Session 3&4 Introduction

Target signatures of existing sub-cm targets and prospects for future SLR constellations

Toshimichi Otsubo

Hitotsubashi University, Japan t.otsubo@r.hit-u.ac.jp

Robert A Sherwood

Graham M Appleby

NERC Space Geodesy Facility, UK

NATURAL ENVIRONMENT RESEARCH COUNCIL

International Technical Laser Workshop Frascati, 6 Nov 2012

Session 3&4: Introduction

SLR cannot reach satellites' centre of mass.

Session 3&4: Introduction

SLR cannot reach satellites' centre of mass.

Target Signature Effect

More retros, less accurate!

- 4-5 cm for AJISAI, ETALON, 1 cm for LAGEOS (Otsubo and Appleby, JGR, 2003) a few cm for GNSS
- < 1 cm for "small targets"

Convolution

System noise Satellite response function The result compared with Residual scatter

Residual histogram of satellite returns.

1992: 20 Years ago

Appleby, LW8, Annapolis, 1992.

Satellite Signatures in SLR Observations

G.M. Appleby Royal Greenwich Observatory

Figure 1. Observed distributions of range residuals from calibration and satellite targets.

2002: 10 Years ago

Otsubo & Appleby, LW13, Washington, 2002. (later published in JGR, 2003)

Centre of mass correction

And now

STARLETTE

Diameter = 24 cm 60 x 33-mm retro, backface coated

(Provisional) Best-fit response function STARLETTE

PROVISIONAL (Do not use these values for critical purposes)

STARLETTE p~1.3

PROVISIONAL (Do not use these values for critical purposes)

LARES p~1.0

Why provisional? TR vs Small-sig targets

System noise

How much will the atmosphere broaden a pulse?

kHz single photon data, Herstmonceux, Jun 2012

(Even BLITS residual broader than TR) Part II: Future SLR Constellation for mm-accurate TRF scale (just a very rough idea)

ITRF2008 origin & scale

ITRF2008 webpage:

http://itrf.ensg.ign.fr/ITRF_solutions/2008/datum_ITRF2008.php

- The ITRF2008 origin is defined in such a way that there are null translation parameters at epoch 2005.0 and null translation rates between the ITRF2008 and the ILRS SLR time series.
- The ITRF2008 scale is defined in such a way that there null scale and scale rate between ITRF2008 and the average of VLBI and SLR scales/rates.

ITRF2008 scale: VLBI vs SLR

J Geod (2011) 85:457-473 DOI 10.1007/s00190-011-0444-4

ORIGINAL ARTICLE

ITRF2008: an improved solution of the international terrestrial reference frame

Zuheir Altamimi • Xavier Collilieux • Laurent Métivier

" the level of the scale agreement between VLBI and SLR solutions is not better than 1 ppb."

Fig. 6 Scale factors, in millimeters, of the VLBI, SLR and DORIS solutions with respect to ITRF2008

Space geodesy always poor at vertical

TRF Scale (station height)

~ 1 ppb (ITRF200x)

Range-direction error: Satellite centre-of-mass Correction & Range bias

~ 1 cm (~1 ppb) for LAGEOS (Otsubo & Appleby, 2003)

Precision and Accuracy

millimetre precise?

- Single-shot prec. 3 mm / Sqrt (Obs. =10000)

millimetre accurate?

Not just target signatures, a large number of error sources hidden in a SLR system.

No evidence of being at 1 mm.

1 mm accuracy achievable?

→ Range bias estimation inevitable to claim better accuracy (assuming a constant bias).

How to relax the high correlations

[1] Use multiple satellites at different altitudes.[2] Estimate a common range bias for different satellites.

- Existing satellites: Different target signatures for different altitudes → Range bias should be solved for separately. Or rely on the CoM table.
- Future scenario: A twin/sister satellite system that has a common signature effect possible?

60-day global analysis (simulation data)

10000

60-day global analysis (simulation data)

Single elliptic sat alt = 2400-3600 km (e=0.06)

Color × × (a)

TRF Scale (station height)

Single elliptic sat alt = 1200-4800 km (e=0.19)

× 0.00

Range-direction error: Satellite centre-of-mass Correction & Range bias

Summary

Satellite signature of sub-cm targets

• STARLETTE (+STELLA):

"75 mm" is the centroid point. Probably too small for the average value. Range: 75 to 82 mm (provisional).

• LARES:

Expected behaviour. Provisional "133 mm" reasonable.

Range: 128 to 135 mm (provisional).

SLR Constellation for Earth scale parameters

- Correlation: GM, TRF Scale, and Range Bias.
- Problem solved with "sister satellite combination" or "eccentric orbits".
- Possible with "LARES + LAGEOS"? "LARES-2" different alt.?
- Common/shared range bias is the key. x10 improvement?
 [to do] more simulation studies!!!

Big sister

Little sister

1975- STARLETTE

1976- LAGEOS-1

1986- AJISAI

1992- LAGEOS-2

1993- STELLA

