

GReAT: General Relativity Accuracy Test EP test balloon experiment

- <u>V. Iafolla¹</u>, D.M. Lucchesi¹, S. Nozzoli¹, E. Fiorenza, M. Persichini¹, F. Santoli¹,
- I.I. Shapiro², E.C. Lorenzini², M.L. Cosmo², J. Ashenberg², P.N. Cheimets²,
- S. Glashow³

Istituto di Fisica dello Spazio Interplanetario (IFSI/INAF), Via Fosso del Cavaliere, n. 100, 00133 Roma, Italy;

Harvard–Smithsonian Center for Astrophysics (CfA), Cambridge, MA;

Boston University, Boston, MA;

FUNDAMENTAL PHYSICS IN SPACE WITH SMALL PAYLOADS (FPS-06)

GReAT compared to the other proposed flying experiments to test the **WEP**:

- **STEP:** 10^{-18} (drag-free satellite)
- GG: 10^{-17} (drag-free satellite)
- MicroScope: 10⁻¹⁵ (drag–free satellite)
- GReAT: $5*10^{-15}$ (drag-shielded capsule)

NASA; INFN/ASI; CNES/ESA; ASI/NASA;

The goal of the **GReAT** experiment is to test the <u>Weak–Equivalence–</u> <u>Principle</u> (WEP) with an accuracy of a <u>few parts in 10^{15} </u>, i.e., 2 orders–of– magnitude better than the actual ground–based measurements:

- The differential accelerometer composed of two test masses of different material free falls inside a 3 m long cryostat dropped from a 40 km altitude balloon;
- the FF duration is about <u>30 s</u> inside an <u>evacuated</u> <u>capsule</u>;
- the falling masses are part of a high–sensitivity <u>differential accelerometer</u> with a sensitivity in detecting <u>differential accelerations</u> of about 10⁻¹⁵g_⊕/√Hz at the <u>liquid–helium</u> temperature (4.2 K);

- the differential accelerometer apparatus is <u>spun</u> about an horizontal axis at a frequency of <u>1 Hz</u> (<u>1</u>\omega) in order to <u>modulate the signal</u> during free fall;
- the experiment is isolated from external noise sources acting on the capsule, such as air drag;
- <u>a non-zero differential acceleration appearing at</u> the rotation frequency will indicate a violation of the Equivalence Principle;
- once the instrument package reaches the capsule's floor, the capsule is decelerated by a parachute for retrieval and re-flight;

L = 6.5 m

Differential accelerometer

The liquid-helium refrigeration is important to provide:

- low thermal noise;
- high thermal stability;
- low thermal gradients;
- high Q-factors of the differential accelerometer detector;

- Small cryostat to refrigerate the instrument package (blue/purple);
- Open doors at bottom of cryostat;
- Instrument package span at ≤1 Hz before release into room–temperature capsule;

GReAT has several advantages with respect to other ground–based experiments:

- full Earth's gravity signal: $1g_{\oplus}$;
- acceleration noise of the **FF** detector $\leq 10^{-12}g_{\oplus}$ for a residual pressure of 10^{-6} mbar;
- drag–shielded vertical FF;
- longer integration time;

The work of the teams involved in the **GReAT** experiment to test the **WEP** has been subdivided in the following main aspects:

- Free–Fall system (SAO):
- cryogenic system (with Janis Research);
- release mechanism (cooling and clean release);
- room temperature electronics and detector power source;
- Detector (IFSI/CNR):
- achieving the required values (e.g., Q-factor);
- attenuating initial transients;
- common–mode rejection;

Numerical simulations.

