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The LEP legacy
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Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.00036

0.02749±0.00012

incl. low Q2 data

Theory uncertainty

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02761 ± 0.00036 0.02769

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4966

σhad [nb]σ0 41.540 ± 0.037 41.481

RlRl 20.767 ± 0.025 20.739

AfbA0,l 0.01714 ± 0.00095 0.01650

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1483

RbRb 0.21630 ± 0.00066 0.21562

RcRc 0.1723 ± 0.0031 0.1723

AfbA0,b 0.0998 ± 0.0017 0.1040

AfbA0,c 0.0706 ± 0.0035 0.0744

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.026 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1483

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.425 ± 0.034 80.394

ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.093

mt [GeV]mt [GeV] 178.0 ± 4.3 178.2

Summer 2004
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• Mechanisms of electroweak symmetry breaking with

a “light” Higgs are clearly favored.

• The success of the SM fit places strong constraints

on new-physics.

• Non-decoupling physics can exist (effects that do not

vanish as Λ → ∞ where Λ is the new physics scale).

However it always need some conspiracy to pass the

SM fit constraints.

• New physics of the decoupling type (effects that

scale as M2
Z
/Λ2) can avoid “naturally” (Λ → ∞) the

SM fit constraints.

Best (most fashionable) candidate for new physics is the

Minimal Supersymmetric extension of the Standard

Model (MSSM).

SUSY Virtue: SUSY is theory, not a scenario.
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Radiative corrections to mh



5

Higgs sector of the MSSM

• Two SU(2) × U(1) doublets:

H1 =





H0
1

H−

1



 , H2 =





H+
2

H0
2





H0
i =

vi + Si + i Pi√
2

tan β =
v2

v1

Soft SUSY-breaking mass terms for H0
1 and H0

2

responsible for electroweak symmetry breaking

(EWSB):

Vtree = (m2
H1

+ µ2) |H0
1 |2 + (m2

H2
+ µ2) |H0

2 |2 +

m2
3

(

H0
1H0

2 + h.c.
)

+
1

8
(g2 + g′ 2)

(

|H0
1 |2 − |H0

2 |2
)2

• Five physical states: h , H , A0 , H+ , H−

CP-even Higgs h, H (mh < MH) linear combination

through an angle α of the H1, H2 doublets;

(H1 ⇒ down–fermions, H2 ⇒ up–fermions).
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Tree–level mass matrix for the CP–even sector:

(

M2
S

)tree
=









M2
Z

c2
β + M2

A s2
β −

(

M2
Z

+ M2
A

)

sβ cβ

−
(

M2
Z

+ M2
A

)

sβ cβ M2
Z

s2
β + M2

A c2
β









→ mh and MH predicted in terms of MZ , MA and tanβ

At the tree-level

cos2(β − α) =
m2

h (MZ − m2
h)

M2
A (M2

H
− m2

h)

As MA � MZ, cos2(β − α) → 0, decoupling limit:

• lightest Higgs has SM couplings, m2
h ≈ M2

Z
cos2 2β;

• MA ' MH ' M±
H

.

Decoupling limit corrections O(M 2
Z
/M2

A).
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Radiative corrections to the MSSM Higgs sector

Tree-level result mh < MZ (ruled out by LEP) corrected

by important quantum contributions:

(

M2
S

)tree → M2
S (p2) =

(

M2
S

)tree
+

(

∆M2
S

)eff
+

(

∆M2
S

)p2

(m2
h, M2

H
) solutions of det

[

p2 −M2
S(p2)

]

= 0

SUSY breaking → incomplete cancellation between loops

of particles and susy partners.

main effects: top and stop loops.

Corrections to mh:

• scale as m4
t ;

• depend on the stop mixing parameter

Xt = At − µ/ tanβ;

• have a logarithmic sensitivity to Mt̃i

∆mh ≈ 3αt m2
t sin2 β

π

»

ln

„

M2
S

m2
t

«

+
X2

t

M2
S

„

1 − X2
t

12M2
S

«–

+. . .

(αt =
h2

t
(4 π)

=
g2m2

t

(8 π sin2 β)
, M2

S = 1
2 (Mt̃1

+ Mt̃2
))

Large tan β scenario: (s)bottom loops also relevant.
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Summary of more than ten years of calculations

Corrections to M2
S (p2):

• one-loop: completely known;
Ellis, Ridolfi, Zwirner (91); Okada, Yamaguchi, Yanagida (91); Haber,

Hemplfling (91)......

• two-loop: dominant contributions to
(

∆M2
S

)eff

(effective potential approximation) known.

