

R-parity violating sneutrino decays

Diego Aristizábal Sierra *

Universitat de València-IFIC

* Based on the article: *R-parity Violating Sneutrino Decays*,

D. Aristizábal, M. Hirsch and W. Porod

hep-ph/0409241

Outline of the Talk

Motivation

Neutrino oscillation experiments tell us neutrinos are massive. R-parity breaking models provide a possible explanation to the origin of neutrino masses.

Model

- R-parity violation via lepton number non-conserving interactions.
- Sneutrino is the LSP: Once R-parity is violated any sparticle can be the LSP. Moreover from the phenomenological point of view there is no reason to prefer the neutralino over the sneutrino.
- Results.
- Conclusions.

Neutrino oscillations \Rightarrow massive neutrinos

In the basis where the lepton mass matrix is already diagonal

$$W_{\mathcal{K}} = \varepsilon_{ab} \left[\frac{1}{2} \lambda_{ijk} \widehat{L}_i^a \widehat{L}_j^b \widehat{E}_k + \lambda'_{ijk} \widehat{L}_i^a \widehat{Q}_j^b \widehat{D}_k + \epsilon_i \widehat{L}_i^a \widehat{H}_u^b \right]$$

The soft BRpV SUSY breaking potential

$$V_{\text{soft}}^{\text{BRpV}} = -\varepsilon_{ab}B_i\epsilon_i\widetilde{L}_i^aH_u^b$$

induce sneutrino vevs, $\langle \nu_i \rangle = v_i$.

Huge number of parameters:

$$\Rightarrow$$
 9 λ_{ijk} , 27 λ'_{ijk} , 3 ϵ_i and 3 $B_i\epsilon_i$.

Are these 42 parameters physical?

In the superpotential:

$$\begin{split} W_{\text{bilinear}} &= -\varepsilon_{ab} \left(\mu \widehat{H}_d^a \widehat{H}_u^b - \epsilon_i \widehat{L}_i^a \widehat{H}_u^b \right) \\ \widehat{L}_{\beta}' &= R_{\beta\alpha} \widehat{L}_{\alpha} \text{ with } \widehat{L}_{\alpha} = (\widehat{H}_d, \widehat{L}_1, \widehat{L}_2, \widehat{L}_3) \\ &\Rightarrow \epsilon_i \text{ rotated away.} \end{split}$$

● Only in the case $B = B_i$ and $m_{H_d}^2 = m_{L_i}^2 \Rightarrow$ all BRpV rotated away. However this condition is Not stable under RGE running \Rightarrow There are 39 physical parameters

In the superpotential:

$$\begin{split} W_{\text{bilinear}} &= -\varepsilon_{ab} \left(\mu \widehat{H}_d^a \widehat{H}_u^b - \epsilon_i \widehat{L}_i^a \widehat{H}_u^b \right) \\ \widehat{L}'_\beta &= R_{\beta\alpha} \widehat{L}_\alpha \text{ with } \widehat{L}_\alpha = (\widehat{H}_d, \widehat{L}_1, \widehat{L}_2, \widehat{L}_3) \\ &\Rightarrow \epsilon_i \text{ rotated away.} \end{split}$$

• Only in the case $B = B_i$ and $m_{H_d}^2 = m_{L_i}^2$ all BRpV are rotated away. However, this condition is not stable under RGE running \Rightarrow There are 39 physical parameters

Remark

 $\widehat{L}'_{\beta} \Rightarrow$ trilinear: that follow the hierarchy of *d*-quarks and ℓ masses

 $\lambda_{i33}' \sim (\epsilon_i/\mu) h_b$

BRpV and *v***-masses I**

$BRpV \Rightarrow Neutralino-neutrino mixing$

Neutralino–neutrino mass matrix (7×7)

$$\mathbf{M}_N = egin{pmatrix} \mathbf{M}_{\chi^0} & \mathbf{m}^T \ \mathbf{m} & \mathbf{0} \end{pmatrix}$$

