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Motivation

• In a recent paper, A. Mostacci et al. calculated wakefield for a
rectangular waveguide with corrugated walls. The result—loss
factor proportional to δ/a—does not agree with what one expects
from the round pipe model, earlier studied by K. Bane and A.
Novokhatski (BN) .

• The result of this paper was used to estimate the roughness
impedance for LCLS, with the conclusion that the “the result
differs by 2 orders of magnitude” from BN calculations.

• It was also used to estimate the impedance of the LHC beam
screen.

• We do not discuss here if this is a good model for the real
roughness.

2



Reference 1

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 5, 044401 (2002)

Wakefields due to surface waves in a beam pipe with a periodic rough surface

A. Mostacci* and F. Ruggiero
CERN, Geneva, Switzerland

M. Angelici, M. Migliorati, L. Palumbo, and S. Ugoli†

Dipartimento di Energetica–Universitá La Sapienza, Roma, Italy
(Received 14 July 2000; revised manuscript received 22 February 2002; published 12 April 2002)

The problem of the wake elds generated by an ultrarelativistic particle traveling in a long beam tube
with a periodic rough surface has been revisited by means of a standard theory based on the hybrid
modes excited in a periodically corrugated rectangular waveguide. Slow surface waves synchronous with
the particle can be excited in the structure, producing wake elds whose frequency and amplitude depend
on the depth of the corrugation. We apply our results to the case of the CERN Large Hadron Collider
beam screen and the Linac Coherent Light Source undulator.
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Round pipe with corrugations

K. Bane & A. Novokhatski (1999) modeled roughness as axisymmetric
steps on the surface, assuming that δ, g, p � b. They found that there
exists a synchronous mode with ω/k = c which has the wavelength

λ = 2π

√
δag

2p
.

4



Round pipe with corrugations, cont’d

Wakefield

w(s) = 2κ cos
(

2πs

λ

)
where the loss factor κ (per unit length) is

κ =
Z0c

2πa2
=

2π

(πa2)

Surprisingly, κ does not depend on the roughness properties. Moreover,
it is equal exactly to the loss factor due to the resistive wall impedance.

Group velocity

1 − vg

c
=

4δg

ap
∼ δ

a

This result can be also obtained in a model that treats the corrugation
as a thin dielectric layer of thickness δ with

ε =
p

p − g
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Rectangular pipe (from Ref. 1)

FIG. 1. Relevant geometry.
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FIG. 2. Schematic view of the waveguide and notations adopted.
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EM field in the rectangular wageguide with corrugations

Two Hertz vectors, Πm ∝ ejkct and Πe ∝ ejkct:

E = ∇×∇× Πm − jk∇× Πe

H = ∇×∇× Πe + jk∇× Πm .

In the tube region,

ΠI
mx =

∞∑
n=−∞

[
An sinh(kI

yny) + Bn cosh(kI
yny)

]
sin(kxx) e−jβnz

ΠI
ex =

∞∑
n=−∞

[
Cn sinh(kI

yny) + Dn cosh(kI
yny)

]
cos(kxx) e−jβnz ,

with

βn = β0 +
2πn

p
, kI

yn =
√

β2
n − k2 + k2

x , kx =
mπ

w

where m is an odd integer.
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In the cavity region:

ΠII
mx =

∞∑
s=0

Es sin[kII
ys(a + δ − y)] sin(kxx) sin[αs(z + g/2)]

ΠII
ex =

∞∑
s=0

Fs cos[kII
ys(a + δ − y)] cos(kxx) cos[αs(z + g/2)] ,

with
αs =

πs

g
, kII

ys =
√

k2 − α2
s − k2

x .

We need to match the tangential electric and magnetic fields at y = ±a

EI
z,x =


 EII

z,x : |z| < g/2

0 : g/2 < |z| < p/2

HI
z,x = HII

z,x : |z| < g/2 .
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Small Corrugations

Assume that the corrugations are small, with δ ∼ g ∼ p � a ∼ w.
Analysis shows that only one term in the Π vector sums, with n = 0
and s = 0, suffices to give a consistent solution to the field matching
equations.

Setting α = 0 implies that ΠII
mx = 0.

ΠII
mx ≈ 0

ΠII
ex ≈ C cos[kII

y0(a + δ − y)] cos(kxx) ,

and

ΠI
mx ≈ 0

ΠI
ex ≈ B sinh(kI

y0y) cos(kxx) e−jβ0z ,

with C, B, constants.
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Matching the boundary conditions, we find the dispersion relation for
the synchronous mode

k2 = mπ

(
1

δw

)(
p

g

)
coth (kxa) ,

This agrees with Ref. 1.

1 − vg

c
= 2mπ

(
δ

w

) (
g

p

)
sinh2(kxa)

sinh(kxa) cosh(kxa) − kxa
.

where
kx =

mπ

w
.
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The wakefield of one mode, at position s behind the (driving) point
charge, can be written as

w(s) = 2κ cos(ks) ,

with κ the loss factor of the mode. The loss factor is given by

κ =
|Ez|2

4u(1 − vg/c)
,

with Ez the longitudinal field on axis, and u the (per unit length)
stored energy in the mode. The factor 1 − vg/c is often missed in the
literature.
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We find that

κ =
2π

aw
F

(mπa

w

)
where

F (ζ) =
ζ

sinh(ζ) cosh(ζ)

The loss factor does not depend on the roughness parameters, as in the
case of the round pipe.

This result can be also obtained in a model that treats the corrugation
as a thin dielectric layer of thickness δ with

ε =
p

p − g
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Loss factor as a function of a/w
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In the limit w → ∞ this loss factor is equal to the loss factor of two
resistive planes (H. Henke and O. Napoli, EPAC1990).
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Conclusion

• We found synchronous modes and calculated the loss factors for
the waveguide of rectangular cross section with 2 corrugated walls.
Our result for the loss factor is a factor ∼ w/δ larger than
published by A. Mostacci et al.

• By order of magnitude, it agrees with the case of the round pipe
(w , a → pipe radius). It also agrees with the problem where the
corrugation is imitated by a thin layer of the dielectric coating.
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