$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ from standard to new physics

Julien Welzel Institut de Physique Nucléaire University Lyon I

Talk based on JHEP10(2004)038 – [hep-ph/0407216] Aldo Deandrea, Julien Welzel - IPN Lyon Micaela Oertel- CEA DPTA-SPN

1

Content of the talk :

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in the Standard Model
- Generic SUSY with unbroken R-parity
- R-parity violation
- Constraints on the R_p violating couplings
- Summary Conclusions

$K \to \pi \nu \bar{\nu}$ in the Standard Model

(A.Buras et al. [hep-ph/0405132]; G.D'Ambrosio, G.Isidori [hep-ph/0112135])

- \rightarrow There is **no tree-level contribution** to the process.
- \rightarrow Only significative contribution in the loops by the **charm** and the **top** quarks.
- \rightarrow Effective Hamiltonian governing $K \rightarrow \pi \nu \bar{\nu}$:

$$H_{eff} = \frac{G_f}{\sqrt{2}} \frac{2\alpha_e}{\pi \sin^2 \theta_w} \sum_l \left(\lambda_c X_c^l + \lambda_t X_t \right) \bar{s_L} \gamma^\mu d_L \ \bar{\nu_L^l} \gamma_\mu \nu_L^l + h.c.$$

- $\lambda_i = V_{is}^* V_{id}$ is a product of CKM elements.

- X_c^l is the charm contribution for flavour *l*.

- X_t is the top contribution (no lepton flavour dependence because lepton masses can be neglected with respect to the top mass)

Julien Welzel

- \rightarrow EW calculations at the one-loop level.
- \rightarrow QCD corrections at the NLO level
- \rightarrow The branching ratio for $K \rightarrow \pi \nu \bar{\nu}$ can be expressed as :

$$BR^{SM} = \bar{\kappa}_{+} \left[\left(\frac{Im(\lambda_{t})X_{t}}{\lambda} \right)^{2} + \left(\lambda^{4}P_{c}\left(X\right) \frac{Re(\lambda_{c})}{\lambda} + \frac{Re(\lambda_{t})}{\lambda}X_{t} \right)^{2} \right]$$

- $\lambda = |V_{us}|$

- $P_c(X)$ is the charm loop-function $P_c(X) = \frac{1}{3\lambda^4} (2X_c^e + X_c^{\tau}).$

- The hadronic matrix element is related via isospin to the experimentally well known decay $K^+ \rightarrow \pi^0 e^+ \nu_e$ (Marciano, Parsa).

- $\bar{\kappa}_+ = r_+ \frac{3\alpha^2(m_Z) BR(K^+ \rightarrow \pi^0 e^+ \nu_e)}{2\pi^2 \sin^4(\theta_w)}$ with $r_+ = 0.901$ an isospin violation correction factor.

 \Rightarrow The branching rate becomes **theoretically clean**.

Numerical results:

 \rightarrow We used the **Wolfenstein parametrization** for the CKM matrix, and the **fits** of $(\lambda, |V_{cb}|, \bar{\rho}, \bar{\eta})$ with the **latest top mass value**.

 \rightarrow Moreover, the PDG value in July 2004 for $BR(K^+ \rightarrow \pi^0 e^+ \nu_e)$ is :

 $BR(K^+ \to \pi^0 e^+ \nu_e) = (4.87 \pm 0.06) \times 10^{-2}$

But did not include the E865 result: (A.Sher et al. [hep-ex/0305042])

 $BR(K^+ \to \pi^0 e^+ \nu_e) = (5.13 \pm 0.15) \times 10^{-2}$

We combined the two results, the **average** is:

 $BR(K^+ \to \pi^0 e^+ \nu_e) = (5.08 \pm 0.13) \times 10^{-2}$

\Rightarrow The central value increases by 4.4% and there are larger errors.

The **prediction in the SM** for the branching ratio of $K \rightarrow \pi \nu \bar{\nu}$ is then:

 $BR^{SM} = (8.18 \pm 1.22) \times 10^{-11}$

Our BR is **slightly larger** than the recent prediction by Buras et al.

