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What is the microbunching instability?

Dispersion turns energy modulation
into larger charge-density ripples

Collective effects turn ripples of
charge-density into energy modulation
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Motivations

• The microbunching instability can cause unacceptable degradation 
of beam quality in the longitudinal phase space

• Controlling the instability is important  for x-rays FEL design
– Has consequences on design choices/hardware (e.g. ‘laser heater’)

• It is an issue in particular for FERMI@Elettra
– 150 keV max. uncorrelated energy spread desired in undulators 

• Shot noise is the most fundamental (and unavoidable) source of 
charge fluctuations seeding the instability

– Other sources may be important but are not considered here.
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Simulating the micrubunching  instability        
is challenging

• The instability is by its nature sensitive to small fluctuations in phase 
space density

• Good resolution of phase space needed 

• Three distinct methods are currently being used:

– Linear analysis 
– Macro-particle simulations
– Vlasov solvers 
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Pros & cons of Vlasov solvers

• Pros :
– Avoids spurious fluctuations caused by finite number of macroparticles
– Can resolve fine structures in low-populated regions of phase space
– More accurate detection of instability

• Cons :
– Computationally more intensive in higher dimension
– Requires simplified modelling of collective forces in low dimension

– Density representation on a grid introduces spurious smoothing. 
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Three ways of writing the Vlasov equation

Anatoly Vlasov
(1908-1975) 

0=
ds

df

Vlasov Eq. expresses
conservation of local density in phase space 
along particle trajectories
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Propagate density one-step forward: e.g. drift

p

q

Beam density
at time t defined

on  grid f =f ij

Beam density
at time t defined

on  grid f =f ij

At time t + ∆∆∆∆t
we want value of 

density on this grid 
point

At time t + ∆∆∆∆t
we want value of 

density on this grid 
point

find image
according  

to backward 
mapping 

find image
according  

to backward 
mapping 

In general backward image
does not fall on grid point: 

Interpolation needed
to determine f
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Chirped beams pose some technical problems …

We would like to use a rectangular grid ….

This is the beam we like…
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This is what a chirped 
beam looks like…

Chirp function
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Transform away the z/E correlation

Initial chirp function:

Transformation to “capped”
coordinates

Chirp (correlation)
function

Chirp function evolves like
the support of a beam with 

zero uncorrelated energy spread
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In transformed coordinates
beam density looks good (= it nicely fills the grid) 

Beam density in the 
transformed coordinates

Here we can use
a rectangular grid efficiently

Beam density in
z/E coordinates
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Collective effects & account of effect of         
a finite emittance on longitudinal slippage

Starting from the 4D Vlasov equation make some ansa tz on form
of density function and average over transverse coo rdinates

Length-scale for
emittance-induced
slippage in z

Model of finite transverse emittance  
equivalent to low pass-filter
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Collective effects are evaluated using 
impedance models

• On-axis field from transversely 
uniform charge density with 
circular cross-section

• Free space

• Model of beam in uniform motion on
circular orbit

• Free space

Ω
/m
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Example of beam propagation through
a bunch compressor

CSR
only
CSR
only

Entrance Exit
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Microbunching instability: determining 
the small-amplitude gain function

Space charge 
+ CSR

Space charge 
+ CSR

initial E =  95 MeV
σE= 10 KeV

peak curr. =  95.5 A
compr. factor = 3.52

Gain factor is 
about 170

Gain factor is 
about 170

Exit of BC1Entrance of L1 linac
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Contact with linear theory validates solver

CSR only 
(space charge turned off)

Discrepancy between 4D linear theory
and Vlasov solver due to approximate
account of transverse dynamics by 
solver

CSR + space charge

Small Amplitude Gain Function
(L1 through BC2)

Vlasov solver

4D Linear theory 

FERMI Two-BC lattice
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How do we model shot noise?

