November 2004

LCFI CCD Vertex Detector Charm-Tagging and

Mass Determination in Studies of Scalar Quarks

Alex Finch, André Sopczak Lancaster University

Hanna Nowak DESY, Zeuthen

- Introduction
- A CCD Vertex Detector (LCFI)
- A Charm Tagging Benchmark Reaction
- Event Selection
- Comparison of Detector Simulations
- Tagging Performance
- Varying Vertex Detector Design
- Mass Determinations
- Conclusions

Introduction

Large challenge to develop a vertex detector for a future LC. Key aspects:

- Distance to interaction point of innermost layer (radiation hardness, beam background).
- Material absorption length (multiple scattering).
- Tagging performance.

While at previous and current accelerators (e.g. SLC, LEP, Tevatron) b-quark tagging has revolutionized many searches and measurements, c-quark tagging will be a very important tool at a future LC.

November 2004

CDD Vertex Detector

LCFI Collaboration: Development of a CCD detector for a future LC.

5 CCD layers at 15, 26, 37, 48 and 60 mm. Each layer $< 0.1\% X_0$.

EuroGDR, Rome November 2004 C-Quark Tagging: a Benchmark Reaction

Signal: Two charm jets and missing energy.

Benchmark reaction in the Supersymmetry framework: $e^+e^- \rightarrow \tilde{t}_1 \bar{\tilde{t}}_1 \rightarrow c \tilde{\chi}_1^0 \bar{c} \tilde{\chi}_1^0$ (Other benchmark reactions, e.g. in Higgs sector, $H \rightarrow c\bar{c}$)

Signal and Background Cross Sections

Two scenarios:

- 1. Comparison previous SGV study: $m_{\tilde{t}_1} = 180 \,\text{GeV}, \, m_{\tilde{\chi}_1^0} = 100 \,\text{GeV}$
- 2. SPS-5 SUSY parameters: $m_{\tilde{t}_1} = 220.7 \text{ GeV}, m_{\tilde{\chi}_1^0} = 120 \text{ GeV}$

Decays mode (kinematics) $\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 c$.

Signal and background cross section (pb):

$\tilde{t}_1\bar{\tilde{t}_1}(180/220.7)$	$\mathrm{We} u$	WW	$q\bar{q}$	$t\overline{t}$	ZZ	eeZ
CALVIN32	GRACE	WOPPER	HERWIG	HERWIG	COMPHEP	PYTHIA
0.0532/0.0164	5.59	7.86	12.1	0.574	0.864	0.6

For this performance study: no beam polarization.

Analysis Strategy

- Signal and Background generated for 500 fb⁻¹ and $\sqrt{s} = 500 \text{GeV}$
- Detector Simulation: SIMDET 4.03 (J. Schreiber et al.)
- b/c tagging algorithm (T. Kuhl et al.)
- Iterative Discriminant Analysis (IDA) for selection optimization
- Different Vertex Detector configurations

SIMDET Detector Simulation (cf. SGV)

180 GeV $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ and 1000 fb $^{-1}$ Standard Model background simulated				
Channel	Generated	$\rm Preselection/500~fb^{-1}$	Previous SGV	
$\mathrm{c} ilde{\chi}_{1}^{0}$	50 k	48%	47%	
$q\bar{q}$	12169 k 620 k	$64963 \\ 32715$	46788 43759	
eeZ	5740 k	32713 24864	4069	
${ m ZZ} { m We} u$	560 k 4859 k	$\frac{3100}{252367}$	$\begin{array}{c} 4027\\ 252189\end{array}$	
WW Total bg	6800 k	$\frac{122621}{500631}$	$\frac{115243}{466075}$	

After additional preselection $(E_{\rm vis}/E_{\rm cms} < 0.52, P_{\rm t}/E_{\rm vis} > 0.05)$:

Channel	$q\bar{q}$	WW	${ m We} u$	$t\overline{t}$	$\mathbf{Z}\mathbf{Z}$	eeZ	Total	
	6801	23278	226070	5267	125	2147	263691 (cf. SGV:	278377 events).

November 2004

Iterative Discriminant Analysis (IDA)

- First half-sample for training. Second part for signal efficiency and backgrund rate determination.
- Two step process: IDA 1: signal reduced to 50% efficiency; IDA 2: fine-tuning

Without charm tag 7815 (cf. SGV 7265). With charm tag 3600 background events.

Signal vs. Background: c-Quark Tagging

After second IDA step, remaining backgrounds for 12% efficiency (180 GeV):

Without charm tag 680 (cf. SGV 400 events),

With charm tag 165 events.

SPS-5 Results (220.7 GeV)

Events remaining after 1st Iteration of IDA (25% efficiency):

Signal	Background	Charm Tagging
3800	5400	No
3800	2500	Yes

Events remaining after 2nd Iteration of IDA (12% efficiency):

Signal	Background	Charm Tagging
1800	170	No
1800	68	Yes

November 2004

Varying Vertex Detector Design

Vertex detector absorption length:

- Normal thickness (TESLA TDR)
- Double thickness

Number of vertex detector layers:

- 5 layers innermost layer at 15 mm (like TDR)
- 4 layers innermost layer at 26 mm (Layer 1 removed)

For SPS-5 parameters (220.7 GeV):

		Remaining background events			
Thickness	Layers	(12% Signal)	(25% Signal)		
Normal	5	68	2300		
Normal	4	82	2681		
Double	5	69	2332		
Double	4	92	2765		

Four Different Methods of Mass Determination

• 'IDA' based selection -

Optimum Signal/Background ratio:

- Cross section with different polarizations
- Threshold dependence of cross section
- Cuts based selection -

Minimum distortion of final state observables

- Endpoint of jet energy spectrum
- Minimum Mass of jets

Iterative Discriminant Analysis - 'IDA'

A method to weight each event to optimize signal / background separation using n discriminant variables.

