

<u>Recent results from the</u> <u>B-Factories</u>

Francesca Di Lodovico Queen Mary, University of London

B-Factories

Data Samples (for this talk)

3

BaBar Detector

9 GeV e⁻ x 3.1 GeV e⁺

$$\beta \gamma_{Y(4S)} \sim 0.56$$

Belle Detector

Searches for non Standard Model effects in:

- Sin2 β in penguin final states ($B \rightarrow \phi K_s$, $B \rightarrow f_0$ (980) K_s , $B \rightarrow \eta' K_s$,...)
- Flavour Changing Neutral Currents ($b \rightarrow s\gamma$, $b \rightarrow sll, b \rightarrow d\gamma$)
- Leptonic B decays $(B \rightarrow l_V(\gamma), B \rightarrow v_V(\gamma), B \rightarrow ll)$
- Tau decays($\tau \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow lll$, $\tau \rightarrow hll$,....)

All results are PRELIMINARY unless published in a journal 6

3 ways for CP violation

1. CP violation in mixing

First mechanism observed historically in kaon decays

2. Direct CP violation in the decay

Occurs when $|A| \neq |\overline{A}|$ where A is the amplitude for B decays into a final state f and \overline{A} is the amplitude of \overline{B} decays into the CP conjugate state \overline{f} .

Measuring time-dependent CP asymmetries

$sin2\beta$ from charmonium (b \rightarrow c \overline{cs}) modes

b→ccs decays are tree and penguin diagrams, with equal dominant weak phases b→sss decays are pure "internal" and "flavor-singlet" penguin diagrams High virtual mass scales involved: believed to be sensitive to New Physics

 $sin 2\beta$ [charmonium] $\stackrel{?}{=} sin 2\beta$ [s-penguin]

Modes with suppressed C-S tree diagram have smallest uncertainty (\phiKs)

BaBar results for B^0 \rightarrow \phi K^0

 $\Delta E = E_B^* - E_{beam}^*$

More BaBar results from $b \rightarrow s\bar{s}s$ penguins

Still another penguin mode: $B^0 \rightarrow \pi^0 K_S$

•Challenging mode because of the presence of the π^0 •New vertexing technique developed by BaBar in 2003 for this mode

Background corrected signal-weights (Pivk-LeDiberder physics 0402083)

Results on sin2\beta from s-penguin modes

Note that: if NP contributes significantly to CPV in loop decays, we naturally expect it to be different among the modes \Rightarrow averaging only useful in case of SM

14

Projections for Penguin Modes

Projections are statistical errors only; but systematic errors at few percent level. BaBar projections only, but similar projections hold for Belle as well.

Direct CP Asymmetry: $b \rightarrow s\gamma$ and $B \rightarrow K^*\gamma$

•BF(b→sγ) confirms SM predictions •But direct CP asymmetry (< 1% in the SM) could receive ~10% NP contributions •Either inclusive or exclusive decays could reveal new physics •B or K charge tags the flavor of the b quark with ~1-2% asymmetry systematic

Time Dependent CP asymmetry in $B \rightarrow K^* \gamma$

•Same technique as for $Ks\pi^0$

•In the SM, mixed decay to $K^*\gamma$ requires wrong photon helicity, thus •CPV is suppressed. In SM: $C = -A_{CP} \approx -1\%$ $S \approx 2(m_s/m_b) \sin 2\beta \approx 4\%$

$b \rightarrow sl^+l^-$

- First observed in exclusive mode $B \rightarrow Kll$ by Belle
- Proceed through penguin, Z penguin and W box diagrams

- Sensitive to new physics • Information on Wilson coefficient C_7, C_9, C_{10} can be obtained from square di-lepton momentum (q^2) distribution and forward-backward asymmetry $A_{FB}(q^2)$ of the two leptons.
- $BF(b \rightarrow sll)$ is low compared with $b \rightarrow s\gamma$, suppressed by additional α_{em} thus needs l arge statistics

