
Radiative Corrections in the MSSM

EuroGDR Supersymmetry Frascati 25-27 November, 2004

Giuseppe Degrassi

Università di Roma Tre, I.N.F.N. Sezione di Roma III

- The LEP legacy
- Higgs mass
- $B \to X_s \gamma$
- Precision physics: $(g-2)_{\mu}$, $\delta \rho$
- Conclusions

- Mechanisms of electroweak symmetry breaking with a "light" Higgs are clearly favored.
- The success of the SM fit places strong constraints on new-physics.
- Non-decoupling physics can exist (effects that do not vanish as Λ → ∞ where Λ is the new physics scale). However it always need some conspiracy to pass the SM fit constraints.
- New physics of the decoupling type (effects that scale as M_Z^2/Λ^2) can avoid "naturally" $(\Lambda \to \infty)$ the SM fit constraints.

Best (most fashionable) candidate for new physics is the Minimal Supersymmetric extension of the Standard Model (MSSM).

SUSY Virtue: SUSY *is* theory, *not* a scenario.

Radiative corrections to m_h

Higgs sector of the MSSM

• Two
$$SU(2) \times U(1)$$
 doublets:
 $H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \\ H_1^- \end{pmatrix}, H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \\ H_2^0 \end{pmatrix}$
 $H_i^0 = \frac{v_i + S_i + i P_i}{\sqrt{2}} \qquad \tan \beta = \frac{v_2}{v_1}$

Soft SUSY-breaking mass terms for H_1^0 and H_2^0 responsible for electroweak symmetry breaking (EWSB):

$$V_{\text{tree}} = (m_{H_1}^2 + \mu^2) |H_1^0|^2 + (m_{H_2}^2 + \mu^2) |H_2^0|^2 + m_3^2 (H_1^0 H_2^0 + \text{h.c.}) + \frac{1}{8} (g^2 + g'^2) (|H_1^0|^2 - |H_2^0|^2)^2$$

Five physical states: h, H, A⁰, H⁺, H⁻
 CP-even Higgs h, H (m_h < M_H) linear combination through an angle α of the H₁, H₂ doublets;
 (H₁ ⇒ down-fermions, H₂ ⇒ up-fermions).

Tree-level mass matrix for the CP-even sector:

$$\left(\mathcal{M}_{S}^{2}\right)^{\text{tree}} = \begin{pmatrix} M_{Z}^{2} c_{\beta}^{2} + M_{A}^{2} s_{\beta}^{2} & -\left(M_{Z}^{2} + M_{A}^{2}\right) s_{\beta} c_{\beta} \\ -\left(M_{Z}^{2} + M_{A}^{2}\right) s_{\beta} c_{\beta} & M_{Z}^{2} s_{\beta}^{2} + M_{A}^{2} c_{\beta}^{2} \end{pmatrix}$$

 $\rightarrow m_h$ and M_H predicted in terms of M_Z , M_A and $\tan \beta$

At the tree-level

$$\cos^{2}(\beta - \alpha) = \frac{m_{h}^{2} \left(M_{z} - m_{h}^{2}\right)}{M_{A}^{2} \left(M_{H}^{2} - m_{h}^{2}\right)}$$

As $M_A \gg M_Z$, $\cos^2(\beta - \alpha) \to 0$, decoupling limit:

• lightest Higgs has SM couplings, $m_h^2 \approx M_z^2 \cos^2 2\beta$;

•
$$M_A \simeq M_H \simeq M_H^{\pm}$$
.

Decoupling limit corrections $\mathcal{O}(M_z^2/M_A^2)$.

Radiative corrections to the MISSINI Higgs sector

Tree-level result $m_h < M_z$ (ruled out by LEP) corrected by important quantum contributions:

 $\begin{pmatrix} \mathcal{M}_S^2 \end{pmatrix}^{\text{tree}} \to \mathcal{M}_S^2 \left(p^2 \right) = \left(\mathcal{M}_S^2 \right)^{\text{tree}} + \left(\Delta \mathcal{M}_S^2 \right)^{\text{eff}} + \left(\Delta \mathcal{M}_S^2 \right)^{p^2}$ $(m_h^2, M_H^2) \text{ solutions of} \qquad \det \left[p^2 - \mathcal{M}_S^2 (p^2) \right] = 0$

SUSY breaking \rightarrow incomplete cancellation between loops of particles and susy partners.

main effects: top and stop loops.

