Session 3&4 Centre-of-mass correction information at the ILRS Website

I. Webpage contentsII. Key IssuesIII. Your experiences?

Toshimichi Otsubo

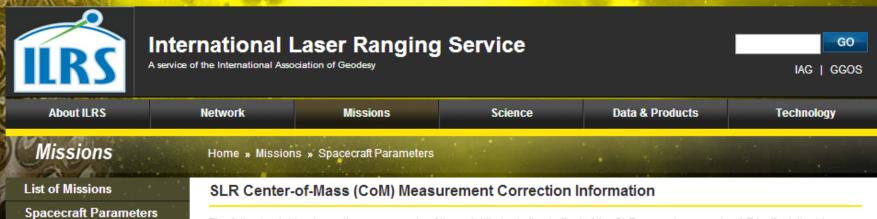
Hitotsubashi University, Japan t.otsubo@r.hit-u.ac.jp

Graham M Appleby NERC Space Geodesy Facility, UK

> Mark H Torrence SGT Inc, USA

> > Carey E Noll NASA GSFC, USA

International Technical Laser Workshop Frascati, 6 Nov 2012


SLR Center-of-Mass (CoM) Measurement Correction Information

- Initiated by Appleby and Torrence.
- Several sats added/updated by Otsubo and Noll
- (as a task of ILRS Signal Processing WG).