$B \rightarrow K^{(*)} l^+ l^-$

•Apply tight particle identification criteria

 $P_e > 0.5 GeV, P_u > 1 GeV$ •Recover Bremsstrahlung photons for e⁺e⁻ modes •Peaking background from $J/\Psi(\Psi')Xs$ and $Xs\pi\pi$ •Non peaking background from semileptonic decays and qq 275M BB (b) K^{*} I⁺ Γ (a) K I⁺ I hep-ex/0410006 GeV²/c 8 $BF(Kl^+l^-) = (5.50^{+0.75}_{-0.70} + 0.27 + 0.02)10^{-7}$ $BF(K^{*}l^{+}l^{-}) = (16.5^{+2.3}_{-2.2} \pm 0.9 \pm 0.4)10^{-7}$ dB/dq² 0_7 ≝ 1 ≺0.8 b) K^{\dagger} q^{20} 0 q^{2} (GeV²/c²) 15 10 20 10 5 15 0 5 0.6 0.4 SM 0.2 0 -0.2 $A_{FB} = \frac{\Gamma(\theta_{Bl^+} < \pi / 2) - \Gamma(\theta_{Bl^+} > \pi / 2)}{\Gamma(\theta_{Bl^+} < \pi / 2) + \Gamma(\theta_{Bl^+} > \pi / 2)}$ -0.4 wrong sign (-0.6 -0.8 -1 8 10 12 16 18 20 14 GeV²/c² a² J/w veto Ψ' veto

20

 $B \rightarrow X l^+l^-$

Look at sum of exclusive modes from s-quark fragmentation:

 $K^{(*)}$ and up to 4 pions up (~50% of total final states)

$b \rightarrow sll \ branching \ ratio \ summary$

Good Agreement with SM

- BF(Kee)/BF(Kµµ) sensitive to neutral Higgs emission from internal loop in 2HDM with large tan β.
- BF(K*ee)/BF(K*µµ) sensitive to size of photon pole

$$\begin{aligned} \mathcal{R}_{K\ell\ell} &= \frac{\mathcal{B}(B \to K\mu\mu)}{\mathcal{B}(B \to Kee)} = 1.38^{+0.39}_{-0.41} \stackrel{+0.06}{_{-0.07}} = 1.00 \\ \mathcal{R}_{K^*\ell\ell} &= \frac{\mathcal{B}(B \to K^*\mu\mu)}{\mathcal{B}(B \to K^*ee)} = 0.98^{+0.30}_{-0.31} \pm 0.08 \sim 0.75 \\ & \text{ in the SM.} \end{aligned}$$

$b \rightarrow d\gamma: B \rightarrow \rho(w)\gamma$

Important to reject K*γ
Particle identification is crucial

 $\Gamma(\boldsymbol{B} \rightarrow (\rho, \omega)\gamma) = \Gamma(\boldsymbol{B}^{+} \rightarrow \rho^{+}\gamma) = 2\Gamma(\boldsymbol{B}^{0} \rightarrow \rho^{0}\gamma) = 2\Gamma(\boldsymbol{B}^{0} \rightarrow \omega\gamma)$

Leptonic B decays to $\tau^+ \nu$, $l^+ l^-$, $\nu \overline{\nu}$

Leptonic decays of heavy-quark mesons provide a laboratory

- For testing straightfoward SM predictions:

SM predictions: BF($B^+ \rightarrow \tau^+ \nu_{\tau}$) ~ 10⁻⁵ BF($B^+ \rightarrow \mu^+ \nu_{\mu}$) ~ 10⁻⁷

For searching for non-SM effects in highly suppressed processes.
 Some new-physics in loops (e.g., SUSY) can enhance these by orders of magnitude. Also LFV?