• Place a random perturbation on top of initial smooth distribution on grid 
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• No. of electrons in phase-space 
cell obey the Poisson statistics: 

ijijijij NNN ξ2/1〉〈+〉〈=

Normal stochastic
process: average=0 
variance=1pqNfN ijij ∆∆=〉〈 )0(

)0(
ijf normalized to unity
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Beam dynamics with shot noise for 
Two-BC FERMI@Elettra Lattice

• Initial phase-space 
beam  has 

– uniform z-density, 
gaussian energy 
density 

– + random perturbation 
to model shot noise

• Peak current at 
extraction If= 1kA

80µµµµm

Simulation
starts here:
E = 96 MeV, σE0= 10 keV, ε =1µm
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• Energy modulation 
induced by collective 
effect  starts to become 
visible

80µµµµm

E
 (

M
eV

)

…beam at exit of BC1
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…beam at entry of BC2

• Charge density 
fluctuations in the few 
%s range by the end of 
BC1 seed a large 
energy modulation by 
the time beam enters 
BC2. 

E
 (

M
eV

)

80µµµµm 22µµµµm
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…beam after 3rd bend of BC2 

• Evidence of saturation 
by the exit of the 3rd

bend in BC2

E
 (

M
eV

)

80µµµµm

22µµµµm

22µµµµm
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…beam at exit of BC2

• Last bend of BC2 has 
modest impact.

E
 (

M
eV

)

80µµµµm

22µµµµm

22µµµµm

22µµµµm
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… beam after spreader

• Space charge adds 
further energy 
modulation in the linac 
after BC2

( σE0= 13 keV )
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What the minimum achievable uncorrelated
energy spread at extraction for FERMI ? 

• The One-BC lattice found to meet specifications for beam energy 
spread.
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Design of spreader affects microbunching

• The 1D space-charge model predict 
that a  fairly small ∆R56 (~ mm) can 
result into a large gain in the sub µm 
wavelength range

Linear Gain 
(from exit of BC thru spreader)

`Un-optimized’
spreader design
(∆∆∆∆R56=1mm)

`Un-optimized’
spreader design
(∆∆∆∆R56=1mm)

Exit of Spreader End of Linac

• The Vlasov solver shows energy 
modulations of almost 1MeV at 
exit of Linac for ‘un-optimized’
spreader design
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Spreader with large ∆R56
(‘un-optimized’ design) causing 
problems

• Two pairs of 
bends (dogleg); 
100 mrad bending

• Each pair is a 
perfect achromat

B1 B2 B3 B4
Q1

Q2
Q3

Q4
Q5

Q6
Q7

Q8
Q9

Q10
Q11

Q12

Dispersion

R56
R56
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Quadrupoles Q2 and 
Q10 are tuned to provide 
a closed dispersion 
bump and adjust R56 to 
zero. (A. Zholents)

Spreader design with reduced ∆R56
works OK

• Simulations for lattice 
with this design show 
no noticeable rms 
energy spread 
increase because of 
the spreader  

R56
R56

B1 B2 B3 B4
Q1

Q2
Q3

Q4
Q5

Q6
Q
7 Q8

Q9
Q10

Q11
Q12

R56
R56
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Is the predicted effect in un-optimized 
spreader real?

• Validity of 1D model of  
SC impedance breaks 
down  for   λ <~ 2π rb/γ

• The peak of gain (~0.3 µµµµm) 
corresponds to maximum of 
space-charge impedance for 
beam in the spreader region

• Maximum occurs at                
λλλλ = 2ππππ rb/γγγγ

1D Space-Charge Long. Impedance

In the spreaderIn the spreader

Caveat:

In BCIn BC
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Conclusions

• A 2D Vlasov Solver as an effective tool for studying the microbunching 
instability

• Simulations show that shot-noise alone would cause an energy spread 
larger than the desired 150 keV in the Two-BC Lattice for FERMI

– One-BC lattice OK

• Results consistent  with 1B macroparticle simulations (J.Qiang) --
preliminary comparisons

• Further studies needed to better delimit use of  1D model of space-charge 
(e.g for dynamics through spreader)
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f
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Example of interpolation between adjacent   
grid-points for 1D case

Value of  f is determined by
interpolation using e.g. values
of f on adjacent grid points

τ∆− p

Beam density
At later time 

Beam density
At present time 

=
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Beam dynamics with shot noise for 
Two-BC FERMI@Elettra Lattice

• Initial phase-space 
beam  has 

– uniform z-density, 
gaussian energy 
density 

– + random perturbation 
to model shot noise

• Peak current at 
extraction If= 1kA

• Modest energy 
modulation visible after 
BC1

80µµµµm

Simulation
starts here:
E = 96 MeV, σE0= 10 keV, ε =1µm

E
 (

M
eV

)


