Measuring $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with NA48/3

Rainer Wanke

Institut für Physik, Universität Mainz

on behalf of

CERN, Dubna, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples,

Perugia, Pisa, Protvino, Rome, Saclay, Sofia, Torino

K-RARE Meeting

Frascati, May 26, 2005

Outline

- Introduction
- K^+ Beam
- Detector Design
- Time Schedule
- Summary and Conclusion

Nota bene:

Exp. historically dubbed NA48/3, but *not* direct successor of NA48/2! Mainly new detectors, and will get new name when approved. Correct name at the moment: **P326** (Proposal no. 326)

The Opportunity

Expected SPS Performance for Fixed-Target: (R. Garoby, Villars 2004)

Parameters of the high intensity K^+ beam:

	K12 in 2004 (NA48/2)	HI- $K^+ \ge$ 2007 (NA48/3)
Eff. run time/year (pulses)	$3 imes 10^5$	$3 imes 10^5$
SPS protons/pulse	1×10^{12}	$3 imes 10^{12}$
K^+ momentum	$60.0 \pm 2.5~{ m GeV/}c$	$75.0\pm0.8~{ m GeV/}c$
Acceptance solid angle	$0.4 \ \mu$ sterad	$16 \ \mu$ sterad
Total beam flux/pulse	$5.5 imes 10^7$	$250 imes 10^7$
kaons/pulse	$0.3 imes 10^7$	$15 imes 10^7$
K^+ decays/year	$1.0 imes10^{11}$	$4.8 imes10^{12}$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at the CERN SPS

Acceptance

In 2010?

Backgrounds for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Decay	B.R. [%]	Type of rejection
$K^+ \rightarrow \mu^+ \nu (K_{\mu 2})$	63	μ particle ID, kinematics
$K^+ \rightarrow \mu^+ \nu \gamma (K_{\mu 2 \gamma})$	0.55	μ particle ID, photon veto
$K^+ \to \pi^+ \pi^0$	21	photon veto, kinematics
$K^+ \to \pi^+ \pi^+ \pi^-$	6	charged veto, kinematics
$K^+ \to \pi^0 \pi^0 \pi^+$	2	photon veto, kinematics
$K^+ ightarrow \pi^0 \mu^+ u (K_{\mu 3})$	3	photon veto, μ particle ID
$K^+ ightarrow \pi^0 e^+ u (K_{e3})$	5	photon veto, E/p

Detector design follows from need for maximum background rejection:

- Precise knowledge of K^+ momentum for m_{miss}^2 determination.
 - \implies **Gigatracker** K^+ beam spectrometer
- Photon rejection.
 - \implies Photon-Vetos LAV, Lkr, SAC
- Precise π^+ momentum measurement to reject two-body decays
 - ⇒ Straw Tracker double magnetic spectrometer
- Optimal π^+/μ^+ separation for $K^+ \to \mu^+ \nu$ rejection
 - \implies Muon Detector, RICH
- $K^+ \pi^+$ matching
 - \implies CEDAR in K^+ beam, Hodoscope for charged particles

Detector Layout

Requirement: K^+/π^+ separation in charged particle beam.

CEDAR Differential Cerenkov Counter

- CEDAR counters have been in use in SPS beams. (Two versions: He-filled "North-CEDAR", N₂-filled "West-CEDAR".)
- West-CEDAR, filled with hydrogen, perfect for NA48/3 application.

Gigatracker — K⁺ Momentum

Requirements:

- **K**⁺ momentum resolution $\sim 0.3\%$.
- Angular resolution \sim 10 μ rad.
- **Time** resolution ~ 150 ps per station.
- **Material** budget $\leq 0.5 X_0$ per station.
- Survive 1 GHz hadron beam (60 MHz/cm²).

Design: Hybrid detector

- SPIBES (Fast Si micro-pixels)
 - Momentum and time measurement.
 - 2 stations of hybrid silicon pixel detectors.
- **FTPC**
 - Angular measurement (track direction).
 - Micromegas TPC's as in NA48/2 (but with FADC read-out).
 - \implies See presentation by M. Scarpa tomorrow!

Photon Vetos

Requirement:

Suppression of $K^+ \to \pi^+ \pi^0$, $K^+_{\mu 3}$, $K^+ \to \pi^+ \gamma \gamma$, ...

 \implies Inefficiency $\leq 10^{-4}$ for $E_{\gamma} > 100$ MeV (and $\leq 10^{-5}$ for $E_{\gamma} > 1$ GeV).

Components:

Large Angle Vetos (ANTI)

Lead-scintillator sandwich calorimeter around decay region.

Liquid-Krypton Calorimeter (LKr)

Use existing NA48 calorimeter.

Small Angle Vetos (IRC, SAC)

Covering of the beam pipe, lead-scintillator sandwich.

Large Angle Photon Vetos (ANTI)

Coverage: > 8.5 mrad (LKr calorimeter)

< 50 mrad (kinematical limit for γ 's from $K^+ \rightarrow \pi^+ \pi^0$)

 \Rightarrow **13 veto counters** around decay region.

Large Angle Photon Vetos (ANTI)

Design of each veto counter:

- **80** layers lead-scintillator sandwich, each **16** X_0 deep.
- Arrangement in segmented rings inside vacuum tank.
- Read-out by WLS fibers.
 - \implies \sim 20 photo electrons/minimum ionizing particle.