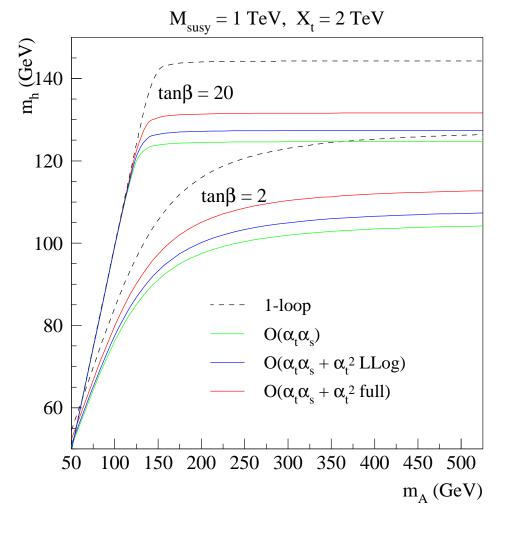
Corrections to m_h :

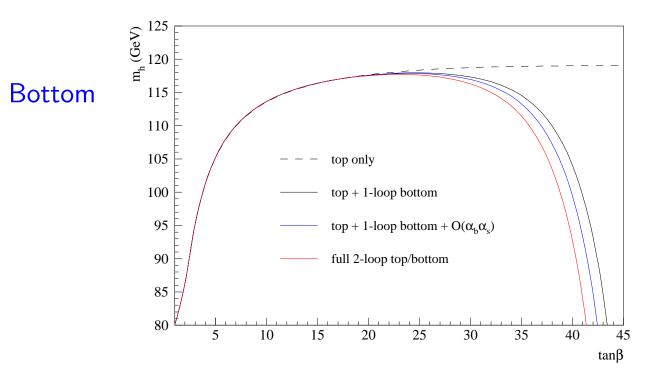
- scale as m_t^4 ;
- depend on the stop mixing parameter $X_t = A_t \mu / \tan \beta$;
- have a logarithmic sensitivity to $M_{\tilde{t}_i}$

$$\Delta m_h \approx \frac{3 \,\alpha_t \, m_t^2 \sin^2 \beta}{\pi} \left[\ln \left(\frac{M_S^2}{m_t^2} \right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 \, M_S^2} \right) \right] + \dots$$
$$(\alpha_t = \frac{h_t^2}{(4 \, \pi)} = \frac{g^2 m_t^2}{(8 \, \pi \, \sin^2 \beta)}, \ M_S^2 = \frac{1}{2} \left(M_{\tilde{t}_1} + M_{\tilde{t}_2} \right))$$

Large $\tan\beta$ scenario: (s)bottom loops also relevant.

Corrections to $\mathcal{M}_{S}^{2}(p^{2})$:


- one-loop: completely known;
 Ellis, Ridolfi, Zwirner (91); Okada, Yamaguchi, Yanagida (91); Haber, Hemplfling (91).....
- two-loop: dominant contributions to $(\Delta M_S^2)^{\text{eff}}$ (effective potential approximation) known.
 - strong corrections to the one-loop (s)top term $(\mathcal{O}(\alpha_t \alpha_s));$ Heinemeyer, Hollik, Weiglein (98); Espinosa, Zhang (00); Slavich, Zwirner, GD (01)
 - Yukawa corrections to the one-loop (s)top term $(\mathcal{O}(\alpha_t^2));$ Espinosa, Zhang (00); Brignole, Slavich, Zwirner, GD (02)
 - strong corrections to the one-loop (s)bottom term $(\mathcal{O}(\alpha_b \alpha_s))$, including resummation of $\tan \beta$ -enhanced terms $(\mathcal{O}(\alpha_b (\alpha_s \tan \beta)^n))$. Brignole, Slavich, Zwirner, GD (02); Carena, Garcia, Nierste, Wagner (00); Heinemeyer, Hollik, Rzehak, Weiglein (04)
 - mixed two-loop Yukawa corrections ($\mathcal{O}(\alpha_t \alpha_s)$); Dedes, Slavich, GD (03)