$B^+ \rightarrow \tau \nu$

- **Reconstruction of** $\tau \rightarrow \mu(e) \vee \nu, \pi \nu, \pi \pi^0 \nu, \pi \pi \pi \nu$
- Large missing energy in the event due to the neutrinos
- Tag the other B, $B \rightarrow D^{*0}$ ln, $D^{(*0)}X$: strong suppression of combinatorial and continuum background, although low efficiency

(Signal MC scaled to $BF=10^{-3}$)

Discriminating variable: remaining neutral energy in the event after the signal and tag B are subtracted

$B^{o} \rightarrow \mu \nu, l \nu \gamma$

 $BF(B
ightarrow \mu v) < 2.0 imes 10^{-6} (90\% CL)$ $BF(B
ightarrow e v \gamma) < 2.2 imes 10^{-5} (90\% CL)$ $BF(B
ightarrow \mu v \gamma) < 2.3 imes 10^{-5} (90\% CL)$

- Helicity suppression of $B \rightarrow \mu \nu$ with respect to $B \rightarrow \tau \nu$, smaller BF of ~225 times
- Observation with current dataset would be clear indication of NP
- Search extended to ratiative modes $(B \rightarrow l \lor \gamma)$ for electrons and muons (where no helicity suppression does occur)
- Selection is based on electron and muon identification
- The other B is in the event is tagged

$B^{0} \rightarrow invisible (\nu \overline{\nu}), \nu \overline{\nu} \gamma$

- The Branching Fraction for vv is well below the range of current observability
- Higher (~10⁻⁹) but still below the current range is the B→ννγ
- Experimental signature: tag the other B in the event in $B \rightarrow D^{(*)} l_V$
- Look at the remaining neutral energy in the event

 $\begin{array}{l} BF(B^{0} \rightarrow invisible) < 22 \times 10^{-5} \ (90\% CL) \\ BF(B^{0} \rightarrow \lor \lor \lor \curlyvee) < 4.7 \times 10^{-5} \ (90\% CL) \end{array}$

$B^{0} \rightarrow l^{+} l^{-} (e^{+}e^{-}, \mu^{+}\mu^{-}, e^{+}\mu^{-})$

Highly suppressed processes in the SM

Experimental key features:

- identification of two high energy lepton
- rejection of QED and qq backgrounds

Improvements with respect to the previous limits:

- $BF(B \rightarrow ee) < 6.1 \times 10^{-8} (90\% CL)$
- ▶ $BF(B \to \mu\mu) < 8.3 \times 10^{-8} (90\% CL)$
- $BF(B \rightarrow e\mu) < 18 \times 10^{-8} (90\% CL)$

Leptonic B decays to K(\pi) $\nabla \overline{\nabla}$

- The flavor-changing neutral current decays $B \rightarrow K/\pi \vee \nu$ occur in the Standard Model via one-loop radiative penguin and box diagrams
- SM expectation: $B(B^+ \rightarrow K^+ \vee \vee) \sim 10^{-6}, B(B^+ \rightarrow \pi^+ \vee \vee) \sim 10^{-7}$
- Their analysis is theoretically very clean; observation of these processes would be complementary to the observation of $B \rightarrow K^{(*)} l^+l^-$
- These also present another opportunity for the observation of newphysics effects in the loops.

$B^+ \rightarrow K/\pi^+ \nu \overline{\nu}$

Points: data; solid: background MC; dashed: signal MC (arbitrary scale)

- Large missing energy
- Tagged B in the event reconstructed in semileptonic or hadronic decays
- Combinatorial bakground from continuum events reduced using topological variables
- πνν and Kνν have opposite particle identification criteria

 $BF(B^+ \to K^+ \vee \vee) < 5.2 \times 10^{-5} (90\% CL)$ $BF(B^+ \to \pi^+ \vee \vee) < 1.0 \times 10^{-4} (90\% CL)$

Search for lepton flavour violation in tau decays

<u>@ BaBar/Belle</u>: σ (e⁺e⁻ \rightarrow $\tau\tau$) = 0.9 nb; σ (e⁺e⁻ \rightarrow BB) = 1.0 nb at (4S)

Lepton (baryon) flavour violation not yet observed. It is supposed to be very small in the SM. It is indeed enhanced in many models beyond the SM

Experimental Strategy:

- Separation into 2-hemisphers
 - signal-side
- tag-side: 1or 3 prong (need high efficiency)

• Background from higher-order radiative Bhabha and μμ, qq, ττ with wrong particle identification