Spectral densities:

- Capsule gravity gradients;
- Earth's gravity gradients;
- Inertial gradients due to the vibrations of the capsule walls and to the platform, via the residual gas in the capsule;

Reference gravity gradient:

FF simulation with the instrument package spun at 1 Hz including a possible violation of the **WEP** at the level of $10^{-15}g_{\oplus}$. The violation signal at 1 ω is well separated from the 2 ω signals. 2ω contributions

Valerio lafolla

The ISA accelerometer

Valerio lafolla

The ISA accelerometer

Reference Frame

Base concept of the accelerometer

$$\beta = \frac{\alpha^2 C}{m_r \omega_o^2}$$

$$\frac{1}{Q_e} = \left(4\frac{\omega_o}{\Omega_p}\frac{tg\delta}{\beta}\right)$$

$$a_t^2(\omega) \approx \frac{4k_b\omega_o}{m_r} \left[\frac{T}{Q} + T_n \frac{2Z_n C\omega_o}{\beta}\right] \Delta f$$

no matching

$$a_t^{2}(\omega) \approx \frac{4k_b\omega_o}{m_r} \left[\frac{T}{Q} + T_n \frac{2}{\beta} \frac{\omega_o}{\Omega_p}\right] \Delta f$$

matching

$$\frac{1}{Q} = \left(\frac{1}{Q_m} + \frac{1}{Q_{de}}\right)$$

$$a_{bW} = \left(\frac{4k_b T\omega_o}{m_r Q}\right)^{1/2}$$

Accelerometer for space use

		Actual value	Possible value	Cryogenic
a_{\min}	Sensitivity g/\sqrt{Hz}	3.3*10-12	4*10-14	5.7 *10 ⁻¹⁵
<i>m</i> ,	Proof mass (Kg)	0.22	10	10
f_{\circ}	Frequency of resonance (Hz)	3.5	1	1
f_p	Polarisation frequency (KHz)	10	10	10
Р	Pressure condition (mbar)	10 ⁻⁴	10 ⁻⁶	10 ⁻⁶
C_1	Sensing capacity (pF)	300	300	300
$tg\delta_{C1}$	Angle of loss of C_1 condenser	4*10 ⁻⁴	4*10-4	4*10-4
C_a	External fixed capacity (pF)	300	300	300
$lg\delta_{Ca}$	Angle of loss of C_a condenser	3*10-4	3*10-4	3*10-4
	Electronic device	AD743/AD	OPA128	OPA128
V_{γ_1}	Voltage noise of amplifier (V / \sqrt{Hz})	3*10-9	15*10-9	15*10-9
i _n	Current noise of amplifier (A/\sqrt{Hz})	7 *10 ⁻¹⁵	0.1*10-15	0.1*10-15
T_n	Temperature noise of amplifier (K)	0.76	0.06	0.06
α	Transducer factor (V/m)	10 ⁵	10 ⁵	5*10 ⁵
β	Electromechanical transducer factor	2.8*10-2	7.6*10-3	1.9*10 ⁻¹
Q_e	Electric merit factor	6.6*10 ⁴	6.3*10 ⁴	1.5*10 ⁶
Q_m	Mechanical merit factor	5.7 *10 ³	10 ⁵	10 ⁵
Q	Total merit factor	5.7 *10 ³	6.3*10 ⁴	10 ⁵
a_{bw}^2	Brownian noise $(m/\sec^2)^2/Hz$	2.9*10-22	1.6*10-25	1.410-27
a_{el}^2	Electronic noise $(m/\sec^2)^2/Hz$	8.4*10-22	4.9*10-26	1.9*10-27

Differential measurement in order to eliminate the seismic noise in the laboratory performed with two accelerometers with sensitive axes parallel. The residual flat noise is due to the electronics. The setup electronic (that used for the geophysics) was not the best one in order to reach the actual sensitivity of $3.3 \cdot 10^{-12}$ g_{\oplus}/\sqrt{Hz} . Anyway the level of the mechanical rejection is quite good.

ISA (Italian Spring Accelerometer) Three-axis

ISA laboratory calibrations

Concernance of the

Geophysical Measurements

Istituto Nazionale di Fisica Nucleare (INFN) Gran Sasso

Interferometer

Geophysical Measurements

The first differential accelerometer prototype built at IFSI/CNR:

Exploded view of the differential accelerometer prototype

Sensitive-axis direction

Cross section of the (assembled) differential accelerometer prototype

Spin-axis direction

Each sensing mass has to fixed capacitors plates for the signal pickup.