– strong corrections to the one-loop (s)top term

(O(αtαs));
Heinemeyer, Hollik, Weiglein (98); Espinosa, Zhang (00); Slavich,

Zwirner, GD (01)

– Yukawa corrections to the one-loop (s)top term

(O(α2
t ));

Espinosa, Zhang (00); Brignole, Slavich, Zwirner, GD (02)

– strong corrections to the one-loop (s)bottom term

(O(αbαs)), including resummation of

tan β-enhanced terms (O(αb(αs tan β)n)).
Brignole, Slavich, Zwirner, GD (02); Carena, Garcia, Nierste,

Wagner (00); Heinemeyer, Hollik, Rzehak, Weiglein (04)

– mixed two-loop Yukawa corrections (O(αtαs));
Dedes, Slavich, GD (03)

Corrections to the minimization condition for V eff :

same accuracy
Dedes, Slavich (02); Dedes, Slavich, GD (03)
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Two-loop effects
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Recent progress

• Complete two-loop effective potential, including

electroweak effects, in the Landau gauge and in the

DR scheme.

• Complete effective potential approximation of the

CP-even mass matrix.

• Strong and Yukawa momentum dependent effects in
the Higgs scalar boson self-energies.
Martin (02-04)

However

• Results expressed in terms of Lagrangian parameters

m2
H1,2

+ µ2 not of MZ and MA

→ tree-level squared Higgs masses strongly

dependent on the renormalization scale, Q, and can

become negative for small Q.

• Calculations are applicable only for Q >
∼ 550 GeV.

• Results cannot be easily implemented (and in fact

they are not yet) in the public computer codes that

already contain all dominant contributions:
– FeynHiggs 2.2 (Heinemeyer, Hollik, Weiglein, Frank, Hahn)

– SuSpect 2.3 (Djoudi, Kneur, Moultaka)

– SoftSusy 1.8.7 (Allanach)

– SPheno 2.2.1 (Porod)
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B → Xsγ
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B → Xsγ: a new physics killer

• Best measured rare decay:

B(B → Xsγ) = (3.52 ± 0.30) × 10−4

• Solid SM prediction.

NLO QCD calculation completed and checked (both

Wilson coeff.’s and ADM), EW and power

corrections known:

B(B → Xsγ)SM = (3.70 ± 0.30) × 10−4

• Not too much room for new physics.

THDM: NLO QCD calculation completed (type I and II)
Ciuchini, Gambino, Giudice, GD (98); Borzumati, Greub (98); Ciafaloni,
Romanino, Strumia (98)

Strong bound on H+
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TYPE II 2HDM

B→ Xs γ
Rb

B->τ ν
B->X τ ν
DIRECT

Gambino, Misiak (01)
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SUSY

• Susy exact: no magnetic operators allowed

→ B(B → Xsγ) = 0
Ferrara, Remiddi (74)

• Susy is broken: however cancellations among the

various contributions may be partially effective;

→ the bound on H+ is weaken.
Barbieri, Giudice (93)

• Susy novelties:

– new source of FV from the mismatch between

quarks and squarks mass eigenstates.

– chargino contribution enhanced by tan β.

LO QCD results: completely known both in:

• MFV: CKM matrix is the only source of FV at the

weak scale
Bertolini, Borzumati, Masiero, Ridolfi (91); Barbieri, Giudice (93)...

• GFV: flavor violating gluino interactions.
Gabbiani, Gabrielli, Masiero, Silvestrini (96); Borzumati, Greub, Hurth,
Wyler (00)

NLO QCD results: partial knowledge
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Status of the SUSY NLO QCD calculation

MFV scenario

• possible large contributions identified.

– terms enhanced by tanβ factors

main source: modified relation between mb and yb

g mb =
√

2MW yb cosβ(1 + εb tan β)
Hall, Rattazzi, Sarid (94)

∗ O(tan β2): only from chargino contribution

∗ O(tan β): several sources, full diagrammatic

calculation required (not yet available);

but H+ contribution known

Gambino, Giudice, GD (00); Carena, Garcia, Nierste, Wagner (01);
Borzumati,Greub Yamada (03);

– terms enhanced by log(µSUSY/µW )

∗ different renormalization of yt and ỹt (χt̃b̃ coup.).