 \mathbf{M}_{χ^0} is the neutralino mass matrix and \mathbf{m} is given by

$$\mathbf{m} = \begin{pmatrix} -\frac{1}{2}g'v_1 & \frac{1}{2}gv_1 & 0 & \epsilon_1 \\ -\frac{1}{2}g'v_2 & \frac{1}{2}gv_2 & 0 & \epsilon_2 \\ -\frac{1}{2}g'v_3 & \frac{1}{2}gv_3 & 0 & \epsilon_3 \end{pmatrix}$$

Because of smallness of measured neutrino masses the mixing is small and hence \mathbf{M}_N can be diagonalized perturbatively $\widehat{\mathbf{M}}_N = \text{diag}(\mathbf{M}_{\chi^0}, \mathbf{m}_{\text{eff}})$

$$\mathbf{m}_{\mathsf{eff}} = \frac{(M_1 g^2 + M_2 {g'}^2)}{4 \det(\mathbf{M}_{\chi^0})} \begin{pmatrix} \Lambda_e^2 & \Lambda_e \Lambda_\mu & \Lambda_e \Lambda_\tau \\ \Lambda_e \Lambda_\mu & \Lambda_\mu^2 & \Lambda_\mu \Lambda_\tau \\ \Lambda_e \Lambda_\tau & \Lambda_\mu \Lambda_\tau & \Lambda_\tau^2 \end{pmatrix}$$

 $\Lambda_i = \mu v_i + v_d \epsilon_i.$

$$\tan \theta_{13} = -\frac{\Lambda_e}{\sqrt{\Lambda_{\mu}^2 + \Lambda_{\tau}^2}} \qquad \tan \theta_{23} = -\frac{\Lambda_{\mu}}{\Lambda_{\tau}}$$

So at tree level one neutrino acquire mass.

TRpV *v***-masses**

Trilinears λ and λ' contribute to ν mass matrix

$$m^{1-\mathsf{loop}} = m^{\lambda'} + m^{\lambda}$$

$$m_{ii'}^{\lambda(\lambda')} \sim \lambda_{ijk}^{(\prime)} \lambda_{i'kj}^{(\prime)} \left[m_k \sin 2\theta_j \ln \left(\frac{m_{2j}^2}{m_{1j}^2} \right) \right]$$

$\widetilde{\nu}$ and χ^+ production

✓ e^+e^- collider with unpolarized beams and $\sqrt{s} = 1$ TeV ⇒ $\mathcal{L} = 1 \text{ ab}^{-1}$ at least 10^4 sneutrino and chargino pairs are produced. ✓ $m_{L_i}^2 \simeq m_L^2 \Rightarrow$ Degenerate sneutrinos. So, how can the $\tilde{\nu_\ell}$ flavour be identified ?

✓ Chargino decays ⇒ flavour identification: $\chi_1^+ \to \ell_{\alpha}^+ \tilde{\nu}_{\ell_{\alpha}} \to \ell_{\alpha}^+ \ell_{\beta}^+ \ell_{\gamma}^-$

We have considered three extreme scenarios constructed with the following assumptions:

Scenario I

Neutrino mass matrix dominated by BRpV parameters:

- Atmospheric scale: Tree level.
- Solar scale: induced by loops.

Scenario II

- $\lambda_{ijk}' = 0$ (which implies few hadronic jets).
 - Atmospheric scale: tree level BRpV.
- Solar scale: scalar loops λ_{ijk} (These trilinears do not follow the hierarchy of ┛ the trilinears induced by the basis rotation).

Scenario III

Neutrino mass matrix dominated by TRpV parameters and $\langle \tilde{\nu}_i \rangle = v_i \approx 0$

Scenario I

 $\Gamma(\tilde{\nu}_i \to \ell_j \ell_k) \sim \lambda_{ijk}^2$ and $\Gamma(\tilde{\nu}_i \to d_j \bar{d}_k) \sim \lambda_{ijk}^{\prime 2}$

✓ λ_{ijk} and λ'_{ijk} propotional to h_{ℓ} and h_d respectively ⇒ sneutrino observables related to these Yukawas

✓ Ratios of branching ratios independent of all parameters e.g.