http://ilrs.gsfc.nasa.gov/missions/spacecraft_param eters/center_of_mass.html

etwork	Missions		Science	Data & Products Tech
Home » Missions »	Spacecraft Paramete			
SLR Center-of-	Mass (CoM) Mea	asuremer	t Correction Infor	mation
vector in this SLR cer correction (red vector (green vector). The C satellite orbit maneur locus of points from v	nter of mass correction r) should be compute coM offset may vary slir	n Concept D d by using th abtly with tim	agram) in the satellite's on e LRA offset vector and the depending upon the use	SLR array phase center (LRA offset the coordinate system. The total SLR center les atteilite center of <u>Hass</u> (CoM) offset er of propellant for satellite momentum of the LRA phase center may also vary tion geometry and station characteriste
Satelite	Size of Array	Number of Reflectors	Body Fixed Coordinates of Array Phase Center (mm)	Spacecraft Coordinate Definition
ADEOS-1	35.6 cm edge hollow cube	1	?	?
ADEOS-2	16 cm diameter hemisphere	9	(+5000, +1050, +500)	Y-axis anti-parallel with velocity, Z-axis away from nadir
Ajisai Beacon-C	214 cm diameter sphere Pyramidal array on	1,436	1028	sphere: radius of phase center of each cube phase center of each cube
Beacon-C BLITS	Pyramidal array on nadir face 85.16 mm	160	(0, 0, 0)	origin at center of the single sphere
CHAMP	diameter sphere 5cm diameter, 45 deg pyramid	4	(0, 0, 250)	Z-axis towards nadir
CryoSat-2	45 deg pyramid 11.4 cm diameter, 0 or 57.5 deg pyramid	7	(1808.5, -935.0, -450.0) plus 15-25 mm for LRA details	X-axis 6° from the flight direction (nose-down), negative-Z-axis 6° from the nadir, Yaw steering (norma operation) applied so that Y-axis orthogonal to the satelite ground track
Envisat	20 cm diameter hemisphere	9	(-1058, +1359, -1183)	X-axis direction of satellite pitch, Z-axis away from nadir
ERS-2	20 cm diameter hemisphere	9	(1000, -710, -1010)	X-axis direction of satellite pitch, Z-axis away from nadir
Etalon-1, -2	129.4 cm diameter sphere	2,134	614	sphere: radius of phase center of each cube
Galileo-101	33 mm diameter, 23.3 mm height	84	(1092, -34, 621)	X-axis negative to hemisphere containing the Sun, Y-axis along solar panel, Z-axis towards nadir
Galileo-102	33 mm diameter, 23.3 mm height	84	(,	X-axis negative to hemisphere containing the Sun, Y-axis along solar panel, Z-axis towards nadir
GFO-1 GFZ-1	16 cm diameter hemisphere	9 60	(+182, +753, +599)	Y-axis anti-parallel with velocity, Z-axis away from nadir
GIOVE-A	20 cm diameter sphere 30x40 cm planar array	76	(-828, -655, +688)	sphere radius of phase center of each cube X-axis negative to hemisphere containing the Sun, Y-axis along solar panel, Z-axis towards nadir, attitude details
GIOVE-B	30x30 cm planar array	67	(-804.3, +294.1, +1330.1)	X-axis negative to hemisphere containing the Sun, Y-axis along solar panel, Z-axis towards nadir, attitude details
GLONASS	120x120 cm planar array	396	(-1542, 0, 0)	Attitude details X-axis away from nadir, Y-axis negative to hemisphere containing the Sun, Z-axis along solar panel
GLONASS	66x66 cm planar array	132	(-1555, 0, 0)	X-axis away from nadir, Y-axis negative to hemisphere containing the Sun, Z-axis along solar panel
GLONASS	66x66 cm planar array	124	(-1522, 0, 0)	X-axis away from nadir, Y-axis negative to hemisphere containing the Sun, Z-axis along solar panel
GLONASS-95, -99, -100, -102, -109, -115	30x50 cm planar array	112	(-1874, -137, +3)	X-axis away from nadir, Y-axis negative to hemisphere containing the Sun, Z-axis along solar panel
GLONASS-125 GPS-35	annulus array 23.9x19.4 cm planar array	32	(862.6, -524.5, 669.5)	X-axis positive to hemisphere containing the Sun, Y-axis along solar panel, Z-axis towards nadir
GPS-36	23.9x19.4 cm planar array	32	(862.6, -524.5, 671.7)	X-axis positive to hemisphere containing the Sun, Y-axis along solar panel, Z-axis towards nadir
GRACE-A, -B	5cm diameter, 45 deg pyramid	4	(-600, -327.5, 217.8)	X-axis is the front, Z-axis towards nadir, Y-axis completes the orthogor system
Gravity Probe B	Open hemisphere	9	(0, 0, -1820)	+Z-axis towards RA 343.26deg, DE 16.84deg
ICESat	16 cm diameter hemisphere	9	(-1045, -4, 280) (plus 4.5 cm for the LRA)	X-axis towards satellite zenith, Y-axis along solar panel
Jason-1	hemisphere	9	(236, 598, 683)	X-axis in direction of velocity, Z-axis towards nadir
Jason-2	hemisphere	9	(X-axis in direction of velocity, Z-axis towards nadir
LAGEOS-1 LAGEOS-2	60 cm diameter sphere 60 cm diameter	426 426	258 258	sphere: radius of phase center of each cube
LAGEUS-2	36.4 cm diameter	92	137.1	sphere: radius of phase center of each cube sphere: radius of phase center of ea
Larets	20 cm diameter	60	56.2	cube sphere: radius of
LRE	sphere quasi-spherical, 47x51 cm	126		phase center of each cube sphere: radius of phase center of each cube
Meteor-3M	diameter spherical ball, 6 cm diameter	1	(+113, +475.7, +2101.5)	?
Starlette	24 cm diameter	60	±2101.5)	sphere: radius of phase center of each cube
Stella	24 cm diameter sphere	60		sphere: radius of phase center of each cube
TOPEX/Poseidon	150 cm diameter annulus	192	(+1079, +418, +827)	Center of annulus. X-axis in direction of velocity, Z-axis towards nadir
WESTPAC	24 cm diameter sphere	60	63.4	Radius of satellite through front face the cubes (91mm)

The following table shows the components of the satellite body-fixed offset of the SLR array phase center (LRA offset: the blue vector in this SLR center of mass correction Concept Diagram) in the satellite's coordinate system. The total SLR center of mass correction (red vector) should be computed by using the LRA offset vector and the satellite <u>C</u>enter of <u>M</u>ass (CoM) offset vector (green vector). The CoM offset may vary slightly with time, depending upon the use of propellant for satellite momentum dumps, satellite orbit maneuvers, antenna orientation changes, *et cetera*. The "location" of the LRA phase center may also vary; it is the locus of points from which the return came as a result of a particular satellite-station geometry and station characteristics (single or multiple photon, receiver type, *et cetera*).

