Trace elements concentration distributions in breast, lung and intestine tissues determined by TXRF analysis

Urszula Majewska, D. Banaś, J. Braziewicz, S. Góźdź, A. Kubala-Kukuś, M. Kucharzewski, M. Pajek

Holycross Cancer Centre,
Kielce, Poland

Institute of Physics,
Świętokrzyska Academy

XVIII International Conference on X-ray Optics & Microanalysis,
September, 25-30, Frascati, Italy 2005
Background DL $\propto I_{\text{Background}}$

characteristic X-rays

detector

primary beam

sample

sample backing

total external reflection effect

drastically lower background I_B

$c_{DL} \sim 10^{-9} \text{g/g}$
- X-ray tube (3kW, Mo anode 20-55kV, 5-60mA)
- Si(Li) detectors
- ACCUSPEC+
- AXIL+QAES

Advantages of X-Ray Fluorescence method

- multielemental
- fast
- wide range of measured concentration: ppb - 100%
Several elements play a crucial role in carcinogenesis:

- **Cu** and **Zn**
 - take part in the metabolism of carbohydrates, lipids, proteins, in the synthesis and degradation of nucleic acids
 - are cofactors of enzyme which prevents the start and progression of tumours

- **Se**
 - is integral part of enzyme that protects the tissue against oxidation, and antagonizes toxic effect of heavy metals
 - may alter the carcinogen metabolism and protect DNA against carcinogen induced damage.

- **Fe**
 - it is well known that it takes part in carcinogenic process
 - cancer cells usually need enhanced supply of Fe
Material & experimental procedure

Breast: 68 patients with benign, 26 one with malignant tumour,
Lung: 13 samples of benign neoplasm, 69 - cancerous tissue,
Intestine: 42 patients with benign colon polyps and 73 with cancer.

ضبط 0.5g of tissue +1.5ml of HNO₃ +
+100μl water solution Y(NO₃)
ضبط mineralization in microwave
ضبط 1-2μl drop of solution into backing
ضبط infrared drying
ضبط measurements of X-ray spectrum
ضبط spectrum analysis
ضبط calculation of element concentration in
solution
ضبط substraction of solution contamination
ضبط data conversion into mass of sample
concentration measured \Rightarrow concentration below the detection limit of the method used.

distribution of concentrations
$c_1 < c_2 < c_3 < ... < c_n$

Kaplan-Meier method

complication in estimation of mean concentration & in statistical analysis

distribution of detection limit values
$c_1^{DL} < c_2^{DL} < c_3^{DL} < ... < c_n^{DL}$

Next step of statistical analysis: logrank test to testing distributions (censored as well as uncensored) describing 2 studied populations.

distributions:
- $n(c)$-censored
- $m(c)$-detection limit
- $N(c)$-original (reconstructed)
The same organ - different neoplasm

Results & discussion

cancerous – benign tissue:

breast:
- Fe: 23.6 -13.3,
- Se: 0.156 - 0.103,
- Se/Zn: 0.033 - 0.021

lung:
- Cu: 2.72 - 5.90,
- Zn: 11.7 - 21.2,
- Se/Zn: 0.061 - 0.040

intestine:
- Zn: 14.8 - 9.65,
- Cu/Zn: 0.274 - 0.472

Statistically significant differences

breast:
- Fe: 23.6 -13.3,
- Se: 0.156 - 0.103,
- Se/Zn: 0.033 - 0.021

lung:
- Cu: 2.72 - 5.90,
- Zn: 11.7 - 21.2,
- Se/Zn: 0.061 - 0.040

intestine:
- Zn: 14.8 - 9.65,
- Cu/Zn: 0.274 - 0.472

Log-rank test:
- \(\chi^2 = 7.1 \)
- \(\chi^2_{\text{crit}} (99.5\%) = 7.88 \)
Results & discussion

Cu, Fe, Zn, Se:

benign tissue: breast – intestine
breast – lung

cancerous tissue: breast – intestine, breast - lung

Fe, Cu:
cancerous tissue: lung – intestine

Zn:

benign tissue: lung - intestine

cumulative distribution function (cdf)

Fe, Cu:
cancerous tissue: lung – intestine

Zn:

benign tissue: lung - intestine

Statistically significant differences

Kaplan-Meier method:
censoring mean median level value (ppm)
0% 13.3 8.63
0% 43.1 43.5

log-rank test:
$\chi^2 = 67$
$\chi^2_{crit}(99.5\%) = 7.88$

Kaplan-Meier method:
censoring mean median level value (ppm)

Fe
benign tissue

N = 10 samples
N = 68 samples

Kaplan-Meier method:
censoring mean median level value (ppm)
0% 13.3 8.63
0% 43.1 43.5

log-rank test:
$\chi^2 = 67$
$\chi^2_{crit}(99.5\%) = 7.88$

Se

N = 69 samples
N = 26 samples

Kaplan-Meier method:
censoring mean median level value (ppm)

breast: 31 % 0.156 0.144
lung: 12 % 0.652 0.530

log-rank test:
$\chi^2 = 58$
$\chi^2_{crit}(99.5\%) = 7.88$
Thank You for Your attention