 $BR^{SM} = (7.8 \pm 1.2) \times 10^{-11}$

The E787 and E949 collaborations give the **experimental result**:

 $BR^{EXP} = (1.47 \ ^{+1.3}_{-0.8}) \times 10^{-10}$

 \Rightarrow This is compatible with the Standard Model but there is enough place for new physics.

 \Rightarrow We can **constraint new physics parameters** with $K \rightarrow \pi \nu \bar{\nu}$.

Which new physics ? (A.Buras *et al.* [hep-ph/0405132])

- General SUSY Models with R_p conserved?
- SUSY with LFV ?
- Universal Extra Dimensions ?
- SUSY $earrow R_p ? \to$ this work

$K \rightarrow \pi \nu \bar{\nu}$ in the general MSSM

(Buras, Romanino, Silvestrini [hep-ph/9712398]; Colangelo, Isidori [hep-ph/9808487])

\rightarrow **No tree-level contribution** just as in the SM.

→ Significant contribution in the loops by Charged Higgses, Charginos, Neutralinos.

Features and assumptions of the analysis ?

- One-loop level calculations.
- Only dimension six operators ($\bar{s_L}\gamma^{\mu}d_L \ \bar{\nu_L^l}\gamma_{\mu}\nu_L^l$)
- Minimal field content (MSSM-like)
- Unbroken R_p .
- New physics contribution to $K^+ \rightarrow \pi^0 e^+ \nu_e$ neglected.

 \rightarrow Same effective Hamiltonian as in the SM but X_t^{SM} replaced by $X_t^{new} = r_K e^{-i\theta_K} X_t^{SM}$

$$H_{eff} = \frac{G_f}{\sqrt{2}} \frac{2\alpha_e}{\pi \sin^2 \theta_w} \sum_l \left(\lambda_c X_c^l + \lambda_t X_t^{new}\right) \bar{s_L} \gamma^\mu d_L \ \bar{\nu_L} \gamma_\mu \nu_L^l + h.c.$$

 \Rightarrow r_K and θ_K parameterize new physics contributions. They are functions of masses and couplings of the new particles.

 \rightarrow We have $X_t^{new} = X_t^{(SM)} + X_{H^{\pm}} + X_{ ilde{C}} + X_{ ilde{N}}$

<u>Remarks:</u>

- The SM is included as a special case: $r_K = 1$ and $\theta_K = 0$
- New physics effects proportional to λ_c are included in X_t^{new} .

The flavour structure of SUSY theories is complicated and unknown,

⇒ the calculation of the Feynman graphs is done in the Mass Insertion Approximation = diagonalization of the mass matrices perturbatively around the diagonal (Hall, Kostelecky, Rabi)

- Chargino/squark and neutralino/squark contributions are:

$$X_{\tilde{C}} = C^{0} + C_{LL} \frac{(\delta_{12}^{U})_{LL}}{\lambda_{t}} + C_{LR} \frac{(\delta_{23}^{U})_{LR}}{\lambda_{t} m_{t}} V_{td} + C_{RL} \frac{(\delta_{31}^{U})_{RL}}{\lambda_{t} m_{t}} V_{ts}^{*}$$
$$X_{\tilde{N}} = \tilde{N} \frac{(\delta_{12}^{D})_{LL}}{\lambda_{t}}$$

 \hookrightarrow the δ s are typically $\frac{(m_Q^2)_{ij}}{m_{\tilde{q}_L}^2}$, with $(m_Q^2)_{ij}$ off-diagonal elements of the squark mass matrices.

 $\hookrightarrow C_i$ and \tilde{N} are functions at the one loop level.

 \rightarrow Using various experimental results it is possible to derive upper limits on the δ 'S -Buras, Romanino, Silvestrini; Colangelo, Isidori; Gabbiani, Gabrielli, Masiero, Silvestrini; Misiak, Pokorski, Rosiek.