Construct: vector x containing the n variables and

 $(n^2 - n)/2$ products of those variables.

Calculate:VVariance matrix $\Delta \mu$ Difference in the mean values
between signal and background $a = V^{-1}\Delta \mu$ $D^0 = x^T \cdot a \cdot x$ $D^0 = x^T \cdot a \cdot x$ provides the maximum separation
between Signal and Background.

Weighted such that signal and background have equal importance.

Find the value of D^0 which selects a predetermined fraction of the signal (e.g. 50%), and cut on it.

Do this process once again for events passing the cut.

Discrimination Variables

- visible energy
- number of jets
- thrust value
- thrust direction
- number of energy flow objects
- transverse momentum imbalance
- parallel momentum imbalance
- acoplanarity of the two highest energy jets.
- invariant mass of the two highest energy jets.
- Charm Tag of Jet 1
- Charm Tag of Jet 2

Selection Efficiency for Different Beam Polarizations

Results Using Polarization Method

Dependence of cross section on scalar top mass and mixing angle:

 $\Delta m_{\tilde{t}_1} = \pm 0.57 \text{GeV}$ $\Delta \cos \theta_{\tilde{t}} = \pm 0.012$

Note $500 \,\mathrm{fb}^{-1}$ for each polarization

Threshold Scan Method

Use 'Right Handed Polarization' to reduce backgrounds Measure Cross Section Close to Threshold 6 points with 50 fb^{-1} per point.

Mass from Fit to shape: $220.9\pm1.2~{\rm GeV}$

Direct Measurments from Jet Energies

'End Point Method' and 'Minimum Mass Method'

700 600 Require quark energies, but one 500 measures jets... 10(-15 -5 20 5 15 -10 -20 0 10 Jet Energy - Parton Energy (GeV) 100 \mathcal{O} 80 Parton) Iets 60 Partons 40 20 Jet -15 -10 -5 20 10 15 -20 0 5 100 120 80 40 60 140 *E*(*Jet*)-*E*(*Parton*) 1 Energy (GeV)

November 2004

Effect of IDA Selection on Min. Jet Energy

Cuts Based Selection to Reduce Distortions

- 20 < Number of Energy Flow Objects < 90
- Visble Energy $< 0.8\sqrt{s}$
- Measured Longitudinal Momentum < 0.5 Visible Energy
- Thrust < 0.95
- Cosine of Thrust Axis relative to Beam Direction < 0.95
- Both Jet Charm Tags > 0.3
- At Least One Jet Charm Tag > 0.4
- Number of Jets < 4.
- Lowest Energy Jet > 35 GeV
- Highest Energy Jet < 140 GeV

Number of Signal Events Selected = $900 \ (=11 \ \% \ \text{efficiency})$ Number of Background Events Selected = $390 \ (=70\% \ \text{purity})$

Jet Energy Using Cuts Selection at SPS5

Subtract Background. Straight line fit to decreasing and increasing slopes.

Measure Endpoints at Half Height Position (statistical uncertainty is small).

EuroGDR_Rome

November 2004

Jet Energy Using Cuts Selection at SPS5

November 2004

Minimum Mass Method

If $m_{\tilde{\chi}_1^0}$ is known: calculate minimum allowed mass of the two jets; it peaks at $m_{\tilde{t}_1}$ At SPS5,

Fit to Find Error on Mass

- Generate several Monte Carlo samples varying $m_{\tilde{t}_1}$
- Fit shape of minimum mass distribution to 'data'
- Plot χ^2 versus $m_{\tilde{t}_1}$. Fit a parabola.
- Find where χ^2 increases by 1.0 above minimum
- Check effect of uncertainty on $m_{\tilde{\chi}_1^0}$ (200 MeV, from $e^+e^- \to \tilde{\mu}\tilde{\mu}$)
- Result: $m_{\tilde{t}_1} = 220.5 \pm 1.5 \text{ GeV}$

Summary of Mass Determinations

- IDA selection provides high purity and efficiency.
- Allows $m_{\tilde{t}_1}$ measurement via:
 - 1. Combining Different Beam Polarizations
 - 2. Threshold Scan
- Cuts selection reduces distortions of Jet Energy Spectrum
- Allows $m_{\tilde{t}_1}$ measurement via:
 - 1. End Point Method
 - 2. Minimum Mass Method

Method	$\Delta_m \; ({\rm GeV})$	luminosity	comment
Polarization	0.57	$2 \times 500 \ {\rm fb}^{-1}$	no theory errors included
Threshold Scan	1.2	$300 {\rm ~fb^{-1}}$	right hand polarization
End Point	1.7	$500 {\rm ~fb^{-1}}$	
Minimum Mass	1.5	$500 {\rm ~fb^{-1}}$	assumes $m_{\tilde{\chi}_1^0}$ known

Conclusions

- c-quark tagging as a benchmark for vertex detectors. In Supersymmetry: Scalar top quarks
- SIMDET detector simulation: LCFI vertex detector.
- SIMDET and previous SGV kinematic distributions largely agree.
- c-tagging reduces background by about a factor 3 for $\tilde{\chi}_1^0 c \tilde{\chi}_1^0 \bar{c}$.
- Dedicated simulation with SPS-5 parameters: Possibility to compare with other vertex detector projects
- Background depends on vertex detector design.
- Simulations for SPA parameters started.
- Simulations for small stop-neutralino mass difference started (with Caroline Milstene).