Corrections to the minimization condition for V^{eff} :

same accuracy

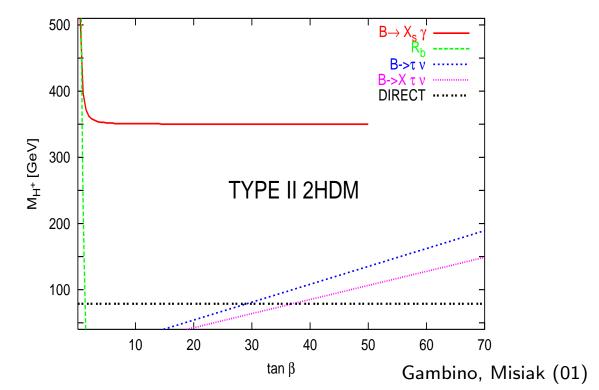
Dedes, Slavich (02); Dedes, Slavich, GD (03)

- Complete two-loop effective potential, including electroweak effects, in the Landau gauge and in the $\overline{\rm DR}$ scheme.
- Complete effective potential approximation of the CP-even mass matrix.
- Strong and Yukawa momentum dependent effects in the Higgs scalar boson self-energies. Martin (02-04)

However

- Results expressed in terms of Lagrangian parameters $m_{H_{1,2}}^2 + \mu^2$ not of M_Z and M_A \rightarrow tree-level squared Higgs masses strongly dependent on the renormalization scale, Q, and can become negative for small Q.
- Calculations are applicable only for $Q \gtrsim 550~{\rm GeV}.$
- Results cannot be easily implemented (and in fact they are not yet) in the public computer codes that already contain all dominant contributions:
 - FeynHiggs 2.2 (Heinemeyer, Hollik, Weiglein, Frank, Hahn)
 - SuSpect 2.3 (Djoudi, Kneur, Moultaka)
 - SoftSusy 1.8.7 (Allanach)
 - SPheno 2.2.1 (Porod)

$$B \to X_s \gamma$$


- Best measured rare decay: $\mathcal{B}(B \to X_s \gamma) = (3.52 \pm 0.30) \times 10^{-4}$
- Solid SM prediction.
 NLO QCD calculation completed and checked (both Wilson coeff.'s and ADM), EW and power corrections known:

 $\mathcal{B}(B \to X_s \gamma)_{SM} = (3.70 \pm 0.30) \times 10^{-4}$

• Not too much room for new physics.

THDM: NLO QCD calculation completed (type I and II) Ciuchini, Gambino, Giudice, GD (98); Borzumati, Greub (98); Ciafaloni, Romanino, Strumia (98)

Strong bound on H^+

SUSY

- Susy exact: no magnetic operators allowed $\rightarrow \mathcal{B}(B \rightarrow X_s \gamma) = 0$ Ferrara, Remiddi (74)
- Susy *is* broken: however cancellations among the various contributions may be partially effective;
 → the bound on H⁺ is weaken.
 Barbieri, Giudice (93)
- Susy novelties:
 - new source of FV from the mismatch between quarks and squarks mass eigenstates.
 - chargino contribution enhanced by $\tan \beta$.

LO QCD results: completely known both in:

- MFV: CKM matrix is the only source of FV at the weak scale Bertolini, Borzumati, Masiero, Ridolfi (91); Barbieri, Giudice (93)...
- GFV: flavor violating gluino interactions.
 Gabbiani, Gabrielli, Masiero, Silvestrini (96); Borzumati, Greub, Hurth, Wyler (00)

NLO QCD results: partial knowledge

MFV scenario

- possible large contributions identified.
 - terms enhanced by $\tan \beta$ factors main source: modified relation between m_b and y_b $g m_b = \sqrt{2} M_W y_b \cos \beta (1 + \epsilon_b \tan \beta)$ Hall, Rattazzi, Sarid (94)
 - * $\mathcal{O}(\tan \beta^2)$: only from chargino contribution
 - * $\mathcal{O}(\tan \beta)$: several sources, full diagrammatic calculation required (not yet available);

but H^+ contribution known

Gambino, Giudice, GD (00); Carena, Garcia, Nierste, Wagner (01); Borzumati,Greub Yamada (03);

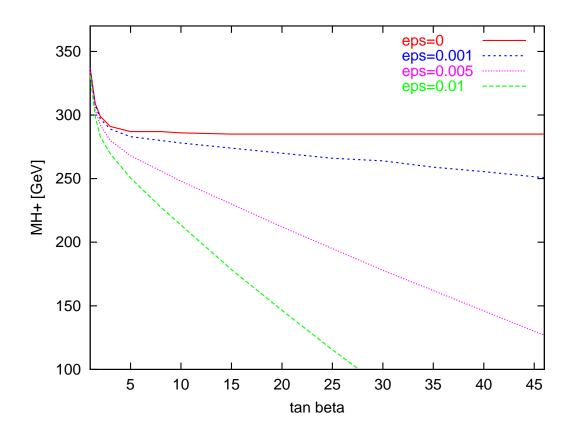
- terms enhanced by $\log(\mu_{\rm SUSY}/\mu_W)$

* different renormalization of y_t and \tilde{y}_t ($\chi \tilde{t} \tilde{b}$ coup.).