Alternative design:

- Lead with embedded scintillator ("spaghetti calorimeter").
- Better time, energy resolution.
- Currently investigated.

Liquid-Krypton Calorimeter

- Main detector element for NA48/0/1/2.
- 13212 cells of $2 \times 2 \text{ cm}^2$ along beam axis in $\sim 10 \text{ m}^3$ liquid krypton.
- Very good energy resolution $(3.2\%/\sqrt{E [GeV]})$
- Noise about 90 MeV.

- Veto capabilities to be verified.
- Few upgrades necessary (Read-out, kryogenic system).

Small Angle Photon Vetos

Magnetic Spectrometer

Requirements:

Suppress $K^+ \rightarrow \mu^+ \nu$ by $10^{-8} \implies$ Exact momentum measurement Minimum material \implies Minimum of multiple scattering. Redundancy \implies Suppression of non-gaussian errors. **Design: Double spectrometer**, operation in vacuum. MNP33(1) MNP33(2) *** 2.3 m Z 5 m 5 m 7 m 205 m 10 m 7 m from the target

Magnetic Spectrometer

Chamber design:

Straw chambers

- Operation in vacuum possible.
- Well-known technology (ATLAS TRT, COMPASS).
- Experience available (JINR, Dubna).

Compass

Pion track

Layer 1

Layer 2

MAMUD — Magnetized Muon and hadron Detector

Requirements:

- π/μ separation for $K_{\mu 2}$ suppression
- Beam sweeping for SAC operation.

Design:

- **Magnetised iron** \implies 0.9 T field in beam region.
- Instrumented by scintillators \implies muon rejection $\sim 10^5$.

Magnetic field on iron surface

Rainer Wanke, K-RARE Meeting, Frascati, May 26, 2005 - p.20/25

Charged Hodoscope (CHOD)

- **Excellent time resolution** < 100 ps.
- **Rejection of high-multiplicity events** ($K^+ \rightarrow \pi^+ \pi^+ \pi^-, ...$).

Trigger (together with photon vetos and CEDAR).

Design: Multigap glass RPC, similar to ALICE TOF.

RICH

- Needed for additional $K_{\mu 2}$, $K_{\mu 2\gamma}$ rejection. (π/μ seperation at 2 sigma level is sufficent.)
- **Design** currently under investigation (e.g. KPLUS design).

Expected Background

Decay	B.R. [%]	Bkg. Estim.
$K^+ ightarrow \mu^+ u$ ($K_{\mu 2}$)	63.4	~ 1.6
$K^+ \rightarrow \mu^+ \nu \gamma \ (K_{\mu 2 \gamma})$	0.6	~ 0.4
$K^+ \to \pi^+ \pi^0$	21.1	~ 4.4
$K^+ \to \pi^+ \pi^0 \gamma$	0.03	< 0.1
$K^+ \rightarrow \pi^0 e^+ \nu \ (K_{e3})$	4.9	~ 1.6
$K^+ \rightarrow \pi^0 \mu^+ \nu \ (K_{\mu 3})$	3.3	< 0.1
$K^+ \to \pi^+ \pi^+ \pi^-$	5.6	in progress
Total:		~ 8 (+ 3-track)

 \implies See presentation by G. Ruggiero this afternoon!

Timeline

2005:

- Proposal to the SPSC being submitted. (CERN-SPSC-2005-013)
- Design and Development of main detector components. (Beam spectrometer, magnet spectrometer, photon vetos, muon detector, RICH)

2006 – 2008:

- Building, tests and installation of detector components.
 - $(\implies$ SPS test-beam in 2006.)

2009/2010:

- Beam time at the CERN SPS.
- Til 2011/2012: Data analysis.

CERN Recommendation for NA48/3

From the Villars report (CERN-SPSC-2005-010, Feb 28, 2005):

3.3 Flavour Physics

There is a strong physics case for pursuing an ambitious program of kaon physics at CERN, exploiting the high-energy proton beams available at the SPS for rare *K*-decay in-flight measurements. Building on its expertise in high-intensity neutral and charged kaon beams and on the outstanding physics achievements of the NA48, NA48/1 and NA48/2 experiments in the last decade, CERN should remain in the future a major laboratory for kaon physics at the sensitivity frontier.

The possibility of a precise measurement of the $K^+ \rightarrow \pi^+ \nu \nu$ transition is exciting. The goal is to detect more than 100 signal events over two years starting in 2009. The challenge is for experimental sensitivity to a *K*-decay BR of order 10⁻¹¹. A major upgrade of the present NA48/2 set-up would be necessary and the required R&D and detector developments should be supported. According to present studies this measurement appears globally competitive.

 \Rightarrow Formally invited by the SPSC to submit a proposal.

NA48/3: Impressive opportunity to measure

 \geq 80 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events in 2009/2010 at the CERN SPS.

Backgrounds are challenging, but under control!

Expect: Signal/background ≈ 10 .

(Even better when using RICH detector!)

NA48/3 detector currently developped.

- Main components: Beam spectrometer, photon vetos, straw tracker, muon rejection.
- Rely if possible on well-known technology.
- Reuse of few components (Lkr) from old NA48.

Proposal written, signed by about 80 physicists.

We are still open to new collaborators.