 \rightarrow By varying the δ 's and all the SUSY parameters (tan β , $m_{\tilde{q}_L}$...), we have a **typical range** (=the most probable values) for r_K and θ_K :

$$0.5 < r_K < 1.3, -25^o < \theta_K < 25^o$$

 \rightarrow That makes at most a change of $\sim \pm 50\%$ for the branching ratio of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$.

$$BR^{SUSY}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.18 \, {}^{+4.26}_{-5.23}) \times 10^{-11}$$

(the central value corresponds to the SM value, $r_K = 1$ and $\theta_K = 0$.

Variations correspond to the maximal and minimal SUSY contribution)

Contribution of R_p violating SUSY

(R.Barbier et al., R-parity violating supersymmetry [hep-ph/0406039])

R-parity:

$$R_p = (-1)^{3(B-L)+2S}$$

→ **New terms** allowing **R-parity violation** in the superpotential:

 \rightarrow 45 unknown complex couplings.

 \rightarrow We focus on λ'_{ijk} couplings. They induce **tree level** contributions *via* **squark exchanges** to $K^+ \rightarrow \pi^+ \nu \bar{\nu}$.

$$\mathcal{L}_{L_i Q_j D_k^c} = -\lambda'_{ijk} \left(\tilde{d}_{kR}^* \overline{\nu^c}_i d_{jL} + \tilde{d}_{jL} \nu_i \overline{d}_{kR} \right) + \text{h.}c$$

Figure 1: *R*-parity violating tree level diagrams contributing to the process $K^+ \rightarrow \pi^+ \nu \bar{\nu}$.

 \Rightarrow R-parity violating couplings induce a contribution to $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with a **neutrino and an antineutrino of different flavour** in the final state ! (*in contrast to the SM and the MSSM*)

 \rightarrow Including these 2 diagrams, the branching ratio can be written as:

$$BR = \frac{\bar{\kappa}_{+}}{3\lambda^{2}} \left(\sum_{l} | C_{l}^{\text{SUSY}} + \frac{\epsilon_{ll}}{4k (200 \text{ GeV})^{2}} |^{2} + \sum_{b \neq l} \frac{|\epsilon_{bl}|^{2}}{16k^{2} (200 \text{ GeV})^{4}} \right)$$

(the sum is over ν 's and $\bar{\nu}$'s flavours)

Where:

$$C_l^{\rm SUSY} = \lambda_c X_c^l + \lambda_t X_{new}$$

$$k = \frac{G_f \alpha(m_Z)}{\sqrt{2\pi} \sin^2(\theta_w)} = 8.88 \times 10^{-8} \text{ GeV}^{-2}$$

The RPV couplings appear in ϵ_{ij} :

$$\epsilon_{ij} = \sum_{n} \left(\frac{\lambda_{i2n}^{'*} \lambda_{j1n}^{'}}{m_{\tilde{d}n_R}^2} - \frac{\lambda_{in1}^{'*} \lambda_{jn2}^{'}}{m_{\tilde{d}n_L}^2} \right) (200 \text{ GeV})^2$$

 \rightarrow If we develop BR:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = \underbrace{BR_{SUSY}}_{part2} + \underbrace{BR_{R_p} + BR_{int}}_{\to now}$$

 \rightarrow we have a "Pure" R_p violating contribution:

$$BR_{\mathcal{R}_p} = \frac{\bar{\kappa}_+}{48\lambda^2 \ k^2 (200 \ \text{GeV})^4} \sum_{i,j} |\epsilon_{ij}|^2$$

 \rightarrow There are interferences between SUSY and the R_p part:

$$BR^{Int} = -2\frac{\overline{\kappa}_{+}}{12\lambda^2 \ k(200 \ \text{GeV})^2} \sum_{l} Re(C_l^{SUSY} \ \epsilon_{ll})$$

Constraints on the λ'

• First case: neglecting interferences (approximation)

As we want an **upper-bound**, we assume the SUSY contribution to be **minimal** (= the resulting BR is minimal).