New configuration of the differential accelerometer

The second differential accelerometer prototype built at IFSI/CNR.

Abatement of the natural dynamics excited by the instrument release into the capsule.

Rejection of the common-mode signals.

One important characteristic of a differential accelerometer is its ability to reject perturbations that are not differential, i.e., common–mode disturbances. This ability is quantified by the common–mode rejection factor (CMRF).

Rejection of the common-mode signals.

Figure (b) shows that after calibrating for amplitude and phase a 10^4 attenuation is readily obtained for the differential signal. This level of attenuation is effective not only at the perturbation frequency of 0.15 Hz but also over a larger frequency band.

An attenuation of 10^4 or equivalently a common-mode rejection factor of 10^{-4} meets the present requirement on the CMRF for the proposed tests of the WEP.

Conclusions

- Advantages
 - Reusability and easy access to experiment
 - Low cost
 - Strong gravity signal (i.e., 1 g)
 - Noise level comparable to drag-free satellites
- Disadvantages
 - Short integration time
- In summary
 - Estimated accuracy in testing the WEP several parts in 10⁻¹⁵ with 95% confidence level
 - Potential accuracy improvement of 2 orders of magnitude with respect to the state of the art

References

- V. Iafolla, S. Nozzoli, A. Mandiello "High sensitive accelerometer for fundamental physics in space 2nd Joint Meeting of the International Gravity Commission and the International Geoid Commission Trieste 7-12 settembre 1998
- V. Iafolla, E.C. Lorenzini, V. Milyukov, and S. Nozzoli, "Gizero: New Facility for Gravitational Experiments in Free Fall." <u>Gravitation & Cosmology</u>, Vol. 3, No. 2(10), 151-160, 1997.
- V. Iafolla, S. Nozzoli, E.C. Lorenzini and V. Milyukov, "Methodology and Instrumentation for Testing the Weak Equivalence Principle in Stratospheric Free fall." <u>Review of Scientific Instruments</u>, Vol. 69, No. 12, 4146-4151, 1998.
- V. Iafolla, S. Nozzoli, E.C. Lorenzini, I.I. Lorenzini and V. Milyukov, "Development s of the general relativity accuracy test (GReAT): a ground-based experiment to test the weak equivalence" <u>Classical</u> <u>and Quantum Gravity</u>
- F. Fuligni, V. Iafolla and S. Nozzoli, "Experimental Gravitation and Geophysics." Il Nuovo Cimento, Vol. 20C, No. 5, 1997.
- F. Fuligni and V. Iafolla, "Measurement of Small Forces in the Physics of Gravitation and Geophysics." II Nuovo Cimento, Vol. 20C, No. 5, 1997.
- E.C. Lorenzini, F. Fuligni, J. Zielinski, M.L. Cosmo, M.D. Grossi, V. Iafolla and T. Rothman, "Balloon-Released Experiments in Gravitational Physics", <u>Advances in Space Research</u>, Vol. 14, No. 2, (2)113-(2)118, 1994.
- E.C. Lorenzini, I.I. Shapiro, F. Fuligni, V. Iafolla, M.L. Cosmo, M.D. Grossi, P.N. Cheimets and J.B. Zielinski, "Test of the Weak Equivalence Principle in an Einstein Elevator." <u>II Nuovo Cimento</u>, Vol. 109B, No. 11, 1195-1212, 1994.
- F. Sanso, A. Albertella, G. Bianco, A. Della Torre, M. Fermi, V. Iafolla, S. Nozzoli, A. Lenti, F. Migliaccio, A. Milani, A. Rossi. "Sage: An Italian Project of Satellite Accelerometry" Towards an Integrated Global Geodetic Observing System (IGGOS) Munich, Germany 5-9- October 1998
- S. Mazza, A. Morelli; ING, Roma Rumore Sismico a Larga Banda.