 $Br(\tilde{\nu}_{e,\mu} \to \tau\tau)/Br(\tilde{\nu}_{e,\mu} \to bb) \simeq h_{\tau}^2/(3h_b(1+\Delta_{\text{QCD}}))$

✓ Measurement of ratios of Branching ratios allow the measurement of BRpV parameters e.g. $Br(\tilde{\nu}_{\tau} \rightarrow e\tau)/Br(\tilde{\nu}_{\tau} \rightarrow \mu\tau) = \epsilon_1^2/\epsilon_2^2$

Scenario I–Invisible decay

 $I = Br(\tilde{\nu}_i \to \sum \nu_j \nu_k) \ge 10^{-5} \implies \text{ some invisible sneutrino decays are expected}$

Scenario I–Decay length

Solution
For √s = 1 TeV and due to the smallness of $\Delta m^2 \Rightarrow$ L = $\frac{\hbar c}{\Gamma} \sqrt{\frac{s}{4m^2} - 1} < 10 \mu m$. Future colliders sensitivities ~ 10 µm ⇒ absolute values of R-parity violating parameters can not be measured.

P Turning the argument: $L > 10 \mu m$ would rule out R-parity violation as the dominant source of m_{ν}

Scenario II

- Final states mainly leptonic.
- In this case measurement of R-parity breaking parameters involve measurements of ratios of ratios of branching ratios e.g.

$$\begin{aligned} Br(\tilde{\nu}_e \to \tau\tau) &\simeq c_{\tilde{\nu}_e} \lambda_{133}^2 , \quad Br(\tilde{\nu}_\mu \to \tau\tau) \simeq c_{\tilde{\nu}_\mu} \lambda_{233}^2 \\ Br(\tilde{\nu}_e \to \mu\mu) &\simeq c_{\tilde{\nu}_e} \lambda_{122}^2 , \quad Br(\tilde{\nu}_\mu \to e\mu) \simeq c_{\tilde{\nu}_\mu} \lambda_{122}^2 \\ &\Rightarrow \frac{Br(\tilde{\nu}_e \to \tau\tau)/Br(\tilde{\nu}_\mu \to \tau\tau)}{Br(\tilde{\nu}_e \to \mu\mu)/Br(\tilde{\nu}_\mu \to e\mu)} = \left(\frac{\lambda_{133}}{\lambda_{233}}\right)^2 \end{aligned}$$

Decay lengths as well as $\tilde{\nu}$ invisible decays are smaller than in scenario I.

Scenario III

As in scenario II measurement of R–parity breaking parameters imply the measurement of ratios of ratios of branching ratios *e.g.*

$$\frac{Br(\tilde{\nu}_e \to \tau\tau)/Br(\tilde{\nu}_\mu \to \tau\tau)}{Br(\tilde{\nu}_e \to \mu\mu)/Br(\tilde{\nu}_\mu \to e\mu)} = \left(\frac{\lambda_{133}}{\lambda_{233}}\right)^2 \text{ and } \frac{Br(\tilde{\nu}_\mu \to bb)/Br(\tilde{\nu}_\tau \to bb)}{Br(\tilde{\nu}_\mu \to \tau\tau)/Br(\tilde{\nu}_\tau \to \mu\tau)} = \left(\frac{\lambda'_{233}}{\lambda'_{333}}\right)^2$$

Assuming that λ_{i33} and λ'_{233} and λ'_{333} are somewhat larger than the other λ_{ijk} and λ'_{ijk} it is possible to make a consistency check with the solar and atmospheric angle.

Decay lengths are smaller than in scenario II.

Conclusions

- We have considered the general R-parity violating model and we have found that if sneutrino is the LSP:
 - There are different scenarios where, despite the large number of R-parity breaking parameters, sneutrino decay patterns can be used to obtain information about the relative importance of these parameters.
 - Sneutrino decay patterns are correlated with $\tan^2 \theta_{\odot}$ or $\tan^2 \theta_{Atm}$. These correlations can be used to cross check each scenario.
 - Sneutrino vevs, induced by BRpV terms, can be probed by measuring the branching ratio of sneutrinos to invisible fi nal states but we expect these branchings to be small.
 - Sneutrino decay lengths are small (< 10 μ m). This information can be used to rule out R–parity violation as the source of m_{ν} .