration. This gives information both on the CCR and on the optical circuit.

Thank you for your attention. Any question?

alessandro.boni@Inf.infn.it

Intensity check at distinctive VA

Avarage Intensity at38 µrad

Alessandro Boni - ITLW 2012, Frascati

Monday, November 5, 12

Roma, 06-11-2012