Search for $\tau \rightarrow \mu(e)\gamma$

Dots = data, shaded region = MC signal

 $\tau \rightarrow e \nu$

$\tau \rightarrow \mu \nu$

Clean signature given by a μ and γ compatible with τ mass
The other τ decays in 1 or 3 charged particles
Background from ee→μμγ, ee→ττγ
Use neural Network
BF (τ→μγ) < 0.9x10⁻⁷ 90%CL

Preliminary BaBar result @ TAU 04

•Require e and γ consistent with τ mass •Main backgrounds $\tau\tau\gamma$ and $ee\gamma$

 $BF(\tau \rightarrow e\gamma) < 3.8 \times 10^{-7} \ 90\% CL$

Search for $\tau \rightarrow lll, lhh$ (h=K, π)

hep-ex/0409036

Search for LFV τ decays involving π^0 , η , η'

 $\tau \rightarrow \mu \eta$ provides a very stringent bound on Higgs mediated LFV decays

Searches for $\tau \rightarrow l\eta$, $l\pi^0$, $l\eta'$ (where $\eta' \rightarrow \pi\pi\eta$) are perfomed

	53.8/fb Belle	-Conf-0432	
Mode	Subdecay mode	U.L. of \mathcal{B} @ 90% C.L.	
$\tau^- \to e^- \eta$	$\eta \to \gamma \gamma$	3.9×10^{-7}	
	$\eta \to \pi^+ \pi^- \pi^0$	5.6×10^{-7}	
$\tau^- \to e^- \eta$	combined	2.3×10^{-7}	10-70 times
$\tau^- \to \mu^- \eta$	$\eta \to \gamma \gamma$	2.4×10^{-7} (tighter limit
	$\eta \to \pi^+ \pi^- \pi^0$	5.4×10^{-7} (than before
$\tau^- \to \mu^- \eta$	combined	1.3×10^{-7}	*
$\tau^- \to e^- \pi^0$	$\pi^0 \to \gamma \gamma$	1.9×10^{-7}	
$\tau^- \to \mu^- \pi^0$	$\pi^0 o \gamma\gamma$	4.3×10^{-7})	
$\tau^- \to e^- \eta'$	$\eta' \to \pi^+ \pi^- \eta$	10×10^{-7}]	Einst soonah
$\tau^- \to \mu^- \eta'$	$\eta' \to \pi^+ \pi^- \eta$	$4.1 \times 10^{-7} \text{s}$	r irst search

Search for Baryonic Decays of the tau

In some extentions of the SM, L and B numbers are separately violated but L-B is conserved

Search for tau decays violating L and B separately is perfomed

Br($\tau^- \to \overline{\Lambda}\pi^-$) < 1.3 × 10⁻⁷ @ 90% C.L. (*B* − *L* conserving) Br($\tau^- \to \Lambda\pi^-$) < 0.70 × 10⁻⁷ @ 90% C.L. (*B* − *L* violating)

 $\begin{array}{l} {\rm Br}(\tau \to p \gamma \) < 3.0 \ \times \ 10^{-7} \ @ \ 90\% \, {\rm C.L.} \\ {\rm Br}(\tau \to p \pi^0) < 6.5 \ \times \ 10^{-7} \ @ \ 90\% \, {\rm C.L.} \end{array}$

153.8/fb except pγ (86.7/fb)

Belle-Conf-0433

Conclusions and outlook

- Good agreement between BaBar and Belle results on spenguins, but both experiments still show discrepancies with charmonium! Puzzling difference.
- \bullet New results in the radiative penguin sector. Moving toward precision measurement in b \rightarrow sll.
- Probing B decays into leptonic final states.
- Looking for lepton and baryon flavor violating in tau decays

Looking forward to 0.5ab⁻¹ per B-Factory by 2006!

Backup Slides

CKM and unitarity conditions

More Belle results from b \rightarrow *sss penguins*

Also many more new results from the B-Factories not discussed here...

- New results on the angle α
- New constraints on γ
- New results on $|V_{cb}|$, $|V_{ub}|$
- ...but let me show you a highlight \Rightarrow

First observation of Direct CPV in B decays