SUSY: $\tilde{y}_t(\mu_{\text{SUSY}}) = y_t(\mu_{\text{SUSY}})$

SUSY: \tilde{y}_t frozen, y_t run

 $\rightarrow m_t(\mu_{\mathrm{SUSY}})$ in chargino contribution


* evolution of the Wilson coefficients ($\mu_{SUSY} \rightarrow \mu_W$) Gambino, Giudice, GD (00);

• specific mass scenario:

charginos and one stop (mainly R.H.) light

Wilson coefficients computed

Ciuchini, Gambino, Giudice, GD (98)

Lower bound on H^+ in a THDM scenario as a function of $\tan\beta$ for different values of ϵ

GFV scenario

Generalization of the MFV analyses with the inclusion of NLO dominant gluino flavor changing effects, that generally reduce the SUSY contribution Okumura, Roszkowski (03)

Precision physics

MSSIM contributions to $(g-2)_{\mu}$

 $(g-2)_{\mu}$ SM prediction depends upon the value of the hadronic vacuum polarization and the light-by-light (l.b.l.) contribution:

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (6 - 25) \times 10^{-10} [0.7-2.8] \sigma$$
, l.b.l.=136(25)
([1.2-3.2] σ , l.b.l.=8(4)).

SUSY contribution:

one-loop: $a_{\mu}^{\text{SUSY},11} \simeq 13 \times 10^{-10} \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2 \tan \beta \operatorname{sign}(\mu)$; Moroi (96); Carena, Giudice, Wagner (97)...

 $(g-2)_{\mu}$ measurements place strong constraints on SUSY parameter space.

$$\operatorname{sign}(\mu) = +, \qquad M_{SUSY} \simeq 72\sqrt{\tan\beta} \operatorname{GeV}$$

Known two-loop contributions:

- Leading Logs ($\log(m_{\mu}/M_{SUSY})$); Degrassi, Giudice (98), Czarnecki, Marciano (01)
- closed fermion/sfermion loop inserted into a one-loop THDM diagram: $a_{\mu}^{\tilde{f},2l} \simeq 2.5 \times 10^{-10}$ (old estimate: $a_{\mu}^{\tilde{f},2l} \simeq 20 \times 10^{-10}$)
- Higgs scalar sector contribution (THDM) (L.L. result);
- chargino and neutralino loop inserted into a one-loop THDM diagram

 $a_{\mu}^{\chi,2l} \simeq 11 \times 10^{-10} \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2 \left(\frac{\tan \beta}{50}\right) \text{ sign}(\mu);$ Heinemeyer, Stöckinger, Weiglein (04)

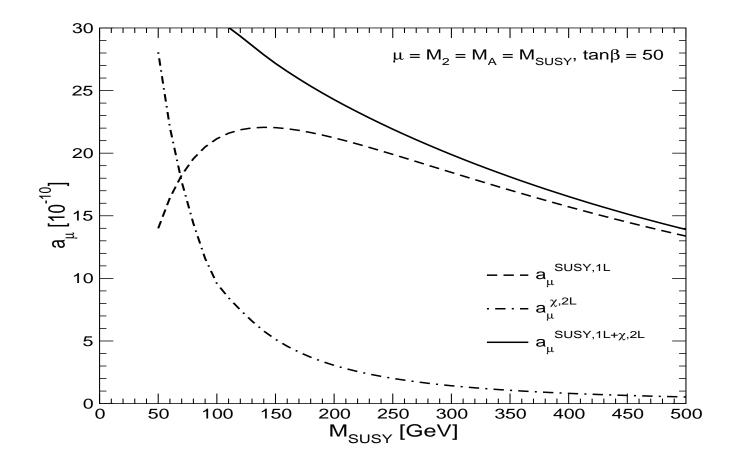
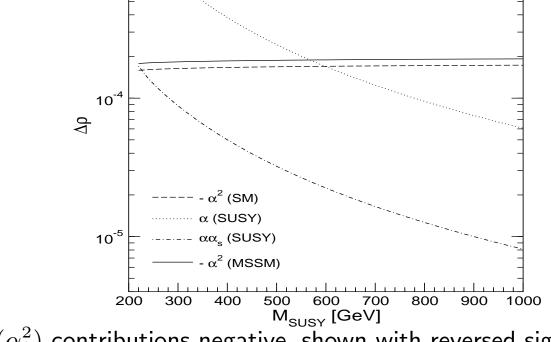