Satellite	Size of Array	Number of Reflectors	Body Fixed Coordinates of Array Phase Center (mm)	Spacecraft Coordinate Definition	CoM Correction (mm) and details
ADEOS-1	35.6 cm edge hollow cube	1	?	?	
ADEOS-2	16 cm diameter hemisphere	9	(+5000, +1050, +500)	Y-axis anti-parallel with velocity, Z-axis away from nadir	details
Ajisai	214 cm diameter sphere	1,436	1028	sphere: radius of phase center of each cube	details
Beacon-C	Pyramidal array on nadir face	160	?	phase center of each cube	
BLITS	85.16 mm diameter sphere	1	(0, 0, 0)	origin at center of the single sphere	details
CHAMP	5cm diameter, 45 deg pyramid	4	(0, 0, 250)	Z-axis towards nadir	details
CryoSat-2	11.4 cm diameter, 0 or 57.5 deg pyramid	7	(1808.5, -935.0, -450.0) plus 15-25 mm for LRA details	X-axis 6° from the flight direction (nose-down), negative-Z-axis 6° from the nadir, Yaw steering (normal operation) applied so that Y-axis orthogonal to the satellite ground track	details
Envisat	20 cm diameter hemisphere	9	(-1058, +1359, -1183)	X-axis direction of satellite pitch, Z-axis away from nadir	details
ERS-2	20 cm diameter hemisphere	9	(1000, -710, -1010)	X-axis direction of satellite pitch, Z-axis away from nadir	
Etalon-1, -2	129.4 cm diameter sphere	2,134	614	sphere: radius of phase center of each cube	details
Galileo-101	33 mm diameter,	84	(1092, -34, 621)	X-axis negative to hemisphere	details

> List of Missions

Quick Links

Mission Support

Mission Operations

Missions Working Group

- > Mission Support Request
- > Predictions
- > Priorities

International Laser Ranging Service

Missions

ILRS Mission Support

Jump to: Mission Objectives, Mission Instrumentation, Mission Parameters, Additional Information

Home » Missions » List of Missions » Current Missions

A service of the International Association of Geodesy

General

Network

Ajisai

Mission Photos:

IAG | GGOS

Technology

Station Data Info

Missions

About ILRS

List of Missions

Current

Future

Past/Other

Spacecraft Parameters

Mission Support

Mission Operations

Missions Working Group

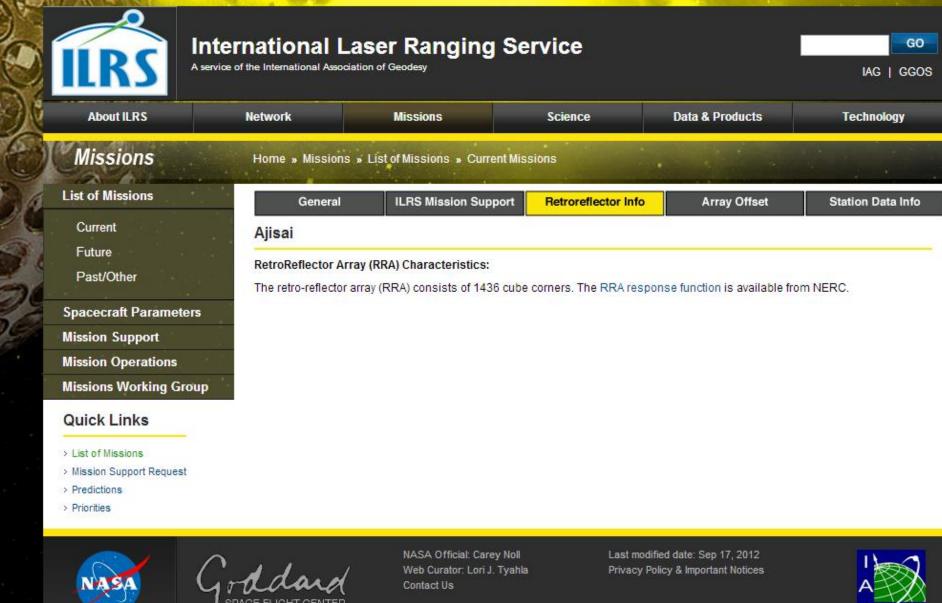
Quick Links

- > List of Missions
- > Mission Support Request
- > Predictions
- > Priorities

Science

Retroreflector Info

Data & Products


Array Offset

Courtesy of JAXA

Mission Objectives:

Ajisai is Japanese for Hydrangea. Prior to launch, the satellite was called Experimental Geodetic Satellite (EGS). The Ajisai mission has two primary objectives. The first objective, which was short term, was testing of NASDA's (now JAXA) H-I, two-stage, launch vehicle. The second and primary long term objective was to determine the exact positions of the many isolated Japanese Islands. Ajisai can also be used for directional and photometric observations, using the mirrors equipped on the surface of satellite.

Mission Instrumentation:

	IAG GG								
About ILRS	Network	Missions	Science	Data & Products	Technology				
Missions	Home » Missions » List	t of Missions » Current	Missions						
List of Missions	General	ILRS Mission Suppor	rt Retroreflector Info	Array Offset	Station Data Info				
Current	Ajisai								
Future Past/Other Spacecraft Parameters	ref: Otsubo and Appleby, Research, 108, B4, 2201,	Center of Mass Information: ref: Otsubo and Appleby, "System-dependent centre-of-mass correction for spherical geodetic satellites" Journal of Geophysical Research, 108, B4, 2201, doi:10.1029/2002JB002209, 2003. The standard Ajisai center-of-mass correction is 1010 mm.							
Mission Support									
Mission Operations	correction for	edit level com	(mm)						
Missions Working Group	p single photon systems	none 90	62						
Quick Links			76 35						
 List of Missions Mission Support Request 			97						
	MALE AND A STOCKASTING AND A STOCKASTING								

> Predictions

a a

E

C

> Priorities

FWHM pulse width (ps) edit level ave. num detected photons 0.1 10 100 1 1 3.0 977 990 1020 1023 2.5 985 996 1020 1023 1021 2.0 997 1004 1023 100 3.0 976 989 1012 1016 2.5 985 995 1013 1016 2.0 997 1013 1016 1002

correction for leading-edge-half

correction for

C-SPAD (mm)

FWHM pulse width (ps) com (mm)

How we add a satellite

- 1. Read the mission request form.
- 2. Contact the mission people for the missing/unclear info. ← not always easy (ex. CryoSat-2)
- 3. Compute the CoM correction if necessary. ← hard/laborious work (ex. LARES)
- 4. Revise the webpage.

Mission Request Form Section III

SECTION III: RETROREFLECTOR ARRAY INFORMATION:

A prerequisite for accurate reduction of laser range observations is a complete set of pre-launch parameters that define the characteristics and location of the LRA on the satellite. The set of parameters should include a general description of the array, including references to any ground-tests that may have been carried out, array manufacturer and whether the array type has been used in previous satellite missions. So the following information is requested:

Retroreflector Primary Contact Information:

Name:

Address:

Array type (spherical, hexagonal, planar, etc.), to include a diagram or photograph:

Array manufacturer:

Link (URL or reference) to any ground-tests that were carried out on the array:

The LRA design and/or type of cubes was previously used on the following missions:

For accurate orbital analysis it is essential that full information is available in order that a model of the 3-dimensional position of the satellite center of mass may be referred to the location in space at which the laser range measurements are made. To achieve this, the 3-D location of the LRA phase center must be specified in a satellite fixed reference frame with respect to the satellite's mass center. In practice this means that the following parameters must be available at mm accuracy or better:

The 3-D location (possibly time-dependent) of the satellite's mass center relative to a satellite-based origin:

Mission Request Form Section III

The 3-D location of the phase center of the LRA relative to a satellite-based origin:

However, in order to achieve the above if it is not directly specified (the ideal case) by the satellite manufacturer, and as an independent check, the following information must be supplied prior to launch:

The position and orientation of the LRA reference point (LRA mass-center or marker on LRA assembly) relative to a satellite-based origin:

The position (XYZ) of either the vertex or the center of the front face of each corner cube within the LRA assembly, with respect to the LRA reference point and including information of amount of recession of front faces of cubes:

The orientation of each cube within the LRA assembly (three angles for each cube):

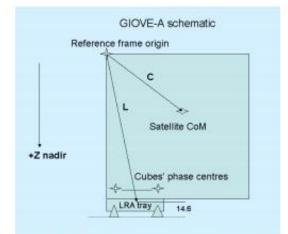
The shape and size of each corner cube, especially the height:

The material from which the cubes are manufactured (e.g. quartz):

The refractive index of the cube material, as a function of wavelength λ (micron):

Dihedral angle offset(s) and manufacturing tolerance:

Radius of curvature of front surfaces of cubes, if applicable:


Flatness of cubes' surfaces (as a fraction of wavelength):

Whether or not the cubes are coated and with what material:

Mission Request Form Section III

Other Comments:

An example of the metric information for the array position that should be supplied is given schematically below for the LRA on the GIOVE-A satellite. Given the positions and characteristics of the cubes within the LRA tray, it is possible to compute the location of the array phase center. Then given the C and L vectors it is straightforward to calculate the vector from the satellite's center of mass (CoM) in a spacecraft-fixed frame to the LRA phase center. Further analysis to derive the array far-field diffraction patterns will be possible using the information given above.

A good example of a well-specified LRA is that prepared by GFZ for the CHAMP mission in the paper "The Retro-Reflector for the CHAMP Satellite: Final Design and Realization", which is available on the ILRS Web site at http://ilrs.gsfc.nasa.gov/docs/rra_champ.pdf.

The final and possibly most complex piece of information is a description (for an active satellite) of the satellite's attitude regime as a function of time, which must be supplied in some form by the operating agency. This algorithm will relate the spacecraft reference frame to, for example, an inertial frame such as J2000.

RETROREFLECTOR ARRAY REFERENCES

Two reports, both by David Arnold, are of particular interest in the design and analysis of laser retroreflector arrays.

- Method of Calculating Retroreflector-array Transfer Functions, David A. Arnold, Smithsonian Astrophysical Observatory Special Report 382, 1979.
- Retroreflector Array Transfer Functions, David A. Arnold, ILRS Signal Processing Working

Open Issue 1: Mission Request Form

Not everyone answers all the questions ("TBD").

Identical or almost identical satellite case (ex. GLONASS).
Do they have to submit the form?

"Phase center of the LRA"

Who should be responsible?

Orientation dependent, wavelength dependent, ...

Lack of the definition of the satellite-body-fixed frame.
Not a sufficient answer column given (ex. XYZ for all retros).

Key: How precise do they (we) want its orbit? m? cm?

Open Issue 2: Webpage

Have you looked at it? Did you find it useful? (Worth maintaining?) How should we handle both spherical & non-spherical targets?

Possibly in a separate chart?

Coordinate definition: sometimes very complicated. (ex. CryoSat-2) How should we cope with time-varying attitude/CoM?

(Same) Key: How precise do they (we) want its orbit?

Satellite	Size of Array	Number of Reflectors	Body Fixed Coordinates of Array Phase Center (mm)	Spacecraft Coordinate Definition	CoM Correction (mm) and details
ADEOS-1	35.6 cm edge hollow cube	1	?	?	
ADEOS-2	16 cm diameter hemisphere	9	(+5000, +1050, +500)	Y-axis anti-parallel with velocity, Z-axis away from nadir	details
Ajisai	214 cm diameter sphere	1,436	1028	sphere: radius of phase center of each cube	details
Beacon-C	Pyramidal array on nadir face	160	?	phase center of each cube	
BLITS	85.16 mm diameter sphere	1	(0, 0, 0)	origin at center of the single sphere	details
CHAMP	5cm diameter, 45 deg pyramid	4	(0, 0, 250)	Z-axis towards nadir	details
CryoSat-2	11.4 cm diameter, 0 or 57.5 deg pyramid	7	(1808.5, -935.0, -450.0) plus 15-25 mm for LRA details	X-axis 6° from the flight direction (nose-down), negative-Z-axis 6° from the nadir, Yaw steering (normal operation) applied so that Y-axis orthogonal to the satellite	details