 \rightarrow We compare the sum $BR_{R_p} + BR_{SUSY}|_{min}$ with the experimental value $(1.47 \ ^{+1.3}_{-0.8}) \ 10^{-10}$.

 \Rightarrow this gives for squarks masses at 200 GeV:

$$\sum_{i,j} |\epsilon_{ij}|^2 < 4.45 \times 10^{-10}$$

Recalling that:

$$\epsilon_{ij} = \sum_{n} \left(\frac{\lambda_{i2n}^{'*} \lambda_{j1n}^{'}}{m_{\tilde{d}n_R}^2} - \frac{\lambda_{in1}^{'*} \lambda_{jn2}^{'}}{m_{\tilde{d}n_L}^2} \right) (200 \text{ GeV})^2$$

How to translate this into an **upper-bound on** λ' ?

 \rightarrow we naively set **all the couplings to zero except one product** (single coupling dominance hypothesis)

We have then:

$$\frac{\lambda_{i2n}^{'*}\lambda_{j1n}^{'}}{m_{\tilde{d}n_R}^2} | < 2.11 \times 10^{-5}$$
$$\frac{\lambda_{in1}^{'*}\lambda_{jn2}^{'}}{m_{\tilde{d}n_L}^2} | < 2.11 \times 10^{-5}$$

• Second case: full analysis.

 \rightarrow Interferences make the extraction of upper-bounds harder. They occur if the final neutrino and antineutrino are of the same flavour, i = j.

 \rightarrow The general branching ratio formula compared with the experimental value gives:

$$\sum_{i=e,\mu,\tau} \left(\frac{Re(\epsilon_{ii}) + \frac{\alpha_i}{2}}{2} \right)^2 + \sum_{i=e,\mu,\tau} \left(Im(\epsilon_{ii}) + \frac{\beta}{2} \right)^2 = \mathbb{R}^2$$

- α and β contains the CKM inputs and the loop functions X_t and X_c^l .

-The radius *R* is proportional to $(BR^{exp} - BR^{SUSY}|_{min})$ and contains the shifts α and β .

 \Rightarrow For only one non-zero ϵ_{ii} , this equation describes a **circle in the complex plane**.

 \Rightarrow The resulting constraint for ϵ_{11} is the following circle:

Figure 2: Allowed region for $Re(\epsilon_{11})$ and $Im(\epsilon_{11})$ in units of 10^{-5} . We take 200 GeV as reference value for the mass of the squarks.

⇒ If we choose the point ($Re(\epsilon_{11}) = -2 \ 10^{-5}$, $Im(\epsilon_{11}) = -2 \ 10^{-5}$) to have an **numerical idea of the interferences**, we have :

 $|\epsilon_{11}| = 2.8 \times 10^{-5}$

Then,

$$\left|\frac{\lambda_{i2n}^{'*}\lambda_{i1n}^{'}}{m_{\tilde{d}n_R}^2}\right| < 2.8 \times 10^{-5}$$
$$\left|\frac{\lambda_{in1}^{'*}\lambda_{in2}^{'}}{m_{\tilde{d}n_L}^2}\right| < 2.8 \times 10^{-5}$$

 \Rightarrow upper-bounds including interferences are 30% bigger than without.

Summary

We have investigated the decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ to obtain stringent **limits on the R-parity violating couplings**.

• First we updated the standard model value of the branching ratio:

 $B = (8.18 \pm 1.22) \times 10^{-11}$

• We have then analyzed the general SUSY contribution and corrected few misprints present in the literature.

• Finally, we obtained more realistic upper-bound on the products of the RPV couplings λ' .

Conclusions

In establishing limits on RPV couplings involved in $K^+ \rightarrow \pi^+ \nu \bar{\nu}$:

- One loop SM contribution should be taken into account.
- One loop SUSY can contribute up to 50% of the SM and should be taken into account too.
- Interferences between SUSY and "pure" RPV part do have a significant influence.