Figure 1: Comparison of the supersymmetric oneloop result, $a_{\mu}^{\text{SUSY},11}$, (dashed) with the two-loop chargino/neutralino contributions, $a_{\mu}^{\chi,2l}$ and the sum (full line). The sfermion mass parameters are set to 1 TeV. (from Heinemeyer, Stöckinger, Weiglein)

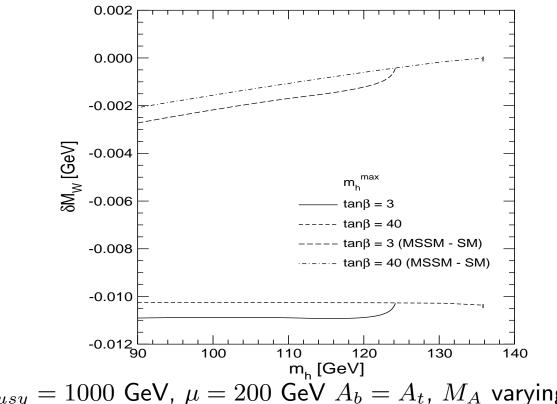
μ parameter

The $\delta \rho$ correction is very important in the predictions of M_W and $\sin^2 \theta_{eff}^{lept}$.

$$\sin^2 \theta_{eff}^{lept} \sim \frac{1}{2} \left\{ 1 - \left[1 - \frac{4(\pi \, \alpha / \sqrt{2} \, G_{\mu})}{M_Z^2 \, \hat{\rho} \left(1 - \Delta \hat{r}_W \right)} \right]^{1/2} \right\}$$


$$M_W^2 = \frac{\hat{\rho}}{2} M_Z^2 \left\{ 1 + \left[1 - \frac{4(\pi \,\alpha/\sqrt{2} \,G_\mu)}{M_Z^2 \,\hat{\rho} \left(1 - \Delta \hat{r}_W\right)} \right]^{1/2} \right\}$$

$$\hat{\rho} = \rho_0 + \delta\rho \leftrightarrow (\epsilon_1, T) \ (\rho_0^{\rm SM} = 1)$$
$$\Delta \hat{r}_w \leftrightarrow (\epsilon_3, S)$$


SUSY contribution:

one-loop: large effect (few per mille) related to the splitting between \tilde{t} 's and \tilde{b} 's from the \tilde{t} mass matrix $\longrightarrow m_t^2$ in the LL entry or via the LR entry. Barbieri, Maiani (83); Lim, Inami, Sakai (84); Grifols, Sola (85).... two-loop:

- $\mathcal{O}(\alpha_s)$ corrections to \tilde{t} , \tilde{b} loops Djoudi, Gambino, Heinemeyer, Hollik, Jünger, Weiglein (97)
- $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_t \alpha_b)$, $\mathcal{O}(\alpha_b^2)$ in the limit of heavy squarks, i.e. THDM with MSSM restrictions. Heinemeyer, Weiglein (02)

 $\mathcal{O}(\alpha_t^2)$ contributions negative, shown with reversed sign.

 $M_{susy} = 1000$ GeV, $\mu = 200$ GeV $A_b = A_t$, M_A varying from 50 GeV to 1000 GeV.

 $\delta \sin^2 \theta_{\text{eff}} = +6 \times 10^{-5}$; (MSSM - SM: $+3 \times 10^{-5} \to 0$)

Conclusions

- Clear indication for a light Higgs boson (weakly-coupled scalar dynamics) and for new physics of the decoupling type → MSSM.
- Very accurate evaluation of the MSSM neutral Higgs sector: uncertainty on m_h: δm_h ≈ 3 - 5 GeV from unknown h.o., same size from experimental errors in the SM input parameters.
- Complete SUSY NLO calculation of $B \to X_s \gamma$ is important
- Complete SUSY two-loop calculation of $(g-2)_{\mu}$ is desirable
- One-loop studies of SUSY processes are under way: many results already available