SUSY: ỹt(µSUSY) = yt(µSUSY)

SUSY: ỹt frozen, yt run

→ mt(µSUSY) in chargino contribution

∗ evolution of the Wilson coefficients (µSUSY → µW )
Gambino, Giudice, GD (00);

• specific mass scenario:

charginos and one stop (mainly R.H.) light

Wilson coefficients computed
Ciuchini, Gambino, Giudice, GD (98)



15

100

150

200

250

300

350

5 10 15 20 25 30 35 40 45

M
H

+
 [G

eV
]

tan beta

eps=0       
eps=0.001
eps=0.005
eps=0.01  

Lower bound on H+ in a THDM scenario as a function

of tan β for different values of ε

GFV scenario

Generalization of the MFV analyses with the inclusion of

NLO dominant gluino flavor changing effects, that

generally reduce the SUSY contribution
Okumura, Roszkowski (03)
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Precision physics
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MSSM contributions to (g − 2)µ

(g − 2)µ SM prediction depends upon the value of the

hadronic vacuum polarization and the light-by-light (l.b.l.)

contribution:

aexp
µ − aSM

µ = (6 − 25) × 10−10 [0.7-2.8] σ, l.b.l.=136(25)

([1.2- 3.2] σ, l.b.l.=8(4)).

SUSY contribution:

one-loop: aSUSY,1l
µ ' 13 × 10−10

“

100GeV

MSUSY

”2

tan β sign(µ);
Moroi (96); Carena, Giudice, Wagner (97)...

(g − 2)µ measurements place strong constraints on SUSY

parameter space.

sign(µ) = +, MSUSY ' 72
p

tan β GeV

Known two-loop contributions:

• Leading Logs ( log(mµ/MSUSY));
Degrassi, Giudice (98), Czarnecki, Marciano (01)

• closed fermion/sfermion loop inserted into a one-loop

THDM diagram: af̃ ,2l
µ ' 2.5 × 10−10

(old estimate: af̃ ,2l
µ ' 20 × 10−10 )

• Higgs scalar sector contribution (THDM) (L.L. result);

• chargino and neutralino loop inserted into a one-loop
THDM diagram

aχ,2l
µ ' 11 × 10−10

“

100GeV

MSUSY

”2
`

tan β

50

´

sign(µ);

Heinemeyer, Stöckinger, Weiglein (04)



18

0 50 100 150 200 250 300 350 400 450 500
MSUSY [GeV]

0

5

10

15

20

25

30

a µ [1
0-1

0 ]

aµ
SUSY,1L

aµ
χ,2L

aµ
SUSY,1L+χ,2L

µ = M2 = MA = MSUSY, tanβ = 50

Figure 1: Comparison of the supersymmetric one-
loop result, aSUSY,1l

µ , (dashed) with the two-loop

chargino/neutralino contributions, aχ,2l
µ and the sum (full

line). The sfermion mass parameters are set to 1 TeV.
(from Heinemeyer, Stöckinger, Weiglein)
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MSSM contributions to the ρ parameter

The δρ correction is very important in the predictions of

MW and sin2θlept
eff .

sin2θlept
eff ∼ 1

2







1 −
[

1 − 4(π α/
√

2 Gµ)

M2
Z

ρ̂ (1 − ∆r̂W )

]1/2






M2
W

=
ρ̂

2
M2

Z







1 +

[

1 − 4(π α/
√

2 Gµ)

M2
Z

ρ̂ (1 − ∆r̂W )

]1/2






ρ̂ = ρ0 + δρ ↔ (ε1, T ) (ρSM
0 = 1)

∆r̂W ↔ (ε3, S)

SUSY contribution:

one-loop: large effect (few per mille) related to the

splitting between t̃’s and b̃’s from the t̃ mass matrix

−→ m2
t in the LL entry or via the LR entry.

Barbieri, Maiani (83); Lim, Inami, Sakai (84); Grifols, Sola (85)....

two-loop:

• O(αs) corrections to t̃, b̃ loops
Djoudi, Gambino, Heinemeyer, Hollik, Jünger, Weiglein (97)

• O(α2
t ), O(αtαb), O(α2

b) in the limit of heavy
squarks, i.e. THDM with MSSM restrictions.
Heinemeyer, Weiglein (02)
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Conclusions

• Clear indication for a light Higgs boson

(weakly-coupled scalar dynamics) and for new physics

of the decoupling type → MSSM.

• Very accurate evaluation of the MSSM neutral Higgs

sector:

uncertainty on mh: δmh ≈ 3 − 5 GeV from unknown

h.o., same size from experimental errors in the SM

input parameters.

• Complete SUSY NLO calculation of B → Xsγ is

important

• Complete SUSY two-loop calculation of (g − 2)µ is

desirable

• One-loop studies of SUSY processes are under